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Abstract: The removal of chlorophenol (CP) contaminants from water is a great challenge owing to
their natural robustness and the toxic chlorinated by-products generated in degradation processes. In
this work, a series of three-dimensional nanoflower-like structured photocatalysts (CQDs/ZnIn2S4-x,
x = 1, 2, or 3 wt%) were fabricated via a facile hydrothermal approach. Excellent photocatalytic
abilities toward 4-CP degradation under Xe lamp irradiation were achieved over the as-prepared com-
posites. The removal efficiency of total organic carbon for 4-CP on the optimized CQDs/ZnIn2S4-2
was 49.1%, which was 16.0% higher than that of ZnIn2S4. The presence of CQDs could not only be
used to adjust controllable band structures for enhancing light absorption, but it could also serve
as an electron acceptor to promote the transition of electron–hole pairs. Moreover, a possible degra-
dation mechanism of 4-CP was also proposed according to the analyses of active species, electron
paramagnetic resonance characterization, degradation products, and attacked sites. Overall, this
work unveils a superior function of an efficient photocatalyst for refractory organic pollutants.

Keywords: photocatalysis; 4-CP; CQDs; ZnIn2S4

1. Introduction

Chlorophenols (CPs) are one of the most harmful persistent pollutants and are widely
used as pesticides and disinfectants [1–3]. Strong conjugate interactions between the
aromatic nucleus and Cl have structurally endowed CPs with high stability and toxicity.
Owing to their carcinogenicity, mutagenicity, and adverse ecosystem effects, CPs have been
defined as priority organic pollutants by the U.S. Environmental Protection Agency [4,5].
Therefore, it is of great importance to develop advanced techniques for the treatment
of CPs. Recently, advanced oxidation processes (AOPs), including the electrochemical
method, Fenton treatment, and persulfate oxidation, have increasingly emerged for the
removal of CPs [6–8]. Although the CPs could be degraded by the above technologies, their
dissatisfactory selectivity could result in the generation of harmful organic Cl byproducts,
further resulting in secondary environmental risks. Thus, it is necessary to develop an
inexpensive and green method for the complete degradation of CPs. Heterogeneous
photocatalysis technologies have drawn more and more attention due to their advantages
of mild reaction conditions and low energy consumption [9,10]. Nevertheless, the fairly
high photo-induced carrier combination rate and weak visible light adsorption ability
limit their further applications. Therefore, designing photocatalysts with high activity is a
great challenge.

ZnIn2S4, a ternary chalcogenide, is considered as a potential photocatalyst owing to
its appropriate band gap (~2.4 eV) and superior visible light absorption capacity [11,12].
However, the high recombination rate of photo-generated carriers is the key bottleneck
of ZnIn2S4 [13]. Decorating ZnIn2S4 with other semiconductor photocatalysts or noble
metals, such as TiO2, MoS2, and Ag NPs, is an efficient strategy to improve the sep-
aration efficiency of electron–hole pairs [14–16]. Compared with the above materials,
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carbon quantum dots (CQDs), as a typical carbon nanomaterial with sizes no larger than
10 nm [17,18], have attracted extensive attention due to their advantages, such as abundant
functional groups, low cost, outstanding optical properties, environmental friendliness,
and facile synthesis [19–21]. Benefiting from their superior electrochemical properties, they
have drawn extensive attention in photocatalysis. It is worth noting that CQDs can act as
electron acceptors, facilitating electron transfer and notably improving charge separation
and light absorption. Furthermore, the upconversion characteristics of CQDs also favor the
broadening of the light absorption range.

Inspired by the above discussion, the design of CQD-modified photocatalytic com-
posites is beneficial for achieving excellent photocatalytic performance for pollutant elim-
ination. Therefore, in this work, nanoflower-like CQDs/ZnIn2S4-x (x = 1, 2, or 3 wt%)
composites were fabricated by a simple hydrothermal method, which was employed to
degrade p-chlorophenol (4-CP) under Xe lamp irradiation. The synthetic parameters of
CQDs/ZnIn2S4-x were also optimized by investigating their photocatalytic activities to-
ward 4-CP. The effects of different reaction conditions, including the initial pH, catalyst
concentration, and co-existing inorganic anions, were investigated. In addition, the cat-
alyst’s stability, degradation pathways, photocatalytic mechanism, and variations in the
toxicity of 4-CP were systematically explored.

2. Results and Discussion
2.1. Characterization and Performance Valuation

A scanning electron microscope (SEM) was employed to observe the surface morphol-
ogy of the as-prepared materials. Figure 1a,b exhibits a three-dimensional nanoflower-like
structure of ZnIn2S4, which was assembled by a series of nanosheets. However, the surface
morphology of CQDs could not be observed from the SEM result. Herein, high-resolution
transmission electron microscopy (HRTEM) and the corresponding energy dispersive
spectrometer (EDS) elemental mapping of CQDs/ZnIn2S4-2 were further carried out. As
depicted in Figure 1c–h and Figure S1, the CQDs and elements, including Zn, In, S, and C,
could be clearly observed.
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Figure 1. SEM images with different scales: 5 µm (a) and 1 µm (b); HRTEM images with different
scales: 100 nm (c) and 20 nm (d); EDS elemental mapping images of C, Zn, In, and S elements (e–h);
and XRD patterns of the as-prepared samples (i).

The crystal type and crystallinity of ZnIn2S4 and CQDs/ZnIn2S4-2 were measured
by X-ray electron diffraction (XRD), and the results are shown in Figure 1i. The peaks
at 2θ = 21.8◦, 27.6◦, 30.5◦, 39.8◦, 47.1◦, 52.3◦, and 55.4◦ were indexed to the (006), (102),
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(104), (108), (110), (116), and (022) planes of hexagonal ZnIn2S4 (JCPDS No. 72-0773),
respectively [22]. However, no obvious diffraction peaks of CQDs could be observed in
CQDs/ZnIn2S4-2, which may be due to the low amount of CQDs in the composite. An
X-ray photoelectron spectrum (XPS) was employed to analyze the chemical composition
and chemical state of the as-prepared CQDs/ZnIn2S4-2. As depicted in Figure 2a, the Zn
2p spectrum of CQDs/ZnIn2S4-2 exhibited two distinct peaks at 1022.0 eV and 1045.1 eV,
which corresponded to Zn 2p3/2 and Zn 2p1/2, respectively. Meanwhile, the peaks at the
binding energies of 445.1 and 452.8 eV belonged to In 3d5/2 and In 3d3/2, respectively
(Figure 2b) [23]. As presented in Figure 2c, the S 2p spectrum of CQDs/ZnIn2S4-2 could
be fitted into two peaks at 162.0 and 163.1 eV, which were ascribed to S 2p3/2 and S 2p1/2,
respectively. Figure 2d shows the C1s spectrum of CQDs/ZnIn2S4-2; the binding energies
at 284.6 eV, 285.8 eV, and 289.0 eV were attributed to the C–C/C=C, C-O, and C=O bonds,
respectively. These results confirmed the successful preparation of CQDs/ZnIn2S4-2.
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Photoelectrochemical measurements, including UV-vis diffuse reflectance spectra (UV-
vis DRS), photocurrent, and electrochemical impedance spectroscopy (EIS), were carried
out to prove the positive roles of CQDs for improving the photocatalytic drawbacks of
ZnIn2S4 [24–26]. The photocurrent response of CQDs/ZnIn2S4-2 was observably enhanced
due to the introduction of CQDs (Figure 3a), which indicated the more efficient charge
separation efficiency of the CQDs/ZnIn2S4-2 composite. The result (Figure S2) of UV-vis
DRS demonstrated the enhanced light adsorption ability of CQDs/ZnIn2S4-2. Moreover,
as presented in Figure 3b, the semicircle of CQDs/ZnIn2S4-2 was smaller than that of
pure ZnIn2S4, suggesting its excellent electron mobility rate, and the larger slope of the
line part indicated its low charge transfer resistance. The synthetic parameters of pho-
tocatalysts may notably affect their activities. Therefore, the photocatalytic activities of
CQDs/ZnIn2S4-x (x = 1, 2, or 3 wt%) with different loading amounts of CQDs were in-
vestigated through the degradation of 4-CP under Xe lamp irradiation. As presented in
Figures 3 and S3, the CQDs/ZnIn2S4-2 exhibited the optimal degradation performance
for 4-CP. This indicates that the suitable loading of CQDs could improve the degradation
performance of 4-CP. However, the excessive CQDs could cover the active sites on the
surface of the CQDs/ZnIn2S4-x composite. Furthermore, the total organic carbon (TOC)
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removal efficiency for 4-CP on CQDs/ZnIn2S4-2 was 49.1%, which was 16.0% higher than
that of ZnIn2S4 (Figure S4). The effect of the pH value (3, 5, 7, and 9) on 4-CP degradation
was determined and is given in Figure S5. It can be seen that the degradation rate of 4-CP
was not clearly affected under neutral and alkaline conditions, which confirmed that an
alkaline environment was more favorable for 4-CP degradation. The effect of the catalyst
dosage was also studied. As presented in Figure S6, the removal rate of 4-CP increased
significantly with the increase in the catalyst concentration (0.25 to 0.375 g/L), which may
have benefitted from the increase in the number of active sites. However, the removal rate
of 4-CP could not be further enhanced when the catalyst dosage was 0.625 g/L, which
was possibly due to the shielding effect of overloading the catalyst, and thus weakened
the penetration of light. Inorganic anions in natural water could affect the degradation
performance of a pollutant. Herein, the effect of anions, including Cl−, SO4

2−, and NO3
−,

was investigated. As can be seen from Figure S7, the co-existing inorganic anions had no
obvious effects on the decomposition of 4-CP. The reusability and stability of photocatalysts
were crucial factors for evaluating their potential in practical applications. Therefore, in this
study, four consecutive cycles for the photocatalytic degradation of 4-CP were performed.
After four cycles, the degradation efficiency of 4-CP only decreased by 7.6% (Figure 3d),
indicating its good reusability and stability. Meanwhile, it can be seen that the peak of
the XRD spectrum over CQDs/ZnIn2S4-2 exhibited no obvious change after the cycling
experiment, further proving its excellent stability (Figure S8). The degradation performance
of the as-prepared catalyst was compared with the previously reported literature presented
in Table S1. It could be confirmed that the degradation performance of the CQDs/ZnIn2S4-2
synthesized in this study was better than those of previously reported catalysts.
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photocatalytic activity evaluation on CQDs/ZnIn2S4-2.

Free radical capture experiments were conducted to investigate the active species in
the photocatalytic system. Generally, EDTA (ethylene diamine tetraacetic acid), NBT (ni-
troblue tetrazolium), and IPA (isopropanol) were employed as the scavengers of holes (h+),
superoxide ions (•O2

−), and hydroxyl radicals (•OH), respectively [27,28]. As presented in
Figure S9, the degradation efficiency of 4-CP decreased notably from 89.25% to 11.03% with
the addition of NBT, suggesting the crucial role of •O2

− in the photocatalytic degradation
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process. Moreover, with the addition of IPA and EDTA, the degradation efficiency of 4-CP
decreased to 75.3% and 51.67%, respectively. Herein, it could be concluded that •OH, h+,
and •O2

− played synergistic roles in the photocatalytic degradation of 4-CP, which was
consistent with the EPR characterization (Figure S10).

2.2. Degradation Products and Pathways

To further analyze the photocatalytic degradation process of 4-CP, the intermediates
were identified with the help of liquid chromatography coupled with mass spectrome-
try (LC-MS), and the possible degradation pathways of 4-CP are depicted in Figure 4a.
The dichlorination and oxidation processes of 4-CP by h+ and •O2

− could produce p-
benzoquinone (P1, m/z = 108), and the hydroxylation of 4-CP yielded 4-Chlorocatechol (P2,
m/z = 143). Subsequently, the above intermediates under the attack of •OH and •O2

− were
transferred into low-molecular-weight acids, including maleic acid (P3, m/z = 115) and
malonic acid (P4, m/z = 103) [29–31]. Finally, it could be confirmed that these intermediates
would fully break down to CO2, H2O, and Cl- by the synergistic effects of h+, •OH, and
•O2

−. The dechlorination efficiency of CQDs/ZnIn2S4-2 toward 4-CP could reach 84.4%
(Figure S11). Moreover, the acute toxicity of 4-CP and its possible intermediates was evalu-
ated using the Toxicity Estimation Software Tool (ECOSAR) according to the quantitative
relationship of structure and activity. As depicted in Figure 4b, it is clear that the fish
median lethal concentrations 50 (LC50s) of most intermediates were higher than that of
4-CP, suggesting the lower acute toxicity of intermediates than that of 4-CP [32,33]. DFT
calculation was employed to optimize the structure of 4-CP (Figure 4c). The electrophilic
(f−), nucleophilic (f+), and radical (f0) Fukui indices could theoretically predict the attacked
sites of 4-CP. As depicted in Figure 4d, the C1, C3, C4, O7, and Cl8 (highlighted) with high
values were more vulnerable to active radicals (h+, •OH, and •O2

−), which was consistent
with the degradation pathways [34].
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possible intermediates; (c) molecular structural formula of 4-CP; and (d) calculated Fukui index
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2.3. Photocatalytic Mechanism

Based on the above analysis, the possible photocatalytic degradation mechanism of
CQDs/ZnIn2S4-2 is schematically described in Figure 5. The band gap for ZnIn2S4 was
2.50 eV (Figure S12) [35]. Meanwhile, the potential of the conduction band for ZnIn2S4 was
−1.02 eV (Figure S13). Herein, the potential of the valence band for ZnIn2S4 was calculated
to be 1.48 eV [36]. Under simulated sunlight illustration, the electrons on the valence band
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of ZnIn2S4 could migrate to its conduction band. Generally, the CQDs were regarded as
an electron reservoir; thus, the electrons on the conduction band of ZnIn2S4 could migrate
to the surface of CQDs. As the ECB of ZnIn2S4 (−1.02 eV) was more negative than Eө

(O2/•O2
−) (−0.33 eV), the photogenerated electrons could react with O2 to generate •O2

−.
Additionally, the EVB of ZnIn2S4 (1.48 eV) was lower than that of Eө (•OH/OH-) (2.24 eV),
indicating that the •OH was derived from the electron-induced multistep reduction of O2
instead of direct h+ oxidation. Herein, in this study, the photocatalytic degradation of 4-CP
involved the co-participation of •O2

−, •OH, and h+.
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3. Materials and Methods
3.1. Chemical Reagents

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O)), indium(III) chloride (InCl3), thioac-
etamide, isopropanol (IPA), nitroblue tetrazolium (NBT), and ethylene diamine tetraacetic
acid (EDTA) were also purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). P-Chlorophenol (4-CP) was purchased from Aldrich. All chemicals were used
as received.

3.2. Characterizations

The morphologies of CQDs/ZnIn2S4-2 were measured using a scanning electron
microscope (SEM, Hitachi S-4800N, Tokyo, Japan) and high-resolution transmission elec-
tron microscope (HRTEM, JEOL JEM-2100F, Tokyo, Japan). The elemental mapping for
CQDs/ZnIn2S4-2 was carried out using an energy dispersive spectrometer (EDS) equipped
with the HRTEM. The crystalline structures of ZnIn2S4 and CQDs/ZnIn2S4-2 were obtained
by X-ray diffraction (XRD) using a diffractometer (X‘Pert Pro, PANalytical, Netherlands).
X-ray photoelectron spectroscopy (XPS; AXIS ULTRA DLD, Kratos, London, UK) was used
to analyze the chemical composition of CQDs/ZnIn2S4-2. UV–vis Diffuse Reflectance Spec-
troscopy (DRS) of ZnIn2S4 and CQDs/ZnIn2S4-2 was performed on an ultraviolet-visible
(UV–Vis; Hitachi U-3900) spectrometer. The photocurrent responses, EIS curves, and
Mott–Schottky curve of the fabricated photocatalysts were determined on an electro-
chemical workstation (CHI660E). The active species generated during photocatalytic pro-
cesses were analyzed by electron paramagnetic spectroscopy (EPR, Bruker EMX 10/12,
Oberkochen, Germany). The mineralization ability of photocatalysts was measured using a
total organic carbon (TOC) analyzer (Shimadzu VCSN, Tokyo, Japan). The intermediates
of 4-CP were identified by high-performance liquid chromatography–mass spectrometry
(HPLC-MS, 1290 Infinity LC/6460 QQQ MS, Agilent, New York, NY, USA).

3.3. Materials Preparation
3.3.1. Synthesis of ZnIn2S4

Zn(CH3COO)2·2H2O (0.5 mmol), InCl3(1 mmol), and thioacetamide (2 mmol) were
dissolved in water (60 mL) with continuous stirring for 30 min. Subsequently, the mixture
was transferred into a Teflon-lined steel autoclave and maintained at 180 ◦C for 18 h. After
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that, the collected precipitates were washed with ultrapure water several times. Finally, the
obtained materials were dried in a vacuum at 60 ◦C overnight.

3.3.2. Synthesis of CQDs

Typically, a citric acid solution (0.2 mol/L, 200 mL, solution pH adjusted to 6.0 by
NH3·H2O) was hydrothermally treated at 200 ◦C for 4 h. Subsequently, the obtained
solution was treated with a 0.22 µm membrane filter and purified by dialysis for 48 h.
Finally, the CQDs could be obtained after drying.

3.3.3. Synthesis of CQDs/ZnIn2S4-x

Zn(CH3COO)2·2H2O (0.5 mmol), InCl3 (1 mmol), and thioacetamide (2 mmol) were
weighed and added to 60 mL of ultrapure water and then stirred at room temperature
for 30 min. Then, the obtained CQDs with different amounts (1 wt%, 2 wt%, or 3 wt%)
were added to the above solution and stirred for another 30 min. After that, the solution
was then transferred to a Teflon-lined steel autoclave and treated at 180 ◦C for 18 h [37,38].
Finally, the products denoted as CQDs-ZnIn2S4-x (x = 1, 2, 3 wt%) were washed alternately
with deionized water and absolute ethanol, and dried in a vacuum at 60 ◦C overnight.

3.4. Performance Evaluation

The photocatalytic reactivity of ZnIn2S4 and CQDs/ZnIn2S4-x was evaluated by
the degradation of 4-CP under Xe lamp (500 W) irradiation. In a typical experiment,
0.01 g of the photocatalyst was dispersed in an aqueous solution of 4-CP (40 mL, 10 mg/L).
Before the photocatalytic process, the solution was stirred in the dark for 30 min to reach
the adsorption–desorption equilibrium. During the reaction process, 0.2 mL of solution
was sampled and filtrated at each given interval for further analysis. High-performance
liquid chromatography (HPLC; LC-20AT, Shimadzu, Japan) at a working wavelength of
281 nm was employed to obtain the concentration of 4-CP, and the flow rate was 1.0 mL/min.
Furthermore, the mobile phase was a mixture of methanol and water (Vmethanol:Vwater = 6:4).
To measure the concentration of Cl−, ion chromatography (Dionex ICS-3000, Oberkochen,
Germany) was used. The eluent and regeneration solutions were 2% potassium hydroxide
(100 mM KOH) and 98% Milli-Q water with a flow rate of 1.0 mL/min. The signals of
•OH, h+, and •O2

− were determined on an electron paramagnetic resonance (EPR, Bruker
EMX 10/12, Germany) spectrometer with 2,2,6, 6-tetramethylpiperidine oxide (TEMPO)
and 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trap reagents.

4. Conclusions

To summarize, CQD-modified ZnIn2S4 nanoflowers were prepared by a facile hy-
drothermal method. The photocatalytic activities of the catalysts were explored under
different reaction conditions using 4-CP as the target pollutant. The results confirmed
that the CQDs/ZnIn2S4-x catalyst showed outstanding activity under Xe lamp irradiation,
benefiting from the introduction of CQDs, which could not only enhance the absorption
of visible light, but also serve as an efficient electron mediator to improve the activities of
ZnIn2S4. The active species-trapping experiments and EPR characterization proved that
•O2

−, •OH and h+ played a synergistic role in 4-CP degradation. This work opens a new
method for the fabrication of high-activity photocatalysts that exhibit great potential in the
fields of environmental remediation, energy conversion, and other relevant fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12121545/s1, Figure S1: The HRTEM image of CQDs/ZnIn2S4-2;
Figure S2: UV-vis absorption spectra of ZnIn2S4 and CQDs/ZnIn2S4-2; Figure S3: The pseudo-first-
order reaction kinetics; Figure S4: TOC removal efficiency of 4-CP by ZnIn2S4 and CQDs/ZnIn2S4-2;
Figure S5: Effect of initial pH value for 4-CP degradation on CQDs/ZnIn2S4-2; Figure S6: Effect of
catalyst concentration on 4-CP degradation; Figure S7: Effect of inorganic anions for 4-CP degrada-
tion on CQDs/ZnIn2S4-2; Figure S8: XRD pattern of CQDs/ZnIn2S4-2 after used; Figure S9: Trap-
ping experiment of active species for photocatalytic degradation of 4-CP; Figure S10: EPR spectra
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of CQDs/ZnIn2S4-2 in methanol dispersion for DMPO-•O2
- (a), water dispersion for DMPO-•OH

(c) and TEMPO-h+ (b) under Xe lamp irradiation.; Figure S11: Cl- concentration of 4-CP; Figure S12: The
band gap of ZnIn2S4; Figure S13: Mott-Schottky plot of ZnIn2S4; Table S1: Comparison of 4-CP degra-
dation performance of this work and reported photocatalysts [7,39–41].
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