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Abstract: Oxygen reduction reaction (ORR) is a very important reaction that occurs at the cathodic
side in proton exchange membrane fuel cells (PEMFCs). The high cost associated with frequently used
Pt-based electrocatalysts for ORR limits the commercialization of PEMFCs. Through bifunctional
and electronic effects, theoretical calculations have proved that alloying Pt with a suitable transition
metal is likely to improve ORR mass activity when compared to Pt-alone systems. Herein, we
demonstrate the preparation of bimetallic Pt–Fe nanoparticles supported on reduced graphene oxide
sheets (RGOs) via a simple surfactant-free chemical reduction method. The present method produces
PtFe/RGO catalyst particles with a 3.2 nm diameter without agglomeration. PtFe/RGO showed a
noticeable positive half-wave potential (0.503 V vs. Ag/AgCl) compared with a commercial Pt/C
catalyst (0.352 V vs. Ag/AgCl) with minimal Pt-loading on a glassy carbon electrode. Further,
PtFe/RGO showed a higher ORR mass activity of 4.85 mA/cm2-geo compared to the commercial
Pt/C (3.60 mA/cm2-geo). This work paves the way for designing noble−transition metal alloy
electrocatalysts on RGO supports as high-performance electrocatalysts for ORR application.

Keywords: electrocatalysis; reduced graphene oxide; oxygen reduction reaction

1. Introduction

PEMFCs (proton exchange membrane fuel cells) have been demonstrated to be vi-
able energy sources for both mobile and stationary applications [1]. Despite substantial
advances in the development of PEMFCs, there are still significant hurdles in discovering
suitable cathode electrocatalysts, which limit PEMFCs’ large-scale application and must be
resolved before these devices can be commercialized. One of the most pressing concerns is
how to overcome the slow kinetics of oxygen reduction processes (ORRs) at the cathode,
which result in undesirable overpotentials during full cell operation [2,3]. Despite the fact
that platinum has been proven to be the greatest catalyst surface for oxygen adsorption
and subsequent reduction, its broad application is limited in practical fuel cell applications
due to its expensive cost and limited Pt deposits [4]. Two strategies have been widely
explored in the scientific community to address this issue: researching fully Pt-free catalysts
or alloying Pt with other noble or non-noble metals to lower the Pt amounts [5]. When
investigating ORR electrocatalysts, materials capable of producing high ORR mass activity
(ORR current normalized by the Pt-weight) and specific activity (ORR current normalized

Catalysts 2022, 12, 1528. https://doi.org/10.3390/catal12121528 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12121528
https://doi.org/10.3390/catal12121528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-8550-0586
https://orcid.org/0000-0001-8699-922X
https://orcid.org/0000-0002-4119-1574
https://doi.org/10.3390/catal12121528
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12121528?type=check_update&version=2


Catalysts 2022, 12, 1528 2 of 10

by the electrochemically active surface area (ECSA)) are in great demand [6]. Control
over the geometric arrangement of metallic particles can be done by carefully designing
experimental strategies to enhance the needed ECSA of the catalyst for boosting platinum
usage efficiency. Furthermore, improving the ECSA positively impacts the management
of the bonding energetics of the oxygenated species produced during ORR, as evidenced
by computational and experimental investigations [7]. Apart from ECSA manipulation,
altering the Pt d-band center is thought to be important for the easy adsorption/desorption
of oxygenated intermediates on Pt surfaces during ORR. Many studies have shown that
alloying Pt with first-row transition metals such as Fe, Co, and Ni reduces the inten-
sity of the d-band and the bonding strength between the oxygenated species and the
Pt surface [8–10]. Catalyst morphology and the shape of the catalyst also influence ORR
activity, as demonstrated by Xia et al. [11]. For example, compared to benchmark Pt/C cat-
alysts, catalyst particles with hollow interiors with a larger population of exposed precious
metal atoms outperform solid nanoparticles in terms of ORR activity and endurance [12].
Yang and colleagues discovered that hollow PtFe alloy nanoparticles derived from Pt-Fe3O4
dimers had potential ORR efficacies [13]. The hollow PtFe nanoparticle catalyst produced
7.8 times more ORR mass activity than a commercial Pt/C catalyst. Furthermore, the ORR
activities persisted at very high levels even after 10,000 potential cycles, demonstrating the
ORR resilience of the hollow PtFe nanoparticle catalyst.

To improve the catalyst particles’ dispersion and utilization, bimetallic Pt-based
nanoparticles are typically coated on carbon-based conductive supports [14]. Catalyst
support is essential for facilitating electron and mass transport during electrode reactions,
in addition to improving loading sites. For catalyst support, it is essential to have high
surface areas, high electronic conductivity, and optimal porous structures, in addition to
being chemically and electrochemically stable under higher electrode potentials and the
oxygen-rich environment associated with a fuel cell operation. When fuel cell devices are
operated continuously, the commonly used porous carbon black support for ORR catalysts
is more susceptible to corrosion, which causes electrocatalyst particles to agglomerate
together and eventually detach from the surface of carbon-based supports [15,16]. Nu-
merous novel carbon-based supports, including highly ordered porous carbon, carbon
nanotubes, two-dimensional graphene, graphene oxide, and reduced graphene oxide, have
been researched and show promise as solutions to the issues related to catalyst detachment
and dissolution [17–21]. As a result, graphene oxide was used to deposit Pt-based alloys
in order to increase the utilization of noble metals [22–24]. This was done in order to take
advantage of the promising surface area and electronic conductivity that graphene oxide
support offers. The intriguing electronic and surface characteristics of graphene make it the
perfect material for electrocatalyst support. For instance, monolayer graphene has better
mechanical and thermal properties and a specific surface area of 2620 m2g1. It also has high
electronic conductivity of 105–106 S/m and improved thermal and mechanical properties.

Herein, a versatile chemical reduction approach is demonstrated to fabricate bimetallic
PtFe alloy nanoparticles supported on reduced graphene oxide. Ethylene glycol was used
as a solvent, with sodium borohydride(NaBH4) as a reducing agent. The RGO, which was
obtained by the reductive chemical exfoliation of graphene oxide, possesses two-dimensional
(2D) conjugated π bond electrons and is widely used as the substrate to deposit fuel cell
electrocatalytic particles [25–29]. Furthermore, the 2D surface of the RGO can anchor the
bimetallic nanoparticles and minimize aggregation. The improved PtFe dispersion on the
RGO and the positive role played by the RGO aid in improving electrocatalytic activity
towards an oxygen reduction reaction compared with Fe/RGO and Pt/RGO.

2. Results and Discussion

The crystal phase of the prepared nanocomposite was examined by X-ray diffraction
analysis, as presented in Figure 1. The intense diffraction peaks at 2θ = 39.68◦, 46.19◦,
and 67.45◦ correspond to the (111), (200), and (220) crystallographic planes, respectively,
of platinum and confirmed its face-centered cubic structure (fcc) (JCPDS#04-0802) [30,31].
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The XRD patterns of PtFe/RGO show the higher angle positions of Pt facets compared to
Pt/RGO, indicating that Fe was successfully permeated into the Pt fcc lattice and aided in
alloy phase formation due to the lattice contraction. In addition, we can identify a weak
broad shoulder peak between 20◦ and 30◦, indicating a partial reduction of graphene oxide
to reduced graphene oxide. For PtFe/RGO, the grain size, calculated from the higher
intensity peak at 39.68◦ (111) using Scherer’s equation, was found to be 3.9 nm [32–34].
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Figure 1. XRD patterns of Pt/RGO and bimetallic PtFe/RGO nanoparticles.

Metal compositions of synthesized catalysts evaluated from ICP-OES analysis showed
19.03 wt% PtFe on RGO (9.61 wt% Pt and 9.42 wt% Fe), 19.61 wt% Pt on RGO, and 19.25%
Fe on RGO. TEM, including high-resolution TEM (HRTEM), was used to analyze the shape
and structural features of the PtFe/RGO NPs, as shown in Figure 2. In Figure 2a–c, low-
resolution TEM images of PtFe/RGO NPs are shown. From the close inspection of the
low-resolution TEM images of Figure 2a–c, it can be observed that the PtFe NPs with a
particle diameter of 3.3 nm are uniformly dispersed on the wrinkled few layered reduced
graphene oxide surfaces. The current polyol-assisted chemical reduction approach offers
controlled reduction and aid in producing uniformly sized particles over RGO support.
The HRTEM images of the PtFe/RGO NPs, taken at various resolutions, are presented in
Figure 2d–f. The HRTEM images clearly show the formation of well-aligned Pt-Fe lattices
on an RGO surface. Figure 2f presents the calculated interplanar lattice spacings for the
(111) plane of a PtFe (0.22 nm). The observed lower interplanar spacing of PtFe compared
to pure Pt (0.233 nm) suggests a lattice contraction due to alloying [35]. Further, TEM and
HRTEM images of the monometallic Pt/RGO are shown in Figure S1. In addition, particle
size histograms of PtFe/RGO and Pt/RGO are presented in Figures S2 and S3, respectively.
Both Pt/RGO and PtFe/RGO have particle diameters of 3.2 nm according to the particle
size histogram created by measuring the size of 50 separate particles using Image J software
(Mac OS X using its built in editor and Java compiler, Mary land and Texas).
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Figure 2. TEM (a–c) and HRTEM (d–f) images of PtFe/RGO metal nanoparticles.

X-ray photoelectron spectroscopy (XPS) measurements were then performed to deter-
mine the chemical states of carbon, Pt and Fe in the PtFe/RGO composite. Figure 3a shows
the XPS survey scan spectra of PtFe/RGO nanoparticles; the peaks appearing at 75, 285,
530, 711, and 724.5 eV belong to Pt4f, C1s, O1s, and Fe2p, respectively. Figure 3b shows
the high-resolution spectra of Pt4f; the peaks appearing at 71.68 and 74.98 eV belong to
Pt 4f7/2 and Pt 4f5/2, respectively, which indicates that Pt possesses a metallic form (Pt0).
Figure 3c shows the high-resolution spectra of Fe2p; the doublet peaks appearing at 711.78
and 725.2 eV are attributed to Fe2p3/2 and Fe2p1/2, respectively, along with a satellite peak,
which indicates the partial oxidation of Fe [36]. In addition, the high-resolution C1s and
O1s indicate the presence of oxygen content in the PtFe/RGO composite.

The Raman spectra of RGO and PtFe/RGO are compared in Figure S4. The peaks
appearing at 1348 and 1589 cm−1 indicate the D and G bands, respectively, of RGO. Further,
the peak appearing at 2692 cm−1 belongs to 2D. In the Pt-Fe/RGO composite, the peaks
positioned at 680, 1345, and 1583 cm−1 can be ascribed to the Fe-O, D, and G bands,
respectively. It can be seen from the Raman spectra, after the deposition of PtFe, the ratio of
the intensity of the D-band to the G-band (ID/IG) was calculated to be 1.01, which is higher
than bare RGO (0.96), indicating the composite’s disorder character, which will enhance
electrochemical catalytic activity.

To assess the electrochemical properties of the commercial Pt/C, as-prepared Pt/RGO,
and PtFe/RGO catalysts, both cyclic voltammetry (CV) and linear sweep voltammetry (LSV),
were performed. Figure 4 depicts the CV curves of PtFe/RGO, Pt/RGO, and commercial
20% Pt/C catalysts recorded at a scan rate of 50 mV s−1 in N2-purged 0.5 M H2SO4 solution.
The CV curves reveal typical hydrogen under potential deposition (upd) peaks below 0.2 V
vs. Ag/AgCl (satd. KCl), consistent with the literature [37,38]. In addition, in the anodic
and cathodic scans, Pt-oxide/reduction peaks emerged between 0.6 and 0.7 V vs. Ag/AgCl
(satd. KCl). The electrochemical active surface area (ECSA) was determined by integrating the
charge under the hydrogen ‘upd’ region and assuming a charge of 210 µC/cm2 for hydrogen
monolayer oxidation on the surface of polycrystalline platinum [39]. For Pt/C, Pt/RGO, and
PtFe/RGO, the computed ECSAs were 37.35 m2/g, 33.52 m2/g, and 39.89 m2/g, respectively.
The results indicated that the home-made PtFe/RGO catalyst exhibit a higher ECSA compared
to commercial Pt/C catalysts and home-made Pt/RGO catalysts, implying that increased
ORR activity on PtFe/RGO can be expected.
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Figure 5 shows the electrochemical ORR polarization curves of PtFe/RGO, Pt/RGO,
and Pt/C catalysts recorded at room temperature, with a rotation rate of 1600 rpm in
O2-purged 0.5 M H2SO4. The ORR activity is represented in terms of the half-wave
potential (E1/2), which is 0.503, 0.352, and 0.336 V for PtFe/RGO, Pt/C, and Pt/RGO,
respectively. Further, the E1/2 value of Fe/RGO was found to be 0.31 V (Figure S5). The
fact that PtFe/RGO has a higher positive E1/2 value than commercial Pt/C indicates that
bimetallic Pt–Fe has a promising activity boost towards ORR when compared to com-
mercial catalysts and monometallic Pt/RGO. The ORR diffusion limiting current density
values (ORR current normalized with the geometric area of GCE) and mass specific activity
(i.e., limiting current normalized with Pt-loading on GCE) were extracted from the ORR
polarization curves of Figure 5 and are graphically depicted in panels (a) and (b), re-
spectively, of Figure 6. The observed mass specific ORR activity levels follow the order:
PtFe/RGO (0.56 mA/µg-Pt) > Pt/RGO (0.435 mA/µg-Pt) > Fe/RGO (0.37 mA/µg-Pt) >
Pt/C (0.36 mA/µg-Pt). When compared to as-prepared Pt/RGO, Fe/RGO, and commercial
Pt/C catalysts, all ORR activity descriptors show that bimetallic PtFe/RGO significantly
improves ORR performance. The theoretical calculations explain the much-improved per-
formance of the PtFe/RGO catalyst. Previous simulation studies have demonstrated that
an easy charge transfer from Fe to Pt in the PtFe alloy is critical for altering the electronic
structure and improving ORR kinetics [40]. Furthermore, theoretical studies have revealed
that PtFe surfaces increase ORR oxidation by altering the energetics of oxygen reduction
reaction intermediates on the catalyst surface [41]. The improved ORR performance of
Pt-Fe/RGO can be ascribed to a favorable electronic structure due to the alloyed Pt-Fe on
RGO support.
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3. Materials and Methods

The crystalline structures of nanocomposite (PtFe/RGO alloy and Pt/RGO) patterns
were recorded with diffraction angles from 10–80◦ using a Rigaku Ultima IV diffractometer
(Rigaku D/MAX-2200, Hajima, Japan) with Cu Kα radiation (λ = 1.54 Ǻ). Microstructure
and morphologies of the as-prepared (Pt/RGO and PtFe/RGO) nanocomposites were
performed on an FEI Technai G2 S-Twin transmission electron microscope (JEOL Ltd.,
Tokyo, Japan) operated at 200 kV. For TEM analysis, specimens were prepared by the
drop-casting method. A small amount of catalyst powder was dispersed in ethanol, and
10 µL was loaded on a copper grid coated with carbon and dried under ambient conditions.
To estimate Pt and Fe metal weight % on the RGO, ICP-OES (Horiba scientific, Kisshoin,
Minami-ku Kyoto, Japan) was conducted. XPS analysis was performed on PHI-Quantera
II XPS (Thermo Scietific, Waltham, MA, USA) equipped with a monochromatic Al Kά
line X-ray source (200 mm, 50 W, 15 kV), and Raman analysis was recorded with Raman
spectrometry using a Raman FEX-u confocal microscope (NOST. Co., Ltd. NOST. Co., Ltd.,
Seongnam-si, Gyeonggi-do, Korea) He-Ne laser beam at 532 nm.

Electrochemical Characterization

The electrochemical measurements were tested in a CHI 6002E electrochemical device
(Bee Cave, TX, USA) standard three-electrode system using a rotating disk electrode with
now I glassy carbon in a N2-saturated 0.5M H2SO4 electrolyte at room temperature. Among
the three electrodes, a catalyst-coated glassy carbon electrode (GCE) was used as a working
electrode, a platinum wire was used as a counter electrode, and Ag\AgCl (saturated KCl)
was used as the reference electrode. Before modifying the GCE surface, the GCE was
polished with alumina powder to obtain a mirror-like finish, followed by washing with
deionized water (DI). Subsequently, 5 µL of dispersed catalyst slurry (2 mg catalyst +
800 µL H2O + 700 µL + 100 µL of 0.005% Nafion solution) was placed onto the catalyst-
coated GCE (total metal loading = 12.80 µg cm−2) after 30 min of ultra-sonication, and
the catalyst coated on GCE was dried at room temperature. CV was measured by cycling
the potential between −0.2 and 1.2 V vs. Ag/AgCl with a sweep rate of 50 mV s−1 in
N2-saturated 0.5M H2SO4. For ORR, polarization curves were measured using linear
sweep voltammetry (LSV) in oxygen-saturated 0.5 M H2SO4 solution at a scan rate of
5 mVs−1, rotating the catalyst-coated GCE at 1600 rpm. All potentials were recorded using
an Ag/AgCl (saturated KCl) electrode with a potential of 0.197 V.

4. Conclusions

In summary, bimetallic PtFe nanoparticles with a diameter of 3.2 nm, supported on
an RGO substrate, were obtained using a simple surfactant-free chemical reduction ap-
proach. PtFe/RGO nanoparticles have superior structural properties when compared to
home-made Pt/RGO according to X-ray diffraction and electron microscopy experiments.



Catalysts 2022, 12, 1528 8 of 10

Furthermore, when compared to benchmark Pt/C catalysts, PtFe/RGO nanoparticles ex-
hibited a 1.5-fold increase in ORR activity. The alloying effect of Pt with Fe was found
to be responsible for improved ORR performance in PtFe/RGO bimetallic nanoparticles.
Incorporating Fe into the Pt lattice sufficiently changes the electronic structure of Pt to
increase ORR kinetics, according to theoretical calculations of previous reports. By alloy-
ing with appropriate non-noble metal-based components, the current approach can be
extended to generate comparable types of Pt-based bimetallic structures. More efficient
ORR electrocatalysts for realistic PEMFC applications will undoubtedly result from the
systematic tuning of bimetallic content, shape, particle size, and catalyst treatment.
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Figure S2: TEM images of PtFe.RGO and size distribution of PtFe/RGO catalyst.; Figure S3: TEM
images of Pt/RGO and size distribution of Pt/RGO catalyst.; Figure S4: Raman spectra of RGO
and PtFe/RGO composite.; Figure S5: Cyclicvoltammetry(CV) and oxygen reduction reaction (ORR)
polarization curves of Fe/RGO.; Table S1: ORR activity comparsion table of Pt and Fe based ORR
catalysts. References are cited in the [11–13,42,43] supplementary materials.
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