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Abstract: Among clean energy transformation devices, fuel cells have gained special attention over
the past years; however, advancing appropriate non-valuable metal impetuses to halfway supplant
the customary Pt/C impetus is still in progress. In this paper, we propose a specific electrocatalyst
in the formula of highly-active Cu species, associated with coated carbon (Cu@C-800), for oxygen
reduction reaction (ORR) through post-treatment of a self-assembled precursor. The optimized
catalyst Cu@C-800 showed excellent ORR performance (i.e., the onset potential was 1.00 V vs. RHE,
and half-wave potential of 0.81 V vs. RHE), high stability, resistance to methanol, and high four-
electron selectivity. The enhancement is attributed to the synergy between the carbon matrix and a
high explicit surface region and rich Cu nano-species.

Keywords: oxygen reduction reaction (ORR); electrocatalyst; self-assembly; one-dimensional; Cu-based

1. Introduction

Meeting the ever-increasing energy demand with lower carbon production and clean
output is considered as one of the essential issues for human society sustainability. This
requires advancing the clean energy transformation frameworks [1,2]. The power devices
can change compound energy into power. The most common application is transforming
hydrogen into electricity to power automobiles or fixed equipment [3,4].

In developing high-performance fuel cells, the oxygen reduction reaction occurs on
cathode surfaces [5]. It is reported that platinum and its derivatives, such as the composite
Pt/C, exhibit excellent electrocatalytic activity for ORR [6]. However, platinum-based
catalysts are usually expensive, intolerant to methanol, and sensitive to carbon monoxide
poisoning. Therefore, researchers are seeking other promising electrocatalysts such as
carbon-based metal-free catalysts [7,8], metal oxide catalysts [9], and carbon/non-precious
metal catalysts (NPMCs) [10–12].

It is believed that the ORR action of carbon-based NPMCs is powerless to the metal
species since the dynamic community and ordinarily follows the request for Fe > Co
> Mn > Cu > Cr > Ni > Zn ≈ without metal [13]. Moreover, various iron, cobalt, and
iron–cobalt alloy catalysts have been proposed with the tuning of chemical formula, micro-
morphology, and local coordination structure [14,15], some of which show significantly
greater reactant execution than the commercial Pt/C under soluble circumstances [16–19].
However, the intensively explored Fe–N–C catalysts often show limited stability caused
by the Fenton effect [20]. In contrast, the Co–N–C catalyst shows an alleviated Fenton
reaction, as Co-based active sites show weaker intrinsic ORR activity and produce less
H2O2 [21]. In addition, copper has been investigated as an electrocatalyst for the ORR
process considering its second-greatest conductivity (after silver), low price, and bountiful
storage [22].
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The Cu-based ORR catalysts, such as Cu/Zn synergistic single-atom catalyst Cu/Zn-
NC, with excellent catalytic performance, were prepared using the ZIF-8 precursor [23]. For
instance, a large Cu was converted into an isolated Cu single atom using a gas migration
strategy [24], and anchored to the N-doped carbon received from ZIF-8 to set up an
effective Cu-NC impetus, based on ZIF-67 precursor prepared by N-rich mesoporous
carbon-supported Cu-based ORR electrocatalyst [25]. Guo et al. reported on the ORR
electrocatalytic activity of Cu/rGO nanocomposites and their effects on methanol and
CO [26]. Although these catalysts exhibited excellent electrocatalytic performance, there
were limitations due to the high preparation cost and low yield associated with limitation
of their raw materials.

In this paper, we present a straightforward union of 1D Cu/CuOx@C nanofibers, for
which a graphite carbon shell encapsulates the dispersed copper/copper oxide nanoparti-
cles (Cu/CuOx NPs). This was obtained through underlying pyrolysis of natural layered
copper hydroxide, Cu(OH)(Hsal)·H2O, as the template and precursor to generate interme-
diate material, Cu@C, followed by chemical etching and secondary pyrolysis to obtain the
final material, i.e., Cu/CuOx@C. The resulting catalyst showed accelerated ORR activity
(E1/2 is 0.81 V vs. RHE, and JL is 5.15 mA/cm2), four-electron selectivity, and excellent
resistance to methanol.

2. Results
2.1. Synthesis and Characterization

In Figure 1, the synthesis procedure of the target material, Cu@C-800, is illustrated.
Uniform 1D Cu(OH)(Hsal)·H2O as an organic layered metal salt (LHSs) was prepared
via mixing of hydrated copper nitrate and sodium salicylate (NaHsal) and initiating
the self-assembly at certain pH. Here, Hsal stands for o-HOC6H4COO−. The obtained
Cu(OH)(Hsal)·H2O was pyrolyzed to obtain Cu@C nanofibers [27] and further chemi-
cally etched by FeCl3 solution. Finally, it was pyrolyzed again to obtain the final product,
Cu@C-800. The other electrocatalyst samples (Cu@C-600, Cu@C-700, and Cu@C-900) were
similarly prepared by varying the final pyrolysis temperature.
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Figure 1. Cu@C-800 synthesis strategy.

The wide-angle X-ray powder diffraction pattern of Cu@C in Figure 2a shows artic-
ulated diffraction tops situated at 2θ = 43.2◦, 50.4◦and 74.1◦, highlighting the (111), (200),
and (220) planes for Cu (JCPDS:65-9743), which are consistent with the previous litera-
ture [28,29]. After FeCl3 etching, the observed diffraction peaks are located at 2θ = 29.5◦,
36.4◦, 42.2◦, 61.3◦, 73.5◦, 77.3◦, and 92.4◦, indexed by the cubic fcc structure of Cu2+1O,
which are consistent with the Cu2+1O prepared by other techniques [30,31]. The diffrac-
tion pinnacles of Cu@C-800 are seen at 2θ = 43.2◦, 50.4◦, and 74.1◦, which highlight the
(111), (200), and (220) planes of the cubic copper. Thus, the evolution of Cu species can be
described as the oxidation of Cu to Cu2+1O, followed by subsequent reduction to Cu.
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As shown in Figure 2b, XRD analysis of Cu@C-600, Cu@C-700, Cu@C-800, and Cu@C-
900 shows pronounced, highly-crystalline Cu NPs diffraction peaks, which are located at
2θ = 43.2◦, 50.4◦, and 74.1◦, respectively. Moreover, it is concluded that the crystalline grain
size for the final Cu/C samples gradually increased by increasing the secondary pyrolysis
temperature through estimating the half peak width of (111) peaks (Table S1).

The nitrogen adsorption and desorption curves of Cu@C-800 and Cu@C are shown
in Figure 2c,d. The calculated specific surface areas, average pore diameters and pore
volumes of Cu@C-800 and Cu@C are 286 m2 g−1 and 197 m2 g−1, 12–20 nm and 3–4 nm,
and 0.31 cm3/g and 0.16 cm3/g, respectively. The presence of mesopores ensured adequate
contact of electrolytes and reactants with the active center on the catalyst surface [32].
Carbon rods provided a large specific surface area and electronic conductivity, which
favored the charge transfer process for the electrocatalysts [33].

The SEM and TEM images of the precursors, Cu@C, Cu@C-etching, and Cu@C-
800, are shown in Figure 3a–d and Figure S1, respectively. A homogeneous precursor
Cu(OH)(Hsal)·H2O was obtained by self-gathering of copper nitrate trihydrate and sodium
salicylate (NaHsal) (Figure 3a), and its XRD pattern shown in Figure S2 indicates a typical
layered structure [27]. Moreover, the diameter of Cu(OH)(Hsal)·H2O was about 200 nm
and tended to aggregate into bundles. As shown in the TEM image, the prepared Cu@C
maintained the nanorods’ morphology, but the active site Cu showed up as circular Cu
nanoparticles with an average size of 78 nm conveyed on the nanorods (Figure S3).
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We used a high-resolution scanning electron microscope to study the Cu@C-800 sample
(Figure 3e), which showed a clear rod-like morphology. The splendid spots on the SEM
pictures were credited to the arbitrarily disseminated nano-sized Cu species on the carbon
nanorods. The element distribution of Cu@C-800 displayed in Figure 3f indicates the atomic
percentage of C (85.81%), O (7.26%), and Cu (6.92%), which further indicates the randomly
anchored Cu/CuOx NPs on the carbon nanorods, illustrating that Cu was bonded to O in
the form of catalytic sites.

The Raman response is also shown in Figure S4a, which shows two conspicuous peaks
at 1334 and 1594 cm−1 for Cu@C-800, individually, compared to the D (cluttered) and G
(requested) groups of carbon. The D band is attributed to disordered structure and defects
in graphene, whereas the G band originates from the C-C stretching mode of sp2-bonded
carbon. The ID/IG value of Cu@C-800 is 1.01, indicating that it has more defective graphite
structures and will expose more accessible oxygen-containing groups, which improves the
ORR electrocatalytic activity [34,35].

The peaks at 312, 354, and 621 cm−1 in Figure S4b indicate the presence of CuO [36–39],
and the peak at 519 cm−1 indicates the presence of Cu2O [40–42]. Fourier infrared spectroscopy
(IR) analysis shown in Figure S4c,d indicates the O–H bond’s tensile vibration and bending
vibration at 3440 cm−1 and 1617 cm−1, respectively [43]. Furthermore, the peak at 1083 cm−1 is
derived from the C–O bond [13], and the peaks at 605, 525, and 458 cm−1 are assigned to the
vibrational stretching of the Cu–O bond [40,43–45].

In Figure 4, the XPS survey of Cu@C-800 and the spectra of C, Cu, and O are shown.
The full spectrum confirms the coexistence of the three primary surface elements of C, O,
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and Cu (Figure 4a), which are consistent with the characterization analysis discussed in
HR-SEM section.
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In Figure 4b,c, the C and Cu’s XPS fine spectrum are displayed. In Figure 4b, the
C1s fine spectrum of Cu@C-800 is shown, and three peaks correspond to C=C (284.8 eV),
C–OH (285.9 eV), and C–O–Cu (290 eV), which originate from the benzene ring of the
Cu(OH)(Hsal)·H2O. Moreover, the metallic Cu and Cu+ (cuprous) are challenging to
recognize by Cu 2p orbitals because their characteristic peaks appear in close positions
(Figure 4c) [46]. The limiting energy tops at 932.7 eV and 952.5 eV are credited to the twist
circle twofold pinnacles and energy level changes of Cu/Cu+ 2p (Cu 2p3/2 and Cu 2p1/2)
individually, respectively [47]. In addition, combined with the Raman characterization of
Cu@C-800 in Figure 4Sb above, the top at 933.3 eV demonstrates the presence of divalent
copper oxide CuO in the Cu@C-800 [46].

Further information about the O1s spectra can be achieved from Figure 4d to study
the coordination effect between the C layer and the Cu surface in Cu@C-800. There are
two satellite peaks at 530.6 eV (O–Cu) and 532.4 eV (C–OH), which indicate that the stable
presence of Cu (I) may be attributed to the electron transfer between the Cu surface and C
layer [27].

To clarify the effect of the secondary pyrolysis process on the surface profiles, O XPS
fine spectrum analysis is performed on the samples, including Cu@C-600, Cu@C-700,
Cu@C-800, and Cu@C-900. The corresponding fine spectrum of Cu is shown in Figure S5,
and the ratio of the C–OH and O–Cu is reported in Table S1. These results confirmed that
the proportion of O–Cu gradually decreased with the increase of the secondary pyroly-
sis temperature.

2.2. Electrocatalytic Performance

The cyclic voltammograms (CVs) of the Cu@C-800 under N2 and O2 saturation condi-
tions are given in Figure 5a. A couple of irreversible redox tops are seen around 0.6 V (vs.
RHE), which were ascribed to the redox cycle of Cu(I)/Cu(II) in a wet N2 gas flow [48,49].
In contrast, it has an optimal electrocatalytic activity for ORR under the O2 atmosphere, as
the oxidation peak and the reduction peak current both increase significantly, and the peak
potential is shifted at ≈ 0.76 V (vs. RHE).

The redox activity can be confirmed in the electrochemical test with different parame-
ters, such as calculated electron transfer numbers (n) and optimal starting and half-wave
potential. Firstly, we calculated the number of transferred electrons of Cu@C-800 by the
Koutecky-Levich (K-L) equation. The sample Cu@C-800 shows a consistent slope, indicating
the first-order reaction kinetics related to the oxygen concentration in the electrolyte [50,51].
Furthermore, the calculated electron transfer numbers (n) of Cu@C-800 at 0.2 V, 0.3 V, 0.4 V,
and 0.5 V are 3.94, 3.92, 3.87, and 3.80, respectively, which confirm that the reaction follows
the four-electron transfer pathway.

In the high-potential environment, Cu@C shows limited performance. However, the
materials obtained by further treatment have shown greater stability and electrocatalytic
activity. It is observed that Cu@C-800 shows an optimal starting potential Eonset (1.00 V
vs. RHE) and a half-wave potential E1/2 (0.81 V vs. RHE), and the greatest limiting
diffusion current density (5.15 mA cm−2) (Figure 5d–f). Moreover, the calculated Tafel
slope of Cu@C-800 is 107 mV dec−1 (Figure 5g). Such activity can be mainly attributed to a
high specific surface area and mesopore distribution, evidenced by nitrogen adsorption-
desorption, favoring O2 diffusion. Table S2 considers the ORR electrocatalytic boundaries
of different agent Cu-based electrocatalysts announced in an antacid medium (0.1 M KOH).
The catalytic activity of Cu@C-800 is comparable to the best catalysts for ORR [52–55].

In the electrolyte saturated with O2, Cu@C-800 has shown a greater half-wave poten-
tial, indicating a good oxygen reduction activity (Figure 5b). For comparison, the examples
of Cu@C-600, Cu@C-700, and Cu@C-900 were measured under similar circumstances,
showing typical redox reactions (Figure S7) and dynamic current density at 0.81 V vs. RHE
(Figure S8). We also calculated the number of transferred electrons for Cu@C-600, Cu@C-
700, and Cu@C-900 (Figure S9) and found that the n value of Cu@C-800 and Cu@C-900 is
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significantly greater than those of Cu@C-600 and Cu@C-700, but all the calculated n values
confirms the four-electron process.
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The oxygen reduction reaction in the aqueous alkaline medium (0.1 M KOH) involved
several oxygen-containing intermediates participating in the multi-step reaction. There
are two possible pathways in alkaline solutions for the four-electron ORR process, namely
dissociation and binding mechanisms (Figure S10). Irrespective of the dissociation or
binding mechanisms, the ORR reaction pathway mainly depends on the catalyst surface’s
initial oxygen dissociation energy barrier [56–58]. In addition, the ORR synergist action
relies upon the proclivity of the oxygen species for the impetus particles. In our work,
surface Cu species had different oxidation states for ORR. Cu2O was generally easy to
oxidize to CuO, and thus bound oxygen, consistent with the characterization results in
XPS above. Moreover, nanoscale Cu2O could be uniformly dispersed on the electron-
conducting carrier such as carbon, and the electrons could be continually provided to the
oxygen, thereby improving the catalytic activity [31].

The stability of the catalyst is critical for its performance for fuel cells; therefore,
we tested the stability of Cu@C-800 and Pt/C using the chronoamperometric method by
comparing the normalized current (I/I0) of Cu@C-800 with a commercial Pt/C catalyst
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(Figure 5h). It was observed that Cu@C-800 showed better stability, as the normalized
current remained at 86% after 30,000 s, which is attributed to the nano-sized Cu species
with various valance, carbon rod as the carrier, and the mesoporous profile.

The methanol durability analysis is also shown in Figure 5i. In the typical experiment,
10 mL of methanol was injected in 600 s, and the current for the commercial Pt/C sample
dropped sharply on the methanol injection. In contrast, the current density for Cu@C-
800 was only lowered by 5%, compared with that of Pt/C, indicating that Cu@C-800 has
superior tolerance to methanol.

3. Materials and Methods
3.1. Materials

All medicines are of analytical grade and are used without further purification.
Cu(NO3)2·3H2O was purchased from Macleans, NaOH, KOH, C7H5NaO3, KCl was pur-
chased from Aladdin, and FeCl3 was purchased from Tianjin Beilian Fine Chemicals
Development Co., Ltd located in Tianjin, China. All aqueous solutions used deionized
water preparation.

3.2. Synthesis of Electrocatalysts
3.2.1. Synthesis of Cu(OH)(Hsal)·H2O Precursor

The precursor was prepared by a simple co-precipitation method. In a typical method,
Cu(NO3)2·3H2O (0.02 mol) and C7H5O3Na (0.04 mol) are mixed in 250 mL of deionized
water, dissolved in a beaker, and poured into the deionized water in a three-necked flask
to start stirring. In order to control the pH at 4,1 M NaOH solution was slowly dropped
into the flask through the dropping funnel and stirred at 90 ◦C for 24 h. The precipitate
was separated by centrifugation, washed repeatedly, and dried in a vacuum oven at
50 ◦C overnight.

3.2.2. Synthesis of Cu@C Nanofibers

Put the Cu(OH)(Hsal)·H2O precursor in the center of the porcelain boat in a tube
furnace. In an argon atmosphere, the furnace temperature is increased at 5 °C min−1, and
then kept at 800 °C for 2 h. The sample is named Cu@C.

3.2.3. Synthesis of Cu/CuOx@C Nanofibers

Under the condition of controlling the pH to 2, configure 50 mL of 0.012 M FeCl3
solution, and add 0.2 g of Cu@C nanofibers to it and stir for 30 min. The precipitate
was separated by suction filtration, washed repeatedly, and dried under vacuum at 50 ◦C
overnight. The sample is named Cu@C-etching. Put Cu@C-etching in a tube furnace, blow
in argon gas, and heat up the furnace at 5 °C min−1 and keep it for 2 h for secondary
pyrolysis to obtain Cu/CuOx@C. According to the secondary pyrolysis temperature, the
samples are named Cu@C-600, Cu@C-700, Cu@C-800, Cu@C-900.

3.3. Characterization

A Bruker D8 Advance X-ray polycrystalline diffractometer (Bruker, Billerica, MA,
USA) was also used to record the X-ray diffraction (XRD) spectra with a scanning range
of 10◦–80◦ and a scanning speed of 4◦ min−1. The JEOL JSM-7100F scanning electron
microscope (Japan Electron Optics Laboratory, Tokyo Akishima Station, Japan) was also
used to analyze the particles and morphology of the catalyst, and the material was analyzed
by energy dispersive X-ray spectroscopy (EDX) at an accelerating voltage of 200 kV. The FEI
Talos-S transmission electron microscope (Frequency Electronics, Inc., Columbia, MD, USA)
was used to analyze the particle size and morphology of the catalyst. Raman spectroscopy
was detected at 514 nm using Horiba Scientific LabRAM HR Evolution Raman spectrometer
(HORIBA Scientific, Palaiseau, France). The infrared spectrum was obtained by Bruker
TENSOR 27 infrared spectrometer (Bruker, Billerica, MA, USA). The model of the automatic
specific surface and porosity analyzer is Mike 2460 (Micromeritics, Atlanta, GA, USA). We
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also used X-ray photoelectron spectroscopy analyzer Thermo Scientific ESCALAB 250Xi
(Thermo Scientific, Thermo Scientific, Waltham, MA, USA) to analyze elements.

3.4. Electrochemistry

All electrochemical tests are performed on the IVIUM instrument (Lvium Technologies
BV, Eindhoven, Netherlands) at 25 ◦C. The electrolytic cell uses a traditional five-port
electrolytic cell with an electrolyte of 0.1 M KOH. A platinum wire and Ag/AgCl elec-
trode are used as the counter electrode and the reference electrode, and the salt bridge
uses a saturated KCl solution. The working electrode is a rotating disk electrode (RDE),
and the electrode is a 5 mm glass-carbon disk. Disperse 5 mg of catalyst in 1 ml of wa-
ter:ethanol = 1:9 solution and add 7 µL of 5 wt% Nafion, then sonicate it in a cell pulverizer
for 8 min to prepare ink. Take a 10 µL ink drop and apply it on the surface of the electrode.
The linear sweep volt-ampere (LSV) curve is 0.2–1.2 V (vs. RHE), and the sweep rate is
5 mv s−1.

The conversion of Ag/AgCl electrode and standard hydrogen electrode is as follows:

VRHE = VAg/AgCl + 0.059pH + 0.197 (1)

The Koutecky-Levich (K-L) equation is used to calculate the number of electrons trans-
ferred in the ORR process. Obtain the LSV curves of the relevant catalysts at 400, 625,
900, 1225, 1600 rpm. Based on these curves, calculate the electron transfer number (N) of
each oxygen molecule involved in the ORR process according to the Koutecky-Levich (K-L)
equation as follows:

1
J

=
1

JK
+

1
Bω0.5 (2)

where J is the current density, JK is the dynamic current density,ω is the rotation rate of the
electrode, and B can be obtained from the K-L diagram using Equation (2). The value of n
can be calculated from the slope of the linear curve based on the following relationship:

B = 0.62nF(DO2)2/3v−1/6CO2 (3)

In Equation (3), F in F is the Faraday constant (96485 C mol−1), is the diffusion
coefficient of O2 in 0.1 M KOH electrolyte (1.9 × 10−5 cm2 s−1), and v is the dynamic
viscosity (0.01 cm2 s−1), is the saturation concentration of O (1.2 × 10−6 mol cm−3). The
value of n represents the number of electrons transferred during the ORR process.

4. Conclusions

We synthesized carbon-coated copper nanoparticles on carbon nanofibers and finally
prepared Cu/CuOx@C composites through an etching-pyrolysis process, and the prepared
material shows excellent ORR performance (Eonset = 1.00 V vs. RHE, E1/2 = 0.81 V vs. RHE,
JL = 5.15 mA cm−2, Tafel slope = 107 mV dec−1). As the uniform 1D permeable design
gives a higher surface region, the rich Cu nano-species on the material’s surface and the
high electrical conductivity have laid the foundation for excellent catalytic activity. Due to
the nature of the Cu-based material and the reduction in the proportion of C–OH groups, it
has a higher selectivity for the four-electron process and is superior to platinum carbon in
its resistance to methanol. Such copper-based electrocatalysts will likely supplant some
costly platinum-based materials in electrochemically energy conversion applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12121515/s1: Figure S1: (a) Cu(OH)(Hsal)·H2O (b) Cu@C (c) Cu@C-
etching (d) SEM of Cu@C-800 (e) and (f) HRTEM of Cu@C-800; Figure S2: XRD of Cu(OH)(Hsal)·H2O;
Figure S3: (a) Cu@C (b) Nanoparticle size distribution in Cu@C-800; Figure S4: (a,b) Raman of Cu@C-800
(c,d) Infrared of Cu@C-800; Figure S5: Cu@C-600,Cu@C-700, Cu@C-800, Cu@C-900’s Cu XPS fine
spectrum; Figure S6: (a) Cu@C, (b) Cu@C-etching CV under N2, O2 saturation; Figure S7: Cu@C- (600,
700, 800 and 900) LSV at 400, 625, 900.1225 and 1600 rpm; Figure S8: Cu@C-(600, 700, 800 and 900)

https://www.mdpi.com/article/10.3390/catal12121515/s1
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electron transfer numbers at 0.2, 0.3, 0.4 and 0.5 V; Figure S9: Cu@C-800 material surface (a) Simulation of
ORR process (b) 4e− process. Table S1: Cu@C-(600,700,800,900) Cu(111) XRD half-value width, particle
size, O’s XPS fine spectrum peak area and the ratio of C–OH, O–Cu, Cu’s XPS fine spectrum Peak area
and the ratio of Cu(0)+Cu(I), Cu(II); Table S2: compares the ORR activity of Cu@C-800 and Cu-based
catalysts. References [59–65] are cited in the Supplementary Materials.
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