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Abstract: Ni-phosphide catalysts on SAPO-11 were studied in the hydrodeoxygenation–isomerization
of methyl palmitate (C15H31COOCH3—MP). The catalysts were synthesized using temperature-
programmed reduction (TPR) of a phosphate precursor ((NH4)2HPO4 and Ni(CH3CH2COO)2),
TPR of a phosphite precursor (H3PO3 and Ni(OH)2), and using phosphidation of Ni/SAPO-11
by PPh3 in the liquid phase. The samples were characterized by ICP-AES chemical analysis, N2

physisorption, NH3-TPD, XRD, and TEM. First, the screening of the catalysts prepared by the TPR
method was carried out in a semi-batch autoclave to determine the influence of the preparation
method and conditions on one-pot HDO–isomerization (290–380 ◦C, 2–3 MPa). The precursor’s
nature and the amount of phosphorus strongly influenced the activity of the catalysts and their
surface area and acidity. Isomerization occurred only at a low P content (Ni/P = 2/1) and blocking of
the SAPO-11 channels by unreduced phosphates at higher P contents did not allow us to obtain iso-
alkanes. Experiments with liquid phosphidation samples in a continuous-flow reactor also showed
the strong dependence of activity on phosphidation duration as well as on Ni content. The highest
yield of isomerized products (66% iso-C15–16 hydrocarbons, at complete conversion of O-containing
compounds, 340 ◦C, 2 MPa, and LHSV = 5.3 h−1) was obtained over 7% Ni2P/SAPO-11 prepared by
the liquid phosphidation method.

Keywords: hydrodeoxygenation; isomerization; Ni-phosphide; SAPO-11; methyl palmitate; biofuel;
green diesel

1. Introduction

Renewable sources have attracted much attention in the production of fuels and
chemical products. Hydrodeoxygenation (HDO) of fatty-acid-based feedstocks (vegetable
oils, animal fats, tall oils) leads to the formation of normal alkanes [1]. HDO is carried
out over Ni(Co)Mo/Al2O3 catalysts, resulting in products with a high cetane index but
poor low-temperature properties (high cloud and pour points) [2–4]. Isomerization of
these products is needed to meet the requirements of commercial fuels. Noble metal
catalysts on silicoaluminophosphates (SAPOs) or zeolites are used in these processes [5].
Overall, the process is two-step [6], and there is an attractive approach to combine HDO
and isomerization into one step over bifunctional catalysts [7].

The most attractive SAPOs for different applications are SAPO-34 [8–10], SAPO-
11 [11–15], SAPO-5 [16–18], SAPO-31 [19–21], and SAPO-41 [22–24]. SAPO-11 with the
AEL topology is a member of the class of one-dimensional molecular sieves applied in
hydroisomerization [25,26]. It possesses a medium-sized (0.4× 0.65 nm) pore structure and
mild acidity, which provides high selectivity in the hydroisomerization of n-alkanes [27,28].

New classes of catalysts based on transition metal carbides, nitrides, and phosphides
are attracting a considerable amount of interest for application in hydroconversion re-
actions [29–32]. Due to their high activity, phosphides are particularly interesting for
HDO [33–35]. Ni-phosphide catalysts are among the most active [36–39]. There are sev-
eral works on bifunctional Ni-phosphide SAPO-11 catalysts for fatty acid ester HDO–
isomerization and n-alkane isomerization.
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Heng Shi et al. [40] prepared 15 wt.% Ni2P/SAPO-11 with an initial Ni/P ratio of 1/1
by temperature-programmed reduction (TPR) of the phosphate precursor and tested it in
methyl laurate (C11H23COOCH3) hydroconversion. At 340 ◦C, 2 MPa, and WHSV = 10 h−1,
the methyl laurate conversion was 78% and the selectivity to C11–12 was 92%, but only a
small amount of hydroisomerization was achieved because a high Ni loading suppresses
medium-strength acid sites [40,41].

Sha Zhao et al. [41] investigated the performance of 3 wt.% Ni2P/SAPO-11 catalysts in
HDO–isomerization of methyl laurate. The catalyst was prepared by TPR of the phosphate
precursor (NiP = 1/1). At 360 ◦C, 3 MPa, and WHSV = 2 h−1, the methyl laurate conversion
was close to 100% and the selectivity to iso-alkanes (iso-C11–12) decreased from ~37 to ~29%
during 101 h of experimentation. The selectivity to C6–10 cracked products was ~10%.

Liu Chun-ya et al. [42] carried out HDO–isomerization of a methyl oleate (C17H33COOCH3)
and methyl stearate (C17H35COOCH3) mixture over NiP/SAPO-11 with different Ni contents
(1–13 wt.%), prepared by TPR of the phosphate precursor with Ni/P = 1/1. The carrier was
prepared by the extrusion method with pseudo-boehmite (SAPO-11: pseudo-boehmite = 7:3).
The highest isomerization rate was observed for the catalyst with 3 wt.% of Ni. At 340 ◦C,
2 MPa, and WHSV = 2.5 h−1, the methyl ester conversion was ~98% and the isomerization
selectivity was 14% (iso-C15–18).

Shasha Tian and Jixiang Chen [43] studied Ni2P/SAPO-11 catalysts in n-dodecane iso-
merization. The catalysts were prepared by TPR of the phosphate precursor with different
Ni/P ratios and Ni contents. The highest isododecane selectivity of 72% was achieved at
90% conversion over the 3% Ni2P/SAPO-11 catalyst with Ni/P = 1/1 (at 350 ◦C, 2 MPa, and
WHSV = 2 h−1).

Siyang Liu et al. [44] studied HDO–hydrocracking of castor oil over SAPO-11-supported
Ni, NiAg, and Ni2P catalysts. The 25% Ni2P/SAPO-11 was prepared by the hypophosphite
decomposition method with an initial Ni/P ratio of 1/1.5. This catalyst did not show significant
isomerization and hydrocracking activity. At 300 ◦C, 3 MPa, and WHSV = 2 h−1, the iso/normal
alkanes ratio (C8–15) was 0.1, the yield of C5–7 hydrocarbons was 5%, the yield of C8–15 was 2%,
and the yield of C16–19 was 92% (at 99% conversion). Similar results were obtained for 25%
Ni/SAPO-11. The iso/normal alkanes ratio was 0.1, and the yields were 1% for C5–7, 3% for
C8–15, and 95% for C16–19.

Hongbiao Tang et al. [45] used SAPO-11, Zr-SBA-15, and ZSM-5 for NiMoP catalyst
synthesis by TPR of phosphate precursors. The Ni/Mo ratio was 1/1, the total metal
content was 5 wt.%, and the metal-to-P ratio was set to 1/2, 1/1, 2/1, and 3/1. The catalysts
were tested in jatropha oil conversion in an autoclave at 360 ◦C and 3 MPa for 4 h. The
products were divided into four groups: naphthenes, aromatics, oxygenates, and C8–16
alkanes. For SAPO-11-supported catalysts, the P content did not significantly influence the
selectivity of the C8–16 alkanes (47–50%). The highest content of naphthenes was achieved
for the sample with Ni/P = 1/2 (21%). The lowest content of oxygenates was achieved for
the sample with Ni/P = 3/1 (5%).

Yang Zhang et al. [46] prepared a 4 wt.% Ni2P/SAPO-31 catalyst by TPR of the
phosphate precursor for isomerization of n-hexadecane. The selectivity to isohexadecane
was ~82% at 80% conversion (at 380 ◦C, 2 MPa, and WHSV = 3.7 h−1).

Previous works on SAPO-supported Ni-phosphide catalysts have mainly focused on
phosphate precursors. No direct comparison of the influence of the precursor’s nature on
the catalytic activity has been carried out. No one to the best of our knowledge has studied
catalysts prepared by the liquid phosphidation method. However, this method may be
advantageous for preventing the interaction of the P precursor with the support, which is
well-known for Al2O3-supported catalysts [37,47–50].

The aim of this work is to study the influence of the preparation method on the catalytic
activity of SAPO-11-supported Ni-phosphide catalysts in HDO–isomerization of methyl
palmitate (C15H31COOCH3) (MP). Our study involved the screening of the catalysts using
an autoclave reactor to verify the activity of TPR catalysts and determine the conditions for
optimal HDO–isomerization, the preparation and testing of liquid phosphidation catalysts
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in a continuous-flow reactor and a comparison with TPR catalysts, and physicochemical
analysis of the most promising catalysts.

2. Results and Discussion
2.1. Catalyst Screening
2.1.1. TPR Catalyst Screening and Search for Optimal Conditions in an Autoclave

The catalysts were prepared by incipient wetness impregnation of the support with
two different precursors (phosphate and phosphite) with subsequent TPR. The samples
were labeled NiP_A (phosphate) and NiP_I (phosphite).

SiO2-supported NiP_I samples show higher activity in MP HDO than NiP_A sam-
ples [36]. Therefore, we started screening in an autoclave using NiP_I/SAPO-11 samples
(7 wt.% of Ni). Figure 1 shows MP conversion (XMP) and conversion of O-containing com-
pounds (XO) vs. time for NiP_I/SiO2 and for three independently synthesized NiP_I/SAPO-
11 catalysts. Surprisingly, the SAPO-11-supported samples did not have any HDO–
isomerization activity. XMP over NiP_I/SiO2 (Ni2P/SiO2) reached 89% in 5 h. This demon-
strates that the conditions are good for HDO.
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Figure 1. Conversion of MP and O-containing compounds over NiP_I/SiO2 and NiP_I/SAPO-11
catalysts in an autoclave (290 ◦C, 3 MPa, VH2 = 100 mL/min, 500 RPM, mcat = 1 g).

SAPO-11 is a microporous material (Table S1) and micropores as well as mesopores
can be blocked by excess P. For example, it was shown that Ni/zeolite catalysts have
a larger surface area than Ni(H2PO4)2/zeolite catalysts [51]. Indeed, SBET significantly
decreased after phosphide preparation (29 m2/g, Table S1) and after reaction (8 m2/g, Table
S1). The initial Ni/P ratio was 1/2. During TPR at high temperatures, P can form volatile
P-containing compounds (PH3 and products of its interaction with H2O) [52,53]. However,
excess P can also remain on the support surface after TPR in the form of unreduced
phosphates (POx) (HnPO4

(3 − n)−, P2O7
4−, and (PO3−)n) [36,54,55].

To avoid blocking the SAPO-11 pores, we tested 3 wt.% NiP_I/SAPO-11 (TPR at
450 ◦C). To verify whether SAPO-11 is a reliable support, we tested 3 wt.% Ni/SAPO-11.
Conversion values of XMP = 75% and XO = 58% were reached over Ni/SAPO-11 after 5 h
of reaction (Figure 2). The NiP_I/SAPO-11 remained inactive. XRD analysis showed the
presence of metallic Ni in Ni/SAPO-11 and, due to the small particle sizes, NiP_I/SAPO-11
did not have any reflexes of Ni-phosphide phases (Figure S1). This experiment showed
that excess P blocks the active component in the support. As it is impossible to decrease
the P content in NiP_I samples without additives (due to the poor solubility of phosphites),
we used phosphate NiP_A precursors to prepare samples with different Ni/P ratios.
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Figure 2. Conversion of MP and O-containing compounds over 7% NiP_I/SiO2, 3% Ni/SAPO-11,
and 3% NiP_I/SAPO-11 catalysts in an autoclave (290 ◦C, 3 MPa, VH2 = 100 mL/min, 500 RPM,
mcat = 1 g).

Depending on the Ni/P ratio, the conversion values of MP were in the range of
45–49% and the conversion values of O-containing compounds were 33–45% over the
NiP_A/SAPO-11 catalyst after 5 h of reaction (Figure 3).
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 Figure 3. Conversion of MP and O-containing compounds over 7 wt.% NiP_I/SiO2, NiP_A/SAPO-11
with different Ni/P ratios, and NiP_I/SAPO-11 in an autoclave (290 ◦C, 3 MPa, VH2 = 100 mL/min,
500 RPM, mcat = 1 g).

The Ni/P ratio also influenced the selectivity (Table 1). The main products of the reaction
were n-alkanes. The C16/C15 molar ratio for NiP_A 1/2 was 0.365, for NiP_A 1/1 it was 0.168,
and for NiP_A 2/1 it was 0.137. These numbers are close to the results in the literature for
Ni2P/SAPO-11 [40–42]. Figure 4 shows product distributions vs. time. MP, n-pentadecane
(n-C15), and n-hexadecane (n-C16) concentrations vs. time are shown in Figure 4a–c, while
concentrations of intermediate compounds (palmitic acid (PA), palmityl palmitate (PP), and
hexadecanol (C16OH)) vs. time are shown in Figure 4d–f. The selectivity to n-C15 and n-C16
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changed as follows: for Ni/P = 1/2, SC15 = 66% and SC16 = 24%; for Ni/P = 1/1, SC15 = 76%
and SC16 = 13%; and for Ni/P = 2/1, SC15 = 60% and SC16 = 8% (Table 1). The overall selectivity
and yield to alkanes decreased as the P content decreased, confirming the similar trend and
activity dependence for SiO2-supported Ni-phosphides [53,56]. As the P content decreased, the
selectivity to O-containing intermediates and side products increased from 10% (for Ni/P = 1/2)
to 31% (for Ni/P = 2/1).

Table 1. C16/C15 molar ratios and product selectivities and yields over NiP_A catalysts with different
Ni/P ratios.

Ni/P Ratio C16/C15
Molar Ratio

Selectivity to
n-C15, %

Selectivity to
n-C16, %

Yield of
n-C15, %

Yield of
n-C16, %

1/2 0.365 66 24 32 12
1/1 0.168 76 13 34 6
2/1 0.137 60 8 27 4
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Figure 4. Concentration of reaction products vs. time in an autoclave over 7 wt.% NiP_A catalysts:
(a,d) Ni/P = 1/2; (b,e) Ni/P = 1/1; (c,f) Ni/P = 2/1. MP, methyl palmitate; PA, palmitic acid; C16OH,
hexadecanol. 290 ◦C, 3 MPa, VH2 = 100 mL/min, 500 RPM, mcat = 1 g.

The next step was to determine the conditions under which isomerization takes place.
Screening of the NiP_A samples with different Ni contents and Ni/P ratios was conducted
at 340 and 380 ◦C (Figure 5). At these temperatures, XMP was 100%, so the selectivities
are equal to the yields of the products. Catalytic experiments showed that, for the NiP_A
catalyst with Ni/P = 1/2, only n-alkanes were detected both at 340 and 380 ◦C. Decreasing
the Ni content resulted in the formation of cracked products, and no isomerized alkanes
were detected (3 wt.% NiP_A, Ni/P = 1/2). Decreasing the P content in the 7 wt.% samples
also contributed to the cracking; however, in the case of Ni/P = 1/1, iso-C15 were detected
with a selectivity of 13%. For the series of 3 wt.% NiP_A catalysts with different Ni/P ratios,
decreasing the P content yielded a larger number of cracked alkanes and more iso-alkanes
(because of the increase in the catalyst’s acidity, see Figure S2). Thus, the 3 wt.% NiP_A
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catalyst with Ni/P = 2/1 has the highest selectivity to iso-alkenes (35%) (33% of iso-C15
and 2% of iso-C16).
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Figure 5. Product distributions after 5 h of reaction (XMP = 100%) in an autoclave over NiP_A/SAPO-
11 samples with different Ni contents and Ni/P molar ratios. 3 MPa, VH2 = 100 mL/min, 500 RPM,
Vcat = 1.5 mL (for 7 wt.% mcat = 1 g, for 3 wt.% mcat = 0.85 g).

At this point, 3 wt.% NiP_A/SAPO-11 (Ni/P = 2/1) showed the highest isomerization
activity, but the number of cracked products was the highest among all tested catalysts.
We carried out HDO–isomerization over the 3 wt.% NiP_A series at a lower temperature
(340 ◦C) and pressure (2 MPa) with a larger catalyst mass (1.7 g). Iso-alkanes were only
obtained over the sample with Ni/P = 2/1 (35%, Figure 6). However, for this catalyst, the
products were not balanced with the initial amount of MP, and no cracked products were
detected. Thus, we think that 15% of the MP transformed into carbon deposits.
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Figure 6. Product distributions after 5 h of reaction (XMP = 100%) in an autoclave over 3 wt.%
NiP_A/SAPO-11 samples with different Ni/P molar ratios. 340 ◦C, 2 MPa, VH2 = 100 mL/min,
500 RPM, mcat = 1.7 g.

From the experimental results, we can conclude that, to obtain active catalysts simulta-
neously for HDO and isomerization, one needs to avoid large amounts of P in order not
to block SAPO-11 pores and the active component. However, at the same time, one needs
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enough P to form the Ni-phosphide and prevent cracking and cocking. The liquid phosphi-
dation method of Ni/SAPO-11 can meet both requirements [49]. The phosphidation degree
can be regulated by the temperature and duration of this procedure, and the formation
of POx phosphate residues can be avoided [57]. This method requires a continuous-flow
reactor for both phosphidation and catalytic tests.

2.1.2. Liquid-Phase Phosphidation and Experiments in a Continuous-Flow Reactor

The catalysts prepared by liquid-phase phophidation were labeled NiP_P. First, 3 wt.%
Ni/SAPO-11 was phosphidized in situ by PPh3 according to the procedure described in [49]
(heating to 380 ◦C (1 ◦C/min) and holding at this temperature for 7 h (TPP380)). MP
HDO–isomerization was carried out at 340 ◦C, 2 MPa, LHSV = 5.3 h−1, and H2/feed
ratio = 600 Ncm3/cm3.

The NiP_P/SAPO-11 TPP380 catalyst did not show any isomerization activity
(Figure 7), and 2% of the MP transformed into carbon deposits. Under the same con-
ditions, 8% of the MP transformed into carbon deposits over the NiP_A/SAPO-11 catalyst,
but the selectivity to iso-alkanes was 27% (25% of iso-C15, 2% of iso-C16). Thus, we decided
to lower the phosphidation degree by decreasing the phosphidation temperature (250 ◦C,
TPP250) and duration (2 h). This allowed us to obtain 40% of the iso-alkanes (33% of iso-C15
and 7% of iso-C16 over 3 wt.% NiP_P, Figure 7), but the selectivity to carbon deposits
was 6%. Increasing the Ni content proved to be successful in avoiding the formation of
carbon deposits and cracked products (7 wt.% NiP_P and 12 wt.% NiP_P, Figure 7) such
that the mass balance was 100%. The optimal content of Ni to obtain the highest number
of iso-alkanes (54% of iso-C15 and 12% of iso-C16) was 7 wt.%. The MP conversion and
selectivities of the products vs. time on stream (TOS) are shown in Figure S3.
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Figure 7. Product distributions over Ni-phosphide and Ni catalysts on SAPO-11 in a continuous-flow
reactor (XMP = 100%). T = 340 ◦C, 2 MPa, LHSV = 5.3 h−1, 600 Ncm3/cm3.

Ni/SAPO-11 was also tested in continuous-flow mode in order to compare it with
NiP_P/SAPO-11 (Figure 7). Despite the high selectivity to iso-alkanes (59% total), Ni/SAPO-
11 had very high cracking and cocking activity (37% selectivity). Unfortunately, it was
not possible to determine exactly the number of cracked products because the solvent
(n-dodecane) also cracked and contributed to these products (Figure S4).

Due to the presence of metallic Ni in Ni/SAPO-11, it has high activity in methanation.
There is no CO in gas phase products of Ni/SAPO-11, and high concentrations of CH4,
C2H6, and C3H8 are observed compared with Ni2P/SAPO-11 catalysts (Figure 8). C2H6,
C3H8, and additional amounts of CH4 are produced by cracking reactions of MP, its
intermediate and final products, and the n-dodecane solvent.
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Figure 8. Distribution of gas phase products over Ni-phosphide and Ni catalysts on SAPO-11 in a
continuous-flow reactor (XMP = 100%). T = 340 ◦C, 2 MPa, LHSV = 5.3 h−1, 600 Ncm3/cm3.

The NiP_A and NiP_P catalysts had quite similar amounts of CO and CH4, and the
most active 7 wt.% NiP_P catalyst had the lowest concentrations (Figure 8). Interestingly,
there was no C2H6, C3H8, CH3OCH3, and CH3OH over the NiP_P TPP380 sample.

Scheme 1 shows the possible reactions of MP HDO–isomerization. HDO has two
main routes:

(1) decarbonylation: MP→ PA→ C16O→ C15 hydrocarbons;
(2) direct HDO: MP→ PA→ C16O→ C16OH→ C16 hydrocarbons

where MP, methyl palmitate; PA, palmitic acid; C16O, hexadecanal; and
C16OH, hexadecanol.
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Scheme 1. Methyl palmitate HDO–isomerization.

HDO intermediates as well as palmityl palmitate are detectable at low reaction tem-
peratures (290 ◦C, Figure 4). At higher temperatures (340 and 380 ◦C), the HDO reactions
are quite fast and the conversion of O-containing compounds is complete (Figures 5– 7).
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Isomerization of n-alkanes (C15H32 and C16H34) occurs through dehydration to alkenes
with the subsequent formation of n-alkylcarbenium ions (C15H31

+ and C16H33
+), which

form in protonation over acid sites of SAPO-11. An alternative route of n-alkylcarbenium
ion formation is protonation of n-alkanes to n-alkylcarbonium ions (C15H33

+ and C16H35
+),

even though this route is significantly slower [58]. The subsequent transformation of
n-alkylcarbenium ions leads to monobranched alkanes, dibranched alkanes, and cracked
products. According to GC-MS analysis, only trace amounts of dibranched alkanes were
detected over Ni2P/SAPO-11 catalysts. Almost all iso-alkanes are monobranched ones.

As phosphidized catalysts (TPP) are more promising and active than TPR samples,
we characterized NiP_P catalysts with different Ni contents by physicochemical methods.

2.2. Physicochemical Analysis of the TPP Catalysts
2.2.1. Chemical Analysis, Textural Properties, NH3-TPD, and XRD

The initial SAPO-11 contained 24.1 wt.% P (Table 2). Increasing the relative Ni content
results in a decrease in the relative P content because P is lighter than Ni. Phosphidation
increases the amount of P, but its effect was negligible compared with the overall P content
in SAPO-11 and changed due to the Ni loading.

Table 2. Physicochemical properties of NiP_P samples.

Ni,
wt.%

P,
wt.%

Vmicro,
cm3/g

Vmeso,
cm3/g

Smicro,
m2/g

SBET,
m2/g

NH3-TPD,
µmol/g

XRD
Phase

DXRD,
nm

DTEM,
nm

SAPO-11 – 24.1 0.064 0.08 166 188 161 – – –
3% NiP_P 3.4 21.3 0 0.12 0 19.5 122 Ni2P 30 6.5
7% NiP_P 7.3 20.9 0 0.10 0 16.0 110 Ni2P 59 9.2

12% NiP_P 12.0 20.3 0 0.10 0 17.6 145 Ni2P 39 9.9

The SBET of the NiP_P samples was significantly lower than the SBET of the original
SAPO-11 (Table 2). This may have been due to blocking of the SAPO-11 pores by the active
component and excess P. It resulted in the absence of micropores, as Vmicro = 0 cm3/g and
Smicro = 0 m2/g. The pore size distributions of the support and the catalysts are shown in
Figure S5.

The acidity of the catalysts was lower than for SAPO-11 (Table 2, Figure 9). In the
NH3-TPD curve of SAPO-11, there are two main signals with maximums at ~180 ◦C and
~300 ◦C. The first signal corresponds to weak acid sites, and the second signal corresponds
to medium-strength acid sites [26,43]. These signals remain in the NiP_P samples, but an
additional broad signal appears after phosphidation at ~500 ◦C. This may correspond to
the formation of volatile P-containing compounds at high temperatures of NH3-TPD. The
acidity of the 12% sample is the highest among the NiP_P catalysts (145 µmol/g), and the
acidity of the 3 and 7% samples is similar (122 and 110 µmol/g, respectively).

Figure 10 shows XRD patterns of NiP_P samples with different Ni contents. All
catalysts contain the Ni2P phase. Table 1 lists the DXRD of Ni2P particles, and it is quite
large (30–59 nm). It should be noted that small particles (<3 nm) could not be detected by
XRD; therefore, the DXRD is larger than the DTEM.
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2.2.2. TEM and SEM Analysis

The initial SAPO-11 support consisted of agglomerates of elongated particles with
sizes of ~1 µm (Figure S6). TEM images of the NiP_P catalysts show that the SAPO-11
particles are evenly covered with Ni2P nanoparticles (Figure 11).
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Figure 11a–c show TEM images and particle size distributions of NiP_P samples with
different Ni contents. All the distributions have a maximum at 4.5 nm. As the Ni content
increased, the distributions became broader and bimodal for 7% NiP_P and 12% NiP_P.
The mean values (DTEM) of particle sizes are listed in Table 1. The DTEM increased from
6.5 nm to 9.9 nm as the Ni content increased. EDX mapping showed the presence of Ni-
phosphide particles on SAPO-11 (Figure 11d–f). All particles were covered with an oxidized
layer, which mainly consisted of Ni3(PO)4 according to the EDX analysis (Figure 11g–i).
Interplanar distances were identified for several particles (Figure 11g–i): 0.192, 0.202, 0.203,
and 0.507 nm. These distances correspond to the Ni2P crystal structure (Ni2P JCPDS #
03-0953). The distances are related to the (210), (201), and (100) XRD reflexes, respectively.

3. Materials and Methods
3.1. Materials

For SAPO-11 synthesis, H3PO4 (85 wt.%, analytical grade) from «Spektrchem» (Saint
Petersburg, Russia), SiO2 Rosil-175 powder (90%, grade B) from JSC «BSK» (Sterlitamak,
Russia), and hydrated alumina/oxide–hydroxide alumina were used (JSC «Promcatalys»,
Ryazan, Russia). Dipropylamine (DPA, 99%) from «Acros Organics» (Newark, NJ, USA)
was used as a molecular template. SiO2 was purchased from «KhromAnalit» LTd. (KSKG-
type, Moscow, Russia). Ni(CH3CH2COO)2·4H2O was purchased from «Reachim» (GOST
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11125-84, ≥98%, Moscow, Russia). (NH4)2HPO4 was purchased from «Alfa Aesar» (Techni-
cal Grade, Kandel, Germany). Ni(OH)2 was purchased from «Acros Organics» (≥98%, NJ,
USA). H3PO3 was purchased from «Sigma-Aldrich» (≥97%, Burlington, MA, USA).

Methyl palmitate (C15H31COOCH3) was purchased from «Sigma-Aldrich» (≥97%,
Burlington, USA), n-dodecane was purchased from «Acros Organics» (≥98%, NJ, USA),
and PPh3 was purchased from «Sigma-Aldrich» (99%, Burlington, USA).

3.2. SAPO-11 Synthesis

SAPO-11 was synthesized via conventional hydrothermal synthesis (HTS) in an auto-
clave with a volume of 10 L. Aluminum and phosphorus precursors were mixed together
with the subsequent addition of DPA and a silica source. All precursors were mixed
until the reaction mixture became homogeneous. The final reaction mixture underwent
hydrothermal synthesis at 200 ◦C for 24 h under stirring during HTS.

The initial molar composition contained Al2O3/P2O5/SiO2 = 1/1/0.1. The amount of
molecular template used was in the range of 0.9–1.5 moles to 1 mol of Al2O3.

After synthesis, the product was collected, washed with distilled water from the
mother liquor, dried, and calcined at 650 ◦C with a heating rate of 3 ◦C/min to remove the
organic template.

3.3. NiP/SAPO-11 and NiP/SiO2 Synthesis

SAPO-11 powders or SiO2 granules (0.25–0.5 mm) were incipiently impregnated with
aqueous solutions of precursors.

NiP_A (phosphate samples). To prepare phosphate precursors, (NH4)2HPO4 was
dissolved in distilled water. Then, Ni(CH3CH2COO)2·4H2O was added. A green-yellow
precipitate of Ni-phosphate was formed, which was then dissolved by the dropwise addi-
tion of concentrated HNO3. The supports were impregnated by this solution. The samples
were dried overnight at room temperature, then at 110 ◦C for 3 h. Afterwards, the samples
were calcined at 500 ◦C for 3 h. To form phosphides, the precursors were reduced in a
hydrogen flow (250 mL/min) using the following temperature program: heating to 380 ◦C
on a 3 ◦C/min ramp, then heating to 600 ◦C on a 1 ◦C/min ramp. The content of Ni in the
reduced catalysts was ~3 or ~7 wt.%. The content of P was varied using different initial
Ni/P molar ratios (2/1, 1/1, and 1/2) in the precursors.

NiP_I (phosphite samples). To prepare phosphite samples, the precursor Ni(OH)2
was dissolved in a H3PO3 water solution. The initial Ni/P molar ratio was 1/2. The
supports were impregnated by this solution. The samples were dried overnight at room
temperature, then at 80 ◦C for 24 h. Then, the precursors were reduced in a hydrogen flow
(250 mL/min) using the following temperature program: heating to 600 ◦C on a 1 ◦C/min
ramp. The content of Ni in the reduced catalysts was ~3 or ~7 wt.%.

NiP_P (liquid phosphidation samples). To prepare metallic samples for liquid phos-
phidation, Ni(CH3CH2COO)2·4H2O was dissolved in distilled water. The green solution
was used to impregnate the supports. The samples were dried overnight at room temper-
ature, then at 110 ◦C for 3 h. Then, the precursors were calcined at 400 ◦C for 3 h. The
content of Ni after calcination was ~3, ~7, or ~12 wt.%. The oxide precursors were reduced
in situ in a continuous-flow fixed-bed reactor at 400 ◦C for 2 h (on a 1 ◦C/min ramp). After
cooling, phosphidation was carried out using 2 wt.% PPh3 in dodecane (LHSV = 5.3 h−1,
PH2 = 0.5 MPa, H2/feed = 600 Ncm3/cm3) with heating to 250 ◦C at 1 ◦C/min and holding
at 250 ◦C for 2 h.

3.4. Catalyst Characterization

Elemental analysis was performed by inductively coupled plasma atomic emission
spectroscopy (ICP-AES) on an Optima 4300 DV («Perkin Elmer», Waltham, MA, USA).

Textural properties were determined by N2 physisorption on an ASAP 2400 («Mi-
cromeritics», Norcross, GA, USA).
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NH3-TPD analysis was carried out using a Chemosorb («Neosib» LTd., Novosibirsk,
Russia). A total of 200 mg of sample was preheated for 1 h in He flow (60 mL/min) at
500 ◦C. The adsorption of NH3 was carried out at 100 ◦C for 1 h. Then, to remove physically
adsorbed ammonia, the sample was kept at 100 ◦C for 1 h in He flow (60 mL/min). Des-
orption was carried out at a heating rate of 10 ◦C/min in He flow (60 mL/min). Desorbed
NH3 was determined by a thermal conductivity detector.

X-ray diffraction analysis (XRD) was performed on an XTRA diffractometer («Thermo
Fisher Scientific», Waltham, MA, USA) using CuKα radiation (wavelength λ = 1.5418 Å).

TEM microphotographs were obtained on a JEM-2010 («JEOL», Tokyo, Japan) transmission
electron microscope with an accelerating voltage of 200 kV and a resolution of 0.14 nm.

3.5. Catalytic Experiments

Screening of the HDO–isomerization activity of the NiP_A and NiP_I catalysts was
carried out in a 300 mL «Autoclave Engineers» (Erie, PA, USA) Bolted Pressure Vessel
Closure (Autoclave reactor) in semi-batch mode (H2 continuous flow). For a typical
experiment, the catalyst was reduced ex situ, then transferred under Ar to the reactor and
heated to 180 ◦C in H2 flow (100 mL/min). Subsequently, 100 mL of 10% MP in n-dodecane
was added to the reactor, the pressure was set to 3 MPa, and the temperature was set to
290–380 ◦C. When the temperature reached the reaction temperature, mixing was started
(500 RPM).

NiP_P catalysts were prepared and tested in a continuous-flow fixed-bed reactor
(i.d. = 12 mm) with a coaxial thermocouple with a diameter of 3 mm. The precursors were
reduced and phosphidized; then, after the catalyst was cooled and washed with n-dodecane,
HDO–isomerization of MP (10 wt.% in n-dodecane) was carried out at 250–340 ◦C, 2 MPa,
LHSV = 5.3 h−1, and H2/feed = 600 Ncm3/cm3.

Liquid products were analyzed by a gas chromatograph («Agilent» N6890, Santa
Clara, CA, USA) with an HP-1 MS column (30 m× 0.32 mm× 1 µm) and a flame ionization
detector (FID). O content was determined by a Vario EL Cube elemental analyzer (Elementar
Analysensysteme GmbH, Langenselbold, Germany). Gas-phase products were analyzed by
a gas chromatograph («Chromos 1000», Dzerzhinsk, Russia) with a packed column (with
HayeSep, «Sigma-Aldrich», Burlington, USA), methanator with a Pd catalyst, and an FID.

The conversion of MP was calculated as follows:

XMP =

(
C0

MP − CMP

C0
MP

)
· 100%, (1)

where C0
MP is the initial concentration of MP and CMP is the MP concentration in the products.

The conversion of O-containing compounds was calculated as follows:

XO =

(
C0

O − CO

C0
O

)
· 100%, (2)

where C0
O is the initial concentration of oxygen and CO is the concentration of oxygen in

the products.
The selectivity was calculated as follows:

Si =

(
Ci

C0
MP − CMP

)
· 100%, (3)

where Ci is the concentration of the i-th compound in the products. For cracked products
and carbon deposits, selectivity was estimated based on mass balance.
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The yield was calculated as follows:

Yi =

(
Ci

C0
MP

)
· 100%. (4)

4. Conclusions

The activity in HDO–isomerization of MP over SAPO-11-supported Ni-phosphide
catalysts proved to depend on the preparation method and the phosphidation degree of
the catalysts. NiP_I/SAPO-11 (the phosphite precursor) did not show activity in both
HDO and isomerization. This was attributed to unreduced POx residues that blocked
the surface of the catalyst and the active component. NiP_A/SAPO-11 (the phosphate
precursor) activity correlated with the Ni content and Ni/P molar ratio. A low Ni loading
(3 wt.%) and low P content (Ni/P = 2/1) resulted in the formation of iso-C15 and iso-C16
hydrocarbons. The selectivity to iso-alkanes at 340 ◦C, 2 MPa, and at full conversion in a
semi-batch autoclave was 35%. At the same time, the selectivity to carbon deposits was 15%.
In the continuous-flow reactor, the same catalyst produced 27% of the iso-alkanes and 8% of
the carbon deposits (at T = 340 ◦C, 2 MPa, LHSV = 5.3 h−1, and H2/feed = 600 Ncm3/cm3).
This catalyst has a metallic character that is too strong, which results in a high degree of
cracking activity. In situ liquid-phase phosphidation by PPh3 allowed us to finely tune
the phosphidation degree of the Ni2P/SAPO-11 catalysts (NiP_P) in order to make them
suitable for simultaneous HDO–isomerization. The highest selectivity to iso-alkanes was
66% (54% of iso-C15 and 12% of iso-C16) for 7 wt.% NiP_P/SAPO-11 phosphidized at
250 ◦C for 2 h. No carbon deposits formed over this catalyst.

The evidence from this study suggests that liquid-phase phosphidation is an effective
way to prepare Ni2P/SAPO-11 catalysts for one-pot HDO–isomerization of fatty esters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12111486/s1, Table S1: Textural properties of SAPO-11 and
NiP_I/SAPO-11 samples; Figure S1: XRD patterns of Ni/SAPO-11 and NiP_I/SAPO-11 samples;
Figure S2: NH3-TPD curves of 3% NiP_A samples; Figure S3: XMP and selectivities of the products
vs. time on stream (TOS) over (a) 3% NiP_A/SAPO-11 TPR 600 Ni/P = 2/1, (b) 3% NiP_P/SAPO-
11 TPP380 7h, (c) 3% NiP_P/SAPO-11 TPP250 2h, (d) 7% NiP_P/SAPO-11 TPP250 2h, (e) 12%
NiP_P/SAPO-11 TPP250 2h, and (f) 3% Ni/SAPO-11 TPR400 in a continuous-flow reactor. T = 340 ◦C
(2 MPa, LHSV = 5.3 h−1, 600 Ncm3/cm3); Figure S4: Chromatograms of the products after 8 h of
TOS over Ni-phosphide and Ni catalysts on SAPO-11 in a continuous-flow reactor (XMP = 100%)
(T = 340 ◦C, 2 MPa, LHSV = 5.3 h−1, 600 Ncm3/cm3); Figure S5: Pore size distributions of SAPO-11
and NiP_P samples; Figure S6: SEM image of the SAPO-11 support.
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