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Abstract: Pristine tungsten disulfide (WS2) nanosheets are extremely prone to agglomeration, leading
to blocked active sites and the decrease of catalytic activity. In this work, highly dispersed WS2

nanosheets were fabricated via a one-step in situ solvothermal method, using sepiolite nanofibers
as a functional carrier. The ammonium tetrathiotungstate was adopted as W and S precursors, and
N,N-dimethylformamide could provide a neutral reaction environment. The electron microscope
analysis revealed that the WS2 nanosheets were stacked compactly in the shape of irregular plates,
while they were uniformly grown on the surface of sepiolite nanofibers. Meanwhile, the BET
measurement confirmed that the as-prepared composite has a larger specific surface area and is more
mesoporous than the pure WS2. Due to the improved dispersion of WS2 and the synergistic effect
between WS2 and the mesoporous sepiolite mineral which significantly facilitated the mass transport,
the WS2/sepiolite composite exhibited ca. 2.6 times the photocatalytic efficiency of the pure WS2 for
rhodamine B degradation. This work provides a potential method for low-cost batch preparation of
high-quality 2D materials via assembling on natural materials.

Keywords: photocatalysis; rhodamine B degradation; sepiolite nanofibers; catalyst support; WS2 nanosheets

1. Introduction

Since the last century, the environmental pollution caused by excessive discharge of
organic pollutants in wastewater has led to the inadequacy of freshwater resources and
threatened human health [1,2]. To solve these issues, photocatalysis could be regarded as
a green and economical method. In fact, the rapid recombination rate of photogenerated
electron-hole pairs and low solar light energy utilization efficiency significantly reduced
the photocatalytic efficiency [3]. Compared with the prior photocatalysts containing ZnO
and CdS, transition metal dichalcogenides (TMDCs) have received substantial interest due
to their sandwich-like layered structure, strong photocatalytic activities, and favorable
optical and electronic properties. WS2 as a typical TMDC has been studied deeply due to
its suitable bandgap, excellent stability, and nontoxic features [4,5]. However, pristine WS2
has high specific surface energy and poor dispersion, and the spontaneous agglomeration
of WS2 with high specific surface energy always leads to a decrease in exposed active sites,
which causes an unsatisfactory photocatalytic degradation effect. Thus, there has been
little study on photocatalytic degradation of organic wastewater by pure WS2, which has
seriously hindered its practical application.

Fortunately, the development of supported WS2 photocatalysts has become a feasible
and promising approach. The active components dispersed on the surface of the support
could increase the specific surface area and improve the catalytic efficiency of the active
components per unit mass. A series of materials were combined with pure WS2 to improve
the photocatalytic performance. In previous reports, many carriers have been adopted to
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support WS2, such as graphene [6], reduced graphene oxide [7], TiO2 [8], CdS [9], ZnO [10],
Bi2MoO6 [11], etc. However, the high fabrication cost and complex process made these
carriers unsuitable for broad applications. Natural minerals have the advantages of low
cost, environmental friendliness, special morphology, and unique properties, which make
them a very promising candidate for carriers. To date, different mineral-based composites
with highly dispersed active compounds have been successfully synthesized.

Mineral materials are widely available and have been reported as catalyst carriers.
Sepiolite (Sep) is a kind of natural magnesium silicate clay mineral, which is abundant in
nature. Ascribed to the 1D fibrous structure, it has a strong adsorption capacity and high
specific surface area [12–15]. As a carrier, sepiolite can improve the dispersion of materials.
In addition, the interface effect between sepiolite and the loaded material can also enhance
the photocatalytic performance. Sep has attracted much attention in the field of adsorbent
and functional carrier for wastewater treatment [16–19].

In our previous studies, we have successfully synthesized ultrathin MoS2 nanosheets
with the assistance of sepiolite and tourmaline [20,21]. Herein, a novel WS2/Sep composite
with few layered WS2 nanosheets was fabricated via an environmentally friendly and
simple solvothermal route. The ultrathin WS2 nanosheets that uniformly grow on the
surface of the Sep led to the exposure of more surface-active sites and the solution to
agglomeration. Furthermore, the WS2/Sep composite exhibited much higher photocatalytic
efficiency toward rhodamine B (RhB) degradation than the pristine WS2, and the synergistic
effect between WS2 and Sep was also noted. This work offers a new insight for low-cost
preparation of dispersed 2D material using natural minerals.

2. Results and Discussion
2.1. Crystal Phase and Groups Analysis

XRD patterns were recorded to examine the phase of the prepared pure WS2 and
WS2/Sep composite (Figure 1a). All of the diffraction peaks of both the pure WS2 nanosheets
and WS2/Sep composite matched well with the 2H hexagonal phase (JCPDS Card
No.87-2417) [22]. The XRD patterns showed that the main peaks of WS2 of the WS2/Sep
were located at 2θ = 13.775◦, 28.6989◦, 34.248◦, and 47.105◦, corresponding to the (002),
(004), (101), and (103) facets of WS2, and the diffraction peaks at 7.423◦, 11.982◦, 20.785◦, and
26.667◦ corresponded well to the (011), (031), (131), and (080) facets of the Sep, respectively.
The d-spacing value of the composite corresponding to the peak at 13.775◦ was calculated to
be 6.4 Å, which was close to that of the pure WS2. The few broad bread-like peaks could be
attributed to the partial crystallization of the WS2 nanosheets. After the solvothermal treat-
ment, WS2 was evenly dispersed on the support, and the diffraction peaks corresponding
to WS2 were sharp and symmetric, further confirming the great crystallization of composite.
Furthermore, the FT-IR was used to identify the functional groups of the WS2/Sep sample
(Figure 1b). The broad absorption peaks at around 3567 cm−1 and 1652 cm−1 were ascribed
to the stretching vibration of the hydroxyl group of crystal water. The peaks at 1003, 975,
424, and 788 cm−1 were ascribed to the stretching of the Si-O band in the Si-O-Si groups of
sepiolite. The peaks at 669, 688, and 645 cm−1 corresponded to the bending vibration of
Mg3OH. The peaks at 464 were attributed to Si-O-Al (octahedral) and Si-O-Si [23–25]. The
two intensive peaks at around 2358 and 2119 cm−1 originated from the characteristic peaks
of hexagonal WS2. The results of XRD and FT-IR revealed the WS2/Sep maintained the
original crystal structure and surface functional groups of WS2 and sepiolite.

2.2. Morphology and EDS Analysis

SEM, TEM, and HRTEM were used to observe the microstructure of the pure WS2
and WS2/Sep (Figure 2). The pure WS2 with the shape of irregular plates consisted of
WS2 nanosheets stacked compactly (Figure 2a). In Figure 2b, one can observe the WS2
nanosheets were uniformly anchored on the surface of Sep nanofibers, and a bark-like
structure was formed intimately; the WS2 nanosheets in the WS2/Sep composite owned
better dispersion. Compared with the pure WS2 nanosheets, the mineral material (i.e., Sep)
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as a support of the composite could significantly reduce the agglomeration of the WS2
nanosheets. Thus, more surface active sites of WS2 could be exposed outside. The above
results provided direct evidence that the WS2 phase had been uniformly loaded on the
Sep nanofibers.
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Figure 2. Morphology and structure of the pure WS2 and WS2/sepiolite nanocomposite. (a,b) SEM
images of the pure WS2 and WS2/sepiolite nanocomposite obtained via solvothermal; (c,d) TEM and
HRTEM images of WS2/Sep.

TEM and HRTEM observations were adopted to deeply investigate the microstructure
of the WS2/Sep composite (Figure 2c,d), which further illustrated that the WS2 phase had
been loaded successfully on the surface of the Sep nanofibers. Moreover, the HRTEM
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images (Figure 2d) indicated a lattice space distance of 0.62 nm, which corresponded to
the (002) facet of 2H-WS2 [26,27]. Lattice spacing consistent with the d-spacing of Sep (031)
was also detected. In addition, the elemental mapping images (Figure 3) also confirmed
that WS2 nanosheets were successfully assembled on the surface of Sep mineral.
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2.3. Nitrogen Adsorption-Desorption Analysis

Nitrogen adsorption-desorption isotherms and pore size distribution curves were
adopted to further compare the surface area and pore structure between the WS2/Sep com-
posite and pure WS2 (Figure 4). Both the samples presented Langmuir type IV isotherms
with H3 hysteresis type loops, suggesting the existence of slit-like mesoporous structures
because of the stacking of sheets. This was consistent with the electron microscopy images.
The WS2/Sep composite possessed a specific surface area of 45.9 m2/g, which was much
larger than that of the pure WS2 (25.3 m2/g). Meanwhile, the pore volume of the WS2/Sep
(0.107 cm3/g) was also much larger than that of the WS2 (0.048 cm3/g). Consequently, the
composite could expose more surface active sites and increase the number of mesopores,
which tended toward improving catalytic activity [28].

2.4. Photocatalytic Performance of RhB Degradation

Comparative experiments were performed to evaluate the performance of the WS2/Sep
nanocomposite for RhB degradation, which is shown in Figure 5. It can be clearly seen
that the WS2/Sep composite exhibited much higher photocatalytic efficiency than the pure
WS2. After 150 min catalysis, the RhB degradation rate for the pure WS2 only reached
~18%, while it achieved ca. 76% for the WS2/Sep nanocomposites. The 4.2-fold improved
activity could be mainly attributed to the better dispersion of the WS2 nanosheets [20]. In
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addition, the excellent synergies between the WS2 nanosheets and Sep nanofibers could
also accelerate the photocatalysis, which will be further discussed in the following section.
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2.5. The Possible RhB Degradation Mechanism for the WS2/Sep Composite

Figure 6 shows the possible process of the photocatalytic RhB degradation in which the
synergic effect between the Sep and the grown WS2 in the WS2/sepiolite nanocomposite is
illustrated. Under irradiation, the holes (h+) and electrons (e−) were produced. Then, the
dissolved O2 would react with e− and OH− would react with h+ to generate superoxide
anion radical (·O2

−) and hydroxyl radical (·OH), respectively [29,30]. Finally, the RhB
molecules adsorbed on the surface-active sites of the WS2 were degraded to CO2 and
H2O [31,32]. During this process, the excellent adsorption of Sep was conductive to
transferring the dissolved O2 and RhB molecules to the active sites of the WS2, and the
abundant hydroxyl (–OH) groups on the Sep surface also benefited the production of
·OH [33–35]. Thus, in addition to the improved dispersion of WS2, the synergic effects
provided by the Sep during photocatalysis also enabled the WS2/Sep composite to exhibit
much higher photocatalytic activity than the pure WS2 [36]. Furthermore, the presence of
mesopores favored multilight scattering, resulting in enhanced harvesting of the exciting
light, and accordingly, improved photocatalytic activity [37,38]. These mesopores also
facilitated fast mass transport and thus enhanced the performance [39,40].
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3. Experiment
3.1. Chemicals and Reagents

The Sep was provided by LB Nanomaterials Technology Co., Ltd. (Henan, China), and
the chemical analysis of the Sep was determined as SiO2 of 53.56 wt%, MgO of 36.79 wt%,
CaO of 5.53 wt%, Fe2O3 of 1.17 wt%, and other impurities of 2.95 wt%. The ammonium
tetrathiotungstate (H8N2S4W) and dimethylformamide (DMF) were supplied by Sigma-
Aldrich Co., Ltd (Shanghai, China). The (RhB) was purchased from Kewei Chemical Group
Co., Ltd. (Tianjin, China). All chemicals used in the experiments were of analytical grade.
These materials were used without further purification. Deionized (DI) water was used in
all experiments.

3.2. Synthesis of WS2/Sep Nanocomposite

The WS2/Sep nanocomposite was fabricated by a solvothermal method (Figure 7).
A total of 30 mg of H8N2S4W was dissolved in 15 mL of N,N-dimethylformamide (DMF)
and stirred for 0.5 h. Then, 10 mg of Sep powder was added into the solution and stirred
continuously for 0.5 h. Next, the above mixture was sonicated for 10 min. Later, the above
suspension was transferred into a 25 mL Teflon-sealed autoclave and heated to 220 ◦C for
24 h. After cooling down to room temperature, the final product was obtained by filtration,
washed several times with DI water, and dried in a vacuum oven at 80 ◦C for 12 h. The
preparation process of the pure WS2 was similar to that of the WS2/Sep nanocomposite
but without the addition of Sep.
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Figure 7. Schematic illustration for the synthesis process of WS2/Sep composite.

3.3. Physicochemical Characterizations of the Synthesized WS2/Sep Composite

X-ray powder diffraction (XRD) analysis was performed with the working conditions
of Cu Kα radiation (λ = 1.54 Å), 40 mA, and 40 kV on a Smart Lab 9 KW X-ray diffractometer
from Rigaku (Tokyo, Japan). Fourier-transform infrared spectroscopy (FTIR) spectra of
the samples were recorded in a transmission mode from 400 to 4000 cm−1 on a Tensor II
Fourier transform infrared spectrometer manufactured by Bruker (Saarbrucken, Germany).
The morphologies of the as-synthesized samples were observed by using a S-4800 scanning
electron microscope working at 5 kV, from JEOL (Tokyo, Japan). Transmission electron
microscope (TEM) images, high-resolution TEM (HRTEM) images, and energy-dispersive
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X-ray spectroscopy (EDS) were carried out on a JEM 2100F transmission electron micro-
scope, from JEOL (Tokyo, Japan), with an accelerating voltage of 200 kV. The N2 adsorption-
desorption tests were conducted on Autosorb-iQ2, from Quantachrome (Boynton Beach, FL,
USA). All samples were outgassed in nitrogen flow at 200 ◦C for 4 h before measurements. The
specific surface area (SSA) was evaluated using the Brunauer-Emmett-Teller (BET) method,
and the total pore volume was calculated at the relative pressure of approximately 0.99. The
pore size distribution was computed using the Barrett-Joyner-Halenda (BJH) method.

3.4. Photocatalytic Performance Tests

Photocatalytic activity of the as-prepared samples was assessed by the reduction of
RhB in aqueous solutions, using a 500 W Xe lamp equipped with a cut-off filter (λ > 420 nm).
In a typical evaluation procedure, 20 mg of sample was added into 100 mL of RhB solution
with a concentration of 20 mg/L at room temperature [41]. The suspension solution stirred
vigorously in the dark for 0.5 h to reach the equilibrium of adsorption/desorption before
visible light irradiation. At an interval of 0.5 h, 5.6 mL of the suspension was collected
and centrifuged for absorbance analysis. The concentration of dye solution was analyzed
by recording the UV–vis spectra at wavelength of 553 nm using a Shimadzu UV-1800
spectrophotometer from Shimadzu (Shimane, Japan).

4. Conclusions

In summary, a novel WS2/Sep composite as a photocatalyst was successfully prepared
via a facile solvothermal method. The physicochemical characterization results confirmed
that the bark-like WS2 nanosheets uniformly grew on the Sep nanofibers, which led to a
larger surface area and more exposed active sites. In a typical photocatalytic application,
the as-synthesized WS2/Sep exhibited considerably improved photocatalytic performance
for RhB degradation over the pure WS2, which could be mainly attributed to the better
dispersion of WS2 nanosheets and the synergistic effect between the WS2 nanosheets
and the Sep nanofibers’ support during the photocatalysis. This work is believed to
provide new ideas for the low-cost batch preparation of high-quality two-dimensional
materials based on natural minerals. However, further investigation of the as-developed
composite photocatalyst with respect to reusability and the versatility for the degradation
of other organic pollutants are still needed to see if there are any limitations to its practical
applications.
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