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Abstract: Dye wastewater due to industrialization, urbanization and academic activities has become
one of the most important environmental issues today. Photocatalytic degradation technology is
considered as a promising technology for treating dye wastewater due to its advantages of environ-
mental protection and low energy consumption. Herein, titanium dioxide–reduced graphene oxide
composites (TiO2-RGO) were prepared by a one-step hydrothermal method to degrade different
dyes (methyl orange, methylene blue and rhodamine B) in water. The structure and morphology
of TiO2-RGO were characterized using various technical approaches. The degradation effect of
TiO2-RGO on the dye was in accordance with a first-order kinetic reaction. The degradation rate of
TiO2-6%RGO for methyl orange at 15 min was 1.67 times higher than that of TiO2, due to the strong
electron transport ability and excellent adsorption properties of graphene. TiO2-6%RGO has better
degradation performance for fluorescent dyes and anionic azo dyes. Notably, the degradation rate
of methyl orange by TiO2-6%RGO photocatalysis for 90 min could reach 96.9%. Meanwhile, the
TiO2-6%RGO showed excellent reusability, as the initial degradation rate of 93.2% was maintained
after five degradation cycles of methyl orange solution. The present work provides a universal
strategy for designing efficient photocatalytic materials.

Keywords: photocatalytic; dye degradation; titanium dioxide; reduced graphene oxide

1. Introduction

The treatment of dye wastewater has been a pressing problem in the environmental
field due to its deep coloration, stable properties and complex structure. For example, azo
anionic dyes, such as methyl orange, which is commonly used as an acid–base indicator,
methylene blue, a cationic dye commonly used in the printing and dyeing industry, and
rhodamine B, a fluorescent dye widely used in colored glass, may pose a serious threat
to ecosystems and human health even at very low concentrations of emissions during
production and use. The methods commonly used to remove dyes from water can be
divided into physical, chemical and biological methods according to the mechanism of
the treatment process [1–4]. Physical methods mainly use machines to treat sewage, and
commonly used methods include centrifugal separation, sedimentation, and filtration.
These methods only extract the pollutants in the water, but cannot completely eliminate the
pollutants. Chemical methods commonly use electrical treatment, chemical precipitation
treatment, oxidation treatment, etc., to treat pollutants dissolved in water. The chemical
reagents used in this method are expensive and produce sludge that is difficult to dewater
after treatment. The biological method mainly uses microbial metabolism to control water
pollution. This method has strong pertinence and poor treatment effect in situations where
the water contains various pollutants. It is not universal, and it is difficult to popularize and
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apply on a large scale. Therefore, finding an efficient, environmentally friendly, economical
and feasible universal water pollution control method is the key to solving the problem of
sewage treatment.

In recent years, photocatalytic technology has attracted the attention of many re-
searchers due to its advantages of environmental protection and low energy consump-
tion [5–9]. This method can convert a variety of organic pollutants into clean water, carbon
dioxide and other substances without recontamination, thus completely solving the prob-
lem of organic contamination, such as dyes cause in water. Among the wide variety of
photocatalysts (TiO2, MoS2 SnO2, Fe/C3N4, Ag/AgCl/ZnTiO3, CdS, etc. [10–15]), TiO2
is the material of choice for research because of its stable optical properties, low price,
abundant precursors, and simple preparation. However, TiO2 suffers from defects such
as a wide band gap and easy recombination of electron–hole pairs. At present, there are
two main methods to improve TiO2 defects: one is to adjust the band gap, particle size and
crystal surface of TiO2 by changing its preparation conditions; the other is to improve its
photocatalytic performance by compounding with other materials [16–20].

Graphene has a strong electron transport ability, and its theoretical electron mobility is
about 200,000 cm2·V−1·s−1 at room temperature. Using this ability, the photogenerated
electrons generated by the excitation of light on the valence band of TiO2 can be quickly
transferred, thereby inhibiting the recombination of photogenerated electrons and holes and
reducing the loss of light energy [21,22]. In addition, graphene also has a strong adsorption
capacity, which can improve the contact probability of pollutants and photocatalytic active
components when it is prepared into a photocatalytic composite material, thereby further
improving the photocatalytic performance of the composite material. Tang et al. [23]
prepared TiO2/Ag/rGO heterogeneous nanocomposites in two steps by introducing silver
and graphene into TiO2 nanowires, and used them to degrade rhodamine B in water with
good degradation results. Wang et al. [24] prepared titanium dioxide @ aspartic acid-β-
cyclodextrin @ reduced graphene oxide (TiO2 @ ACD @ RGO) composite photocatalysts by
first reducing GO to RGO and then compounding it with aspartic acid-β-cyclodextrin and
TiO2, respectively. The photocatalytic efficiency of the prepared TiO2@ ACD @ RGO for
BPA degradation was significantly better than that of TiO2 and TiO2 @ RGO.

Herein, TiO2-RGO was prepared for the degradation of different dyes (methyl orange,
methylene blue and rhodamine B) in water using a one-pot hydrothermal method instead
of a two-step process. The TiO2-RGO was characterized using a multi-technical approach.
The degradation performance of graphene addition on methyl orange dye was compared.
The degradation of methyl orange, methylene blue and rhodamine B by TiO2-RGO and
the effect of the pH value of the reaction system on the photocatalytic degradation were
investigated. The repetitive degradation properties of TiO2-RGO were also explored. The
present work opens a universal pathway for improving the photocatalytic performance
of TiO2.

2. Results and Discussion
2.1. The Effect of Graphene Oxide Addition on the Degradation of Methyl Orange Solution

The degradation effect of composites prepared with different amounts of graphene
oxide on methyl orange solution is shown in Figure 1. Compared with the degradation
effect of the catalyst without the addition of graphene oxide, the degradation efficiency
of the methyl orange solution was significantly improved after the addition of graphene
oxide (Figure 1a). On the one hand, it is due to the extremely strong electron transport
ability of reduced graphene oxide, which can rapidly conduct photo-generated electrons
and inhibit the compounding of photo-generated electrons and holes, thus increasing the
concentration of hydroxyl radicals (·OH) and superoxide ion radicals (·O2−), two strongly
reducing and oxidizing radicals that can degrade dye molecules [25]. On the other hand,
reduced graphene oxide has outstanding adsorption capacity, which improves the contact
probability of pollutants with active substances [26–28].
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Figure 1. Degradation results of methyl orange by TiO2-RGO with different GO contents (a) and its 

first-order kinetic analysis (b). C0 is the initial concentration, C1 is the concentration at 0 min. 
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Figure 1. Degradation results of methyl orange by TiO2-RGO with different GO contents (a) and its
first-order kinetic analysis (b). C0 is the initial concentration, C1 is the concentration at 0 min.

It is worth noting that when the mass fraction of graphene oxide relative to titanium
sulfate was 3%, the degradation rate of photocatalytic degradation for 90 min was 95.3%.
When the mass fraction of graphene oxide relative to titanium sulfate was 6%, the photo-
catalytic degradation rate of 90 min was 6%, and the degradation rate of photocatalytic
degradation for 90 min was 96.9%. When the mass fraction of graphene oxide relative
to titanium sulfate increased to 12%, the degradation effect showed a downward trend
instead, and the degradation rate after 90 min of reaction was 92.8%. This is because the
reduced graphene oxide itself has no photocatalytic activity. When the content of reduced
graphene oxide is too large, it will hinder the absorption of light energy by TiO2 compo-
nents, and cannot make enough TiO2 to absorb light energy to transition to the excited
state [29], thereby reducing the photocatalytic performance of the catalyst. Considering
the degradation rate of dyes and the cost of composite materials with different graphene
oxide contents, the optimal mass fraction of graphene oxide relative to titanium sulfate was
determined to be 6% in this work.

To investigate the effect of reaction rate on the photocatalytic process, kinetic curves
of each reaction were fitted (Figure 1b). The ln(C/C1) of each reaction was found to have
a good linear relationship with t, and the determination coefficients R2 were all greater
than 0.98 (Table 1), indicating that the photocatalytic reactions were consistent with the
first-order reactions. The reaction rate k of TiO2-RGO photocatalytic degradation of methyl
orange was consistent with the change of degradation rate. The reaction rate of TiO2-
RGO photocatalytic degradation of methyl orange gradually increased with the addition
of graphene oxide, but the reaction rate of photocatalytic reaction started to decrease
when the mass fraction of graphene oxide relative to titanium sulfate exceeded 6%. In
addition, the photocatalytic reaction rate of TiO2-6% RGO was 1.501 times higher than that
of TiO2-0% RGO.

Table 1. Kinetic parameters of methyl orange degradation by TiO2-RGO with different GO contents.

TiO2-RGO k/min−1 R2

TiO2-0%RGO 0.0267 0.9967
TiO2-%RGO 0.0364 0.9873

TiO2-6%RGO 0.0401 0.9936
TiO2-9%RGO 0.0333 0.9894

TiO2-12%RGO 0.0311 0.9853

2.2. Characterization of TiO2-RGO

When graphene is added during the preparation process, the graphene sheets can be
interspersed between the TiO2 particles so that the TiO2 particles can be evenly distributed,
improving the dispersibility, and are expected to further improve the photocatalytic per-
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formance of the composite [30]. Figure 2 compares the SEM images of TiO2-6%RGO and
TiO2-12%RGO. The particles of TiO2-6%RGO are uniformly dispersed, have a relatively
uniform particle size (~26 nm), and have a good morphology (Figure 2). The particles of
TiO2-12%RGO show obvious agglomeration, and the particle size varies greatly. When the
graphene content is too high, the TiO2-RGO appears to agglomerate during the preparation
process, which also explains the abnormal phenomenon that the degradation rate of the
TiO2-RGO to methyl orange dye decreases.
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Figure 2. SEM images of TiO2-RGO: (a,b) TiO2-6%RGO, (c,d) TiO2-12%RGO.

Figure 3a,b are the TEM images of TiO2-6%RGO. It was observed that the graphene
sheets with overlapping wrinkles are interspersed between the TiO2 particles. The sample
particles are relatively uniformly dispersed, and the particle size is relatively consistent. The
TiO2-12%RGO particles were disorderly stacked and agglomerated together (Figure 3c,d),
which is consistent with the SEM results.

The XRD spectrum of GO shows a strong diffraction peak around 10.5◦, and inter-
estingly, there is no characteristic diffraction peak of graphite around 26◦, indicating that
the graphite powder is effectively oxidized and exfoliated (Figure 4a). TiO2, TiO2-6%RGO,
and TiO2-12%RGO have similar diffraction peaks, and the diffraction peaks at 2θ = 25.3◦,
37.8◦, 48.1◦, 54◦, 55.1◦, and 62.7◦ are the diffraction peaks of the anatase phase TiO2 {101},
{004}, {200}, {105}, {211}, {204} (Figure 4a), indicating that the addition of GO during the
preparation process does not change the crystal structure of TiO2. The XRD spectrum
of TiO2-6%RGO and TiO2-12%RGO did not find the characteristic peak of GO at about
10.5◦, which may show that GO has been reduced to RGO after the hydrothermal reaction.
Interestingly, the characteristic diffraction peak of RGO was also not observed around
2θ = 24.5◦. On the one hand, the reason for this phenomenon may be that the strong and
sharp {101} crystal plane diffraction peak of anatase TiO2 in the composite material at 25.3◦

shields the diffraction peak of RGO. On the other hand, it may be that the amount of GO
added to the composite was small, and the diffraction intensity was too weak to be detected
during the XRD characterization analysis [31].
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Figure 3. TEM images of TiO2-RGO: (a,b) TiO2-6%RGO, (c,d) TiO2-12%RGO.
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The XPS survey spectrum of GO in Figure 4b mainly shows two signal peaks, C1s and
O1s, corresponding to 286 eV and 532 eV. The C1s signal peak can be fitted into three peaks,
which are the signal peaks of C=C, C–O and C=O [32–34], and the corresponding binding
energies of the fitted peaks are 284.61 eV, 286.7 eV and 287.5 eV, respectively (Figure 4c).
There are mainly four signal peaks of C1s, Ti2p, O1s, and F1s in the XPS full spectrum
of TiO2-6%RGO, and the corresponding positions are 284 eV, 459 eV, 530 eV, and 684 eV,
respectively (Figure 4d). The C1s signal peaks in TiO2-6%RGO can be fitted to four signal
peaks (Figure 4e), which are the signal peaks of C=C, C–O, C=O and C–O–Ti [35]. The C–O–
Ti signal peak at 288.65 eV confirms that GO and TiO2 in TiO2-6%RGO are bound together
by bonding [36]. The two signal peaks at 458.45 eV and 464.3 eV in Figure (Figure 4f) are
the peaks of Ti2p3/2 and Ti2p1/2, respectively. These two signal peaks indicate that the Ti
element in TiO2-6%RGO exists in the form of Ti4+.

Figure 5a illustrates the nitrogen adsorption–desorption isotherm of TiO2 and TiO2-
6%RGO. Table 2 demonstrates that the addition of graphene can significantly increase the
specific surface area and pore volume of TiO2-RGO, which contributes to improving the
contact probability of pollutants with the active substance. Figure 5b PL spectra of TiO2
and TiO2-6%RGO show that the PL intensity of TiO2 is higher than that of TiO2-6%RGO.
This indicates that TiO2 has a high photoinduced electron–hole pair complexation rate.
Therefore, the reduced PL intensity of TiO2-6%RGO suggests that the addition of GO
significantly hinders the complexation of electrons and holes, which contributes to excellent
photocatalytic activity.
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Table 2. The BET surface area and pore volume of TiO2 and TiO2-6%RGO.

Samples BET Surface Area (m2/g) Pore Volume (cm3/g)

TiO2 35.68 0.0725
TiO2-6%RGO 347.33 0.2898

2.3. The Effect of pH Value on the Degradation Effect of TiO2-6%RGO

Figure 6a examines the degradation performance of TiO2-6%RGO on methyl orange
solutions under different pH environments. The pH of the methyl orange solution was
adjusted with HCl and NaOH. Figure 6a highlights that the pH value has a great influence
on the photocatalytic degradation effect of methyl orange solution. In the dark adsorption
stage, the adsorption capacity of each reaction system increased with the decrease of pH
value. The degradation performance under acidic conditions was significantly stronger
than that under neutral and alkaline conditions. When pH = 2, the degradation rate of
the reaction for 90 min was 93.1%. When pH = 4, the degradation rate of reaction for
75 min was 96.8%. When pH = 7, the degradation rate of the reaction for 90 min dropped
to 89%. When pH = 10, the degradation rate of the reaction for 90 min was only 63%. The
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kinetic fitting curves for the degradation of methyl orange by TiO2-6%RGO at different
pH environments are shown in Figure 5b, and the R2 of the first-order kinetic fits were all
greater than 0.99. The reaction rates of TiO2-6%RGO degradation of methyl orange under
different pH environments are shown in Table 3.
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Table 3. Kinetic parameters of TiO2-6%RGO degradation of methyl orange solution at different
pH values.

pH Value k/min−1 R2

pH = 2 0.0278 0.9984
pH = 4 0.0442 0.9997
pH = 7 0.0230 0.9976
pH = 9 0.0111 0.9953

pH = 11 0.0101 0.9958

Since methyl orange is an anionic dye, when the reaction system is acidic, the enriched
H+ in the system makes the catalyst surface positively charged, which is more conducive
to the adsorption of dye molecules. When the reaction system is alkaline, the enriched
OH− in the system inhibits the adsorption of dye molecules by the catalyst, which is
not conducive to the photocatalytic degradation of methyl orange. Interestingly, the
photocatalytic performance does not continuously improve with the decrease of pH value
of the reaction system, as the degradation performance of pH = 2 is smaller than that of
pH = 4. This is attributed to the fact that when the pH value is too low, the excess H+ in the
system is more easily reduced by photogenerated electrons, which inhibits the generation
of active substances such as superoxide ion radicals (·O2−) [37], resulting in a decrease in
the degradation efficiency.

2.4. Degradation Effect of TiO2-6%RGO on Different Kinds of Dyes

To investigate the degradation effect of TiO2-6%RGO on different kinds of dyes, three
different dye solutions, methyl orange (MO), methylene blue (MB), and rhodamine B (RhB),
were selected for photocatalytic degradation experiments. Methyl orange is an azo anionic
dye commonly used as an acid–base indicator. Methylene blue is a cationic dye that is
commonly used in the printing and dyeing industry. Rhodamine B is a fluorescent dye with
a heterocyclic structure and high chroma in wastewater. Figure 7a shows that TiO2-6%RGO
has a faster degradation rate for methylene blue and rhodamine B solutions than methyl
orange. The rhodamine B solution achieved a degradation rate of 81% within 15 min of
the photocatalytic reaction, which was 1.3 times that of the methyl orange solution. The
degradation rates of rhodamine B and methylene blue solutions were 97.9% and 97% at
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60 min and 75 min, respectively, and the degradation rate of methyl orange solution at
about 90 min was 96.9%. The kinetic fitting curves for the degradation of MO, MB and
RhB by TiO2-6%RGO are shown in Figure 7b, and the fitting results are consistent with the
first-order kinetic reaction. The degradation rates of TiO2-6%RGO for MO, MB and RhB
dyes were 0.04008 min−1, 0.04778 min−1 and 0.06554 min−1, respectively (Table 4).
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Table 4. Kinetic parameters of different dye degradation by TiO2-RGO.

Dyes k/min−1 R2

MB 0.0478 0.9900
RhB 0.0655 0.9869
MO 0.0401 0.9936

In the dark adsorption stage, RhB has a lower concentration at the beginning of
the photocatalytic reaction, as it can be more readily adsorbed by the oxygen-containing
functional groups on the surface of TiO2-6%RGO due to its greater polarity. The polarity
of MO is slightly greater than that of methylene blue, but the dark adsorption capacity
is lesser than that of methylene blue. This is possibly due to MB molecules containing
more benzene rings and double bond structures, which are easily conjugated with the π

electron-conjugated system of reduced graphene oxide to generate π-π conjugation, and
the electrostatic attraction between positively charged and reduced graphene oxide makes
it easier to be adsorbed [38]. The different adsorption amounts of the three dyes by TiO2-
6%RGO resulted in different degradation rates in the photocatalytic stage. In addition,
rhodamine B is a fluorescent dye, which is more easily degraded under ultraviolet light.

2.5. Recycling Performance of TiO2-6%RGO

To investigate the cyclic performance of the catalyst, a cyclic degradation experiment
of methyl orange in solution with TiO2-6%RGO was performed (Figure 8). The degradation
rates of five cycles of operation were 96.9%, 96.7%, 95.3%, 94%, and 90.3%, respectively.
The degradation effect of TiO2-6%RGO on methyl orange showed a downward trend with
the increase in the number of cycles, but it still maintained 93.2% of the initial degradation
rate after five cycles. This can be attributed to the inevitable mass loss during the catalyst
recovery process at the end of each degradation so that the amount of catalyst used in the
subsequent cyclic degradation experiments was gradually reduced. In addition, in the
photocatalytic degradation experiments, dye macromolecules or other impurity molecules
remain on the catalyst surface and combine with the catalyst, which will lead to the
weakening or even deactivation of the catalyst’s activity, affecting its absorption of light
energy [39].
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Table 5 compares the degradation effects of the TiO2-RGO with photocatalysts for sim-
ilar applications. The TiO2-RGO exhibits higher competitiveness, which has the potential
to be applied for dye degradation in water.

Table 5. Comparison of dye degradation effects among various photocatalysts.

Photocatalyst Degradation of Dyes Degradation Rate (%) Reference

Titanium dioxide RhB 93.8 [40]
Ni/TiO2 MB 95 [41]

Xanthan gum/titanium dioxide MO ~89 [42]
THNF MB 95.2 [43]

Sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs MB 92.6 [44]
rGO/TiO2 MB 92.7 [45]

RGO aerogel/TiO2/MoS2 composite RhB 95 [46]

TiO2-RGO
MO 96.9

This workRhB 97.9
MB 97

3. Materials and Methods
3.1. Materials

Titanium sulfate (AR), hydrofluoric acid (AR), absolute ethanol (AR), methyl orange
(MO, AR), methylene blue (MB, AR), rhodamine B (Rh B, AR), sodium nitrate (AR), sulfuric
acid (mass fraction 98%), potassium permanganate (AR), glucose (AR), and graphite
powder (AR) were purchased from Chemical Reagents Co., Ltd., Sinopharm, Beijing, China.

3.2. Preparation of Titanium Dioxide–Reduced Graphene Oxide Composites

The titanium dioxide–reduced graphene oxide composites were prepared by a one-
step hydrothermal method. A total of 1.0 mL of HF was added dropwise to 40 mL of
deionized water and stirred evenly. Then, 4.8 g of Ti(SO4)2 was added, ultrasonicated to
make it completely dissolve, and this solution was used as solution A. A certain amount
of GO powder and glucose powder (the mass ratio of GO to glucose is 1:3) was added
to 30 mL of deionized water, and completely dissolved under ultrasonic conditions, and
this solution was used as solution B. Solution A and solution B were mixed, stirred evenly,
transferred to the lining of the reaction kettle, and reacted at 180 ◦C for 12 h. Then, the
lower layer of precipitate was washed with deionized water several times until neutral, and
finally dried and ground to obtain titanium dioxide–reduced graphene oxide composite
material (TiO2-RGO). The mass fractions of GO relative to Ti(SO4)2 in the composites
were controlled to be 0, 3%, 6%, 9%, and 12%, which were named TiO2-X%RGO, where X
represents the mass fraction of GO relative to Ti(SO4)2.
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3.3. Characterization

The equipment used was an X-ray photoelectron spectrometer (XPS), Escalab 250XI,
Thermo Scientific, USA, an X-ray diffractometer (XRD), Bruker D8 Advance, Bruker, Ger-
many, a scanning electron microscope (SEM), Hitachi S-4800, Japan, a transmission electron
microscope, Hitachi H-7650, Japan, a physical adsorption analyser, ASAP 2460 Accelerated
Surface Area and Porosimetry System, Micromeritics Instrument Corporation, USA and a
fluorescence spectrometer (PL), FluoroMax-4, HORIBA Jobin Yvon, France.

3.4. Photocatalytic Degradation Experiments of Dyes by TiO2-RGO

A total of 100 mg of TiO2-RGO was added to 250 mL of dye solution at an initial
concentration of 20 mg/L, and it was stirred for 30 min under a dark condition to reach
the dynamic equilibrium of adsorption and desorption. Then, it was irradiated under a
500 W UV mercury lamp (the spectral range of the emitting light source is 341–455 nm)
for photocatalytic degradation reaction. The reaction temperature in the photocatalytic
reactor was kept constant by condensing water. The solution was taken at 15 min intervals,
centrifuged, and the absorbance of the solution was measured by UV-Vis spectrophotometer
with the supernatant. The TiO2-RGO, obtained by centrifugation, washed several times with
deionized water and then dried, can repeat the photocatalytic degradation experiments.

4. Conclusions

Titanium dioxide–reduced graphene oxide composites were prepared by a one-step
hydrothermal method for the degradation of different dyes (methyl orange, methylene
blue, and rhodamine B) in water. The graphene in the composite material can effectively
inhibit the recombination of photogenerated electrons and holes, increase the contact area
with dye molecules, and improve the photocatalytic performance of the material. The
degradation rate of TiO2-6%RGO for methyl orange at 15 min was 1.67 times higher than
that of TiO2. The degradation effect of TiO2-6%RGO on methyl orange solution under
different pH environments showed that a weakly acid environment was more favorable
for the degradation of methyl orange dye. The degradation effect of TiO2-6%RGO on
different kinds of dyes was examined, and it showed better degradation performance on
fluorescent dyes and anionic azoic dyes. Kinetic analysis indicated that the degradation of
dye molecules by TiO2-RGO is consistent with a first-order kinetic reaction. In addition,
the photocatalytic degradation of methyl orange by TiO2-6%RGO for 90 min could reach
96.9%, and 93.2% of the initial degradation rate could be maintained after five degradation
cycles. This paper provides a practical avenue to design extremely efficient photocatalysts
for dye degradation.
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