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Abstract: Semiconductor titanium dioxide in its basic form or doped with metals and non-metals is
being extensively used in wastewater treatment by photocatalysis due to its versatile nature. Other
numerous characteristics including being environmentally friendly, non-pernicious, economical,
multi-phase, highly hydrophilic, versatile physio-chemical features, chemical stability, suitable band
gap, and corrosion-resistance, along with its low price make TiO2 the best candidate in the field of
photocatalysis. Commercially, semiconductor and synthesized photocatalysts—which have been
investigated for the last few decades owing to their wide band gap—and the doping of titania
with p-block elements (non-metals) such as oxygen, sulfur, nitrogen, boron, carbon, phosphorus,
and iodine enhances their photocatalytic efficiency under visible-light irradiation. This is because
non-metals have a strong oxidizing ability. The key focus of this review is to discuss the various
factors affecting the photocatalytic activity of non-metal-doped titania by decreasing its band gap.
The working parameters discussed are the effect of pH, dyes concentration, photocatalyst’s size
and structure, pollutants concentration and types, the surface area of photocatalysts, the effect of
light intensity and irradiation time, catalyst loading, the effect of temperature, and doping impact,
etc. The mechanism of the photocatalytic action of several non-metallic dopants of titanium dioxide
and composites is a promising approach for the exploration of photocatalysis activity. The various
selected synthesis methods for non-metallic-doped TiO2 have been reviewed in this study. Similarly,
the effect of various conditions on the doping mode has been summarized in relation to several sorts
of modified TiO2.

Keywords: dyes degradation; non-metal-doped titania; photocatalysis; parameters; wastewater treatment

1. Introduction

Water is one of the most precious and non-replaceable commodities of mankind. The
per capita usage of water varies between countries and its demand includes domestic,
industrial, and public, but here lies a problem of the misuse of water on a larger scale.
Obviously, photocatalysis is the most fundamental technique for the degradation of organic
pollutants and their conversion into valuable products, the removal of industrial effluents,
and energy utilization [1,2]. Appropriate water supplies are the most important and key
parameters for human consumption, industrial, agricultural, and domestic purposes. Gen-
erally, a wide range of natural and artificial contaminations has deleteriously affected the
environment directly or indirectly, in which textile dye removal is of major concern [3–5].
However, ample research has been carried out on TiO2 as a paramount photocatalyst for a
variety of applications, such as the degradation of organic pollutants, hydrogen produc-
tion from water splitting, the purification of air and water, self-cleansing surfaces, food
cosmetics, the paint industry, etc. Titania is extensively employed in energy-associated
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industries, specifically, in water splitting under visible-light irradiation [6]. However,
different compounds have been used for the doping of TiO2 with CdS [7]. SnO2-doped
TiO2 [8–10], WO3-doped TiO2 [11], ZrTiO4 [12–14], and are employed in the heterogeneous
photocatalysis. Among these very endearing materials, non-metal-doped TiO2 photocata-
lysts have gained significant attention due to their greater synergistic effect, which leads
to the reduction in the band gap of titania from various metal-doped TiO2 [14–16]. Many
conventional techniques or pathways have been adopted for the wastewater treatment,
but unfortunately, the problem remains unsolved. However, different measures such
as adsorption, coagulation, flocculation, and oxidation have been employed to cast off
dyes from wastewater. The most documented approaches for the removal of dyes from
wastewater are precipitation, filtration, and electrochemical procedures. However, these
methods also have disadvantages; moreover, some of them do not have the ability to
break down the dye completely. Therefore, photocatalysis is now thought to be one of the
best ways to remove dyes from contaminated water [17]. Additionally, to overcome this
issue, the photocatalytic process of various dyes degradation has shown to be a more effi-
cient, cost-effective, and convenient way to eliminate abundant contaminants and organic
pollutants from water. This method has drawn the attention of researchers all over the
world to the development of more effective techniques of wastewater treatment. For this
mechanism, simple TiO2, doped TiO2, or composite of TiO2 have been widely discussed in
the literature [18–21]. Some modifications in titania can help in resolving the mistreatment
of unadorned TiO2. However, doping the TiO2 would enhance the photocatalytic activity
for a range of mechanisms, as well as reduce the band gap in TiO2 materials [22]. The
well-known polymorphs of TiO2 are rutile, anatase, and brookite, which are naturally
occurring. It has recently been demonstrated that photo-activity towards organic degra-
dation depends on the phase composition and oxidizing agent; for example, when the
performance of different crystalline forms was compared, it was discovered that rutile
shows the highest photocatalytic activity with H2O2, whereas anatase shows the highest
with O2. A good photocatalyst should be photoactive, able to utilize visible and/or near
UV light, and be biologically and chemically inert, photostable, inexpensive, and non-toxic.
However, it was previously reported that the anatase phase of TiO2 is more efficient ow-
ing to its excellent photocatalytic properties [19]. Rutile is stable and easy to fabricate in
setting conditions, while brookite is metastable and the preparation is troublesome. Both
rutile and anatase hold a tetragonal crystal structure with a band gap of approximately
3.0–3.2 eV, respectively [23]. Titania has many advantages; foremost important is its use
as a photocatalyst, and it is innocuous and chemically stable, etc. However, it also has a
few disadvantages, for instance, it has a higher energy gap around 3.2 eV, which is why its
use is limited to UV light only. Moreover, it cannot be activated in visible light or sunlight;
therefore, researchers have been working on other ways to use it. Few methods are being
developed for this purpose; one of the methods is to dope non-metals or metals impurity,
and the other is to introduce light-sensitive semiconductors such as WO3 in order to en-
hance the photocatalytic activity of TiO2 [24]. Below visible-light irradiation, metal doping
enhances the performance of the doped TiO2 by moving the absorption spectra into a low
energy field. Metal doping, on the other hand, has significant disadvantages, including
the thermal instability of doped TO2, electron capture by metal centers, and the need for
more expensive ion implants. Non-metallic doping increases the percentage of anatomical
TiO2, which slows down the formation of TiO2 crystals and increases the specificity of
titania [25]. The most important approach that is used widely is the sol-gel method, which
produces high surface area TiO2 by controlling the hydrolysis of titanium tetraisopropoxide
(TTIP) [26]. Therefore, the re-integration of electron–hole pairs produced in the valence and
conduction bands enhances the image performance of TiO2 [27]. However, there is also
provision for dye photosensitization and proper TiO2 support with the help of an efficient
TiO2 modification method [28]. Likewise, mesoporous titania (mp-TiO2) is considered the
best due to its higher surface area, tunable pore-size distribution, and well-defined pore
orientation [29]. Furthermore, nitrogen/fluorine (N/F) co-doped mp-TiO2 has been shown
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to exhibit improved visible-light adsorption and photoactivity [30]. TiO2 graphene (Gr)
porous microspheres were prepared by ultrasonic spray pyrolysis [31]. However, N/F
co-doped mp-TiO2 showed the best photocatalytic activity compared with single-element
doping. The solvothermal method was adopted for the synthesis of N/F-mp-TiO2, using
urea as a nitrogen source and ammonium fluoride as a source for fluorine. There has been
a great change in band gaps by the doping of TiO2 with non-metals constituents, which are
reported as F-TiO2, N-TiO2, B/N-TiO2 [32], and C-N-S [33,34]. Moreover, thin-film TiO2
with a different nano size is being extensively used for solar cell, design sensors, displays,
automobiles rearview mirrors, and many other gas purification applications [35–37].

In this review, we have unfolded all the possible prospects and aspects of TiO2 photo-
catalyst doped with non-metals for light sensitivity. By the end of the paper, almost all the
precarious applications, challenges, and future recommendations will have been proposed.

2. Effect of Non-Metal Doping

Different approaches are investigated to prevent the recombination of electron–hole
pairs that are photogenerated by undoped TiO2. Doping adjusts the electronic assembly
of TiO2, which boosts it from the UV region toward visible spectra. The doping of titania
with any species enhances their ability to confer the chemistry of that particular material;
for example, a high degree of crystallinity is mainly due to a large surface area and a
large crystal size, which ultimately increases the photocatalytic activity and decreases the
charge separation of the photogenerated e−/h+ pair recombination [38,39]. Nevertheless,
the doping or modification of TiO2 using non-metal/anion has been carefully adopted to
overcome the use of maximum energy, high photocatalytic activity, reduced time span of
charge separation, and higher efficiency of TiO2, and the effect of various parameters has
been discussed here. Moreover, non-metallic dopants such as carbon (C) [40–42], nitrogen
(N) [43–47], sulfur (S) [47,48], boron (B) [49,50], iodine (I) [51], N/F-doped TiO2 [30,52],
L-amino acids (C–N co-doped or C–N–S tri-doped)-TiO2, C-N-TiO2 /CNT composites,
etc., have also been discussed (Table 1). The compatibility of (N) was investigated, and
the improved photocatalytic performance and morphology of TiO2 was observed [23], as
well as its composites [15]. Furthermore, GO/TiO2 nanocomposite showed an upgraded
photocatalytic efficiency [53]. Attention is being diverted to the treatment of contaminated
water with porous mineral composite materials. The growth of non-metallic spongy
minerals has resulted in a high specific surface area, strong adsorption capabilities, and
tailored chemical accumulation [54]. Montmorillonite-supported-TiO2 (MMT/TiO2) will
solve the cohesion problem of TiO2 particles. Contaminants can be adsorbed on the surface
of nano TiO2 to improve the probability of ion exchange and contact between the catalysts
and contaminants deterioration rate. Therefore, a porous MMT/TiO2 complex system can
improve its photodecomposition efficiency by reducing the agglomeration and intensifying
the photocatalytic response. The comparatively improved absorbance of the composite
material in visible light is (390–780 nm); therefore, MMT/TiO2 also improves the optical
absorption capacity from 70 to 87%, instead of using TiO2 individually [55].

Table 1. Summary of non-metal-doped TiO2 photocatalyst under varied circumstances.

Year of Study Type of Non-Metal
Dopants

Synthesis
Route/Method Type of Dye Characterization

Techniques Ref.

2017 C-TiO2 Hydrothermal
Methylene blue,
Rhodamine B, p

nitrophenol

XRD, SEM, TEM, STEM,
XPS, UV-vis [56]

2019 C-TiO2 Hydrothermal Methylene blue
XRD, FTIR, N2

adsorption-desorption
isotherm, SEM, UV-vis

[57]

2020 C-TiO2 Sol-gel Methylene blue EDX, UV-vis DRS
analysis, SEM [58]
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Table 1. Cont.

Year of Study Type of Non-Metal
Dopants

Synthesis
Route/Method Type of Dye Characterization

Techniques Ref.

2020 C-TiO2 double-layer
hollow microsphere

Hydrolysis of thermal
expandable microsphere Rhodamine B

XRD, FTIR, TGA, SEM,
Raman N2

adsorption-desorption
isotherm, XPS, UV-vis

[59]

2021 Carbon-doped TiO2
nanoparticles Sol-gel Methylene blue XRD, TEM, XPS,

DRS,138 [60]

2022 C-TiO2 nanoflakes
(C-TNFs) Facile hydrothermal Methylene blue XRD, FTIR, SEM, UV-vis [40]

2007 N-TiO2
Microemulsion-
hydrothermal Rhodamine B XRD, Raman, XPS, PL

emission spectra [61]

2010 N-TiO2 Sol-gel/acidic media Lindane XRD, SEM, TEM, Raman,
XPS, GC-MS [62]

2015 N and C-co-doped
porous TiO2 nanofibers

Electrospinning and
calcination Methylene blue XRD, FESEM, TEM,

XPS, DRS, [63]

2017 N-TiO2 Solvothermal Rhodamine B XRD, SEM, TEM, BET,
XPS, UV-vis [64]

2020 TiN/N-doped TiO2
composites Sputtering process Methylene blue Raman, XPS, UV-vis [65]

2020 C-N-TiO2
composite fibers

Hydrolysis and
calcination Rhodamine B XRD, SEM, TEM, FTIR,

Raman, XPS, UV-vis [66]

2021 N-TiO2 nanotubes Hydrothermal Methyl orange XRD, SEM, XPS, UV-vis [67]

2009 S-TiO2 Hydrothermal Methylene orange XRD, TEM [68]

2015 S-TiO2
Wet-impregnation

method.
Humic acid
Humic acid

EDX, SEM, EEM
fluorescence [69]

2016 (S–TiO2), (N–S–TiO2) Sol-gel Phenol and MB BET, FESEM, FTIR,
XPS, DRS [70]

2011 S-TiO2, N-S-TiO2 Sol-gel Methyl orange XRD, TEM, UV-vis DRS [71]

2021 NS/TiO2 Sol-gel Methylene blue,
methyl red

XRD, BET, SEM, FTIR,
Raman, UV-vis [21]

P/TiO2 Hydrothermal/sol-gel [72]

Ag-P/TiO2 nanofibers One-pot electrospinning Methylene blue XRD, XPS, FE-SEM,
TEM, UV-vis [73]

2022 P/TiO2/MWCNTs Sol-gel Methylene blue XRD, FE-SEM,
FTIR, UV-vis [74]

2017 Si/TiO2 Solvothermal Methyl orange XRD, SEM, EDS,
BET, XPS [75]

3. Treatment Opportunities for Dyes

Dyes have been a constant source of contamination for decades; textile and industrial
dyes in the wastewater are one of the major contributors of toxic organic pollutants. The
ever-increasing production of dyes is because of rapid industrialization; therefore, it is
urgently necessary to focus on the proper treatment of these dyes [76]. In industries, most
of the fabrication and processing operations excrete dyes in the wastewaters; the range of
dyes varies from 2% to 50% from basic to reactive colorants, respectively. Therefore, the
toxins produced are harmful for ground as well as surface water, as most of the compounds
present in these hazardous dyes are non-biodegradable and likely to cause cancer [77].
Now, the primary concern is the sufficient treatment of these dyes; for their removal,
various chemical and physical methods are being reported. Some of these methods are:
ozonation [78], activated carbon [79], bio-degradation [80], and photocatalytic degradation
using TiO2, etc. [81]. The removal of dyes from contaminated water has been accomplished
through biological processes that include microbiological or enzymatic decomposition and
environmental degradation. Anaerobic conditions also contribute to the deterioration of the
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azo bond, which leads to the removal of pigment, but also leads to an insufficient mineral
formation of harmful and carcinogenic products. A variety of synthetic dyes have been
extensively tested in recent years to develop a more promising method based on advanced
oxidation processes (AOPs) that can release pollutants quickly and extensively. AOPs rely
on the formation of highly active hydroxyl radicals (OH•), which can release any chemical
present in a liquid matrix, usually with a reaction rate controlled by diffusion [82].

3.1. Types of Dyes

The method by which photo-degradation occurs is determined by the products gener-
ated, as these product molecules would be adsorbed on the surface of the semiconductor
by modifying the layout of its electronic and active sites. In photo-catalytic degradation, it
has been discovered that dyes with a positive charge (cationic) adsorb more on unaltered
TiO2 than dyes with a negative charge (anionic) [83]. Azo dyes (AzD) are attributed as the
major (60–70%) class of synthetic dye stuff used in the textile, leather, oil, additives, and
food industry, etc., and the resulting byproducts carry both the metal ion and the dyes. All
the major classes of dyes are shown in Figure 1 and Table 2.
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Table 2. Types and characteristics of Azo dyes [76].

Category of Dye Features Fiber Pollutant Dyes Fixation

Acidic Water-soluble anionic
compounds

Wool, nylon, cotton blends,
acrylic, and protein fibers

Organic acids, unfixed
dyes, color 80–93

Basic
Water-soluble, applied
in weakly acidic dye

baths, very bright dyes

Acrylic, cationic, polyester,
nylon, cellulosic, and

protein fibers
NA 97–98

Direct
Water-soluble, anionic
compounds, applied

without mordant

Cotton, rayon, and other
cellulosic fibers

Surfactant, defoamer,
leveling and retarding
agents, finish, diluents

70–95
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Table 2. Cont.

Category of Dye Features Fiber Pollutant Dyes Fixation

Dispersive Insoluble in water

Polyester, acetate,
modacrylic, nylon,

polyester, triacetate, and
olefin fibers

Phosphates, defoamer,
lubricants,

dispersants, diluents
80–92

Val
Oldest dyes,

chemically complex,
water-insoluble

Cotton, wool, and other
cellulosic fibers

Alkali, oxidizing agents,
reducing agents, color 60–70

These pigments comprise of a double bond between two nitrogens (–N=N–), which
is further linked to two aromatic group moieties such as naphthalene/benzene rings [84].
AzDs are positively charged at pH 6.8 and negatively charged at a higher pH, which
affects their adsorption on semiconductor surfaces. The pH of the effluent is not neutral,
and the mixture of substances that would have dissolved in water varies the surface
characteristics of the semiconductor. When charged species are present in solution, an
electrical double layer forms, affecting electron–hole pair separation and dye adsorption
properties on the semiconductor surface. pH and the amount of dye present influence the
rate of photocatalytic dye abasement [85]. They have amphoteric properties. Depending on
the pH of the medium, AzDs can be anionic (deprotonation in the acidic group), cationic
(extension in the amino group), or non-ionic [86]. The most known AzDs are acid dyes,
basic dyes (cationic dyes), direct dyes (substantive dyes), disperse dyes (non-ionic dyes),
reactive dyes, vat dyes, and sulfur dyes. Acidic dyes acquire their name from the fact that
they are frequently employed to dye nitrogenous textiles or fabrics in inorganic or organic
acid solutions. Cations that are extensively utilized in the manufacturing of acrylic and
modacrylic fibers are produced by basic dyes in the solution. Electrostatic forces are used
to apply direct dyes to fibers/fabrics in an aqueous medium containing ionic salts and
electrolytes [87]. Anaerobic conditions can also contribute to the deterioration of the azo
bond, which leads to the removal of pigments, but also leads to an insufficient mineral
formation of harmful and carcinogenic products [88].

3.2. Dye-Degradation Mechanisms

The degradation mechanism had been discussed in detail in the literature in various
citations; only one is mentioned here [89]. When aqueous titania is subjected to the
visible-light irradiation greater than 3.2 eV (band gap), the electrons of the conduction
band (electrons CB

−) and the holes of the valence band (holes VB
+) are created. These

light-generated electrons (e−) can either react with e- acceptor O2 adsorbed on the surface
of TiO2, or they can reduce the dye; they can also dissolve in water, causing reduction
and producing an anion which could be a superoxide radical—O2

•−. The holes that are
generated have the tendency to oxidize any organic molecule to R+, and they can also
oxidize water or hydroxyl ion to OH• radicals. All these radicals along with titania have
the potential to decompose dyes photocatalytically. The series of reaction schemes is given
below [90] by Scheme 1. The pictorial representation of the dye-degradation mechanism is
represented in Figure 2.
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On the other hand, indirect methods can be used for the degradation mechanism, such
as electron spin, resonance test scavenging, and radical trapping [92,93].

3.3. Technologies or Methods for the Removal of Dyes

There are innumerable dye-elimination techniques, which can be categorized as physi-
cal, chemical, and biological. The physical methods comprise of adsorption, ion exchange,
and filtration/coagulation [94–100], whereas the biological include anaerobic deterioration,
bio-sorption, and many more, while the chemical consist of ozonation, Fenton reagent,
and photocatalytic processes, respectively [101,102]. The methodologies adopted for the
removal of dyes is described in Figure 3.
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In the physical method, different processes are used in the treatment of dyes, such as
testing, mixing, precipitation, adsorption, and membrane filtration [97,103–105] (Table 3).
Studies have shown that adsorption is the best method for the removal of dyes as it is simple,
easily operative, highly efficient, cheap, and has been effective for toxic substances, whereas
for membrane filtration, the contamination of the membranes and the cost of changing them
are the biggest filtering limitations [106]. On the other hand, chemical treatments include
coagulation-flocculation, oxidation, ozonation, Fenton oxidation, photocatalytic oxidation,
irradiation, ion exchange, and electrochemical treatment [107,108]. These chemical methods
are very effective in enabling the possibility of dyes removal, but excessive use of the
chemicals causes difficulty in disposing of them into mud. Their disposal is too costly, and
a reasonable amount of electrical power is required for these processes [109]. Biological
analysis includes aerobic, anaerobic, and anaerobic–aerobic investigation, in which natural
contamination is reversed into harmless and solid objects. The physicochemical and
biological treatment of polluted water are the standard for dye-removal methods [110].

Table 3. Illustration of various methods for removal of organic dyes.

Strategies Methods Advantages Disadvantages Ref.

Chemical
Electro-Fenton reagent

Ozonation
Photocatalysis

Effective decolorization of
soluble or insoluble dyes

No sludge production initiates
and accelerates Azo

bond cleavages

No diminution of COD values
by extra costs

Sludge formation
Formation of byproducts

release of aromatic amines
High costs

[108,111]
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Table 3. Cont.

Strategies Methods Advantages Disadvantages Ref.

Physical
Ion exchange
Adsorption

Filtration/coagulation

Good removal of wide
variety of dyes
Regeneration

No absorbent loss
Good elimination of

insoluble dyes
Low-pressure process

Non-selective to absorbate
Non-effective for all dyes

High costs of sludge treatment
Quality not high enough for

re-using the flood

[103–105]

Biological

Enzymes
Microbes

Aerobic and
anaerobic degradation

Biosorption

Reduces the amount of waste
that is delivered to landfills

or incinerators
Manufacturing requires

less energy
When it breaks down, it

releases less
hazardous compounds

Low biodegradability of dye
Salt concentration

stays constant
[98]

3.4. Stability of Non-Metal-Doped Titania

Non-metal-doped TiO2 possesses higher catalytic activity in comparison to the un-
doped titania, as they have the enhanced capability of absorbing visible light, hence, more
enhanced photocatalytic activity. Furthermore, the band gap becomes narrow because
the lattice of titania is being substituted by oxygen. Almost all the non-metals reduce the
re-connectivity of the e−/h+ duos but also decrease the band gap energy of titania via the
formation of aperture energy. Therefore, the doping of non-metals in TiO2 is an approach to
increase the catalytic activity and the visible-light harvesting capacity. Therefore, it is safe
to say that non-metal-doped titania can turn out to be the active catalyst for a visible-light
catalyst for the degradation of different dyestuff [112]. Practical applications of nitrogen-
doped TiO2 for dye-sensitized solar cells were reported by Wei Guo and his co-workers, as
N-doped titania dye-sensitized solar cells have shown 10.1% more conversion efficacy and
are more stable because of the induction of N into the titania photo-electrode [113]. Carbon
(C) and boron (B) co-doped photosensitizers have also been reported in the literature for
efficient applications [114].

4. C-Doped TiO2 (C/TiO2)

The exploration of carbonaceous-doped materials with TiO2 plays a significant role in
photocatalysis, and they have shown spectacular growth due to their very simple method of
synthesis [115]. Three dimensional cariogenic dot/TiO2 nanoheterojunctions photocatalyst
was synthesized by the hydrolysis process for the degradation of RhB, with different weight
percent of C-dots for enhanced photocatalytic activity w [116]

The C/TiO2 was immobilized with polyamide fibers with different weight percentages
(1 wt.%, 2 wt.%, and 3 wt.%); the surface area of TiO2 increased and the band gap energy
(2.38 eV) decreased measurably after doping with non-metal for the degradation of MB [57].
The addition of C atoms to the TiO2 structure can improve visible-light absorption by
narrowing the band gap. However, organic chemicals, different dyes, and medicines were
removed using C/TiO2 photocatalyst matrices derived from aqueous [117]. The C/TiO2
with several forms of carbon precursors was reported [118]. The most utilized carbon
precursors are difficult to detect since the researchers use a variety of chemicals for titanium
precursors, such as titanium carbide, titanium (IV) oxacetylacetonate, and titanium (IV)
butoxide (TBOT) to act as TiO2. The recombination of e−/h+ pairs is reduced by doping
titania with carbon. Titanium dioxide (TiO2) nanoparticles (NPs) were synthesized by
sol-gel synthesis and doped with polydiallyldimethyl ammonium chloride (PDADMAC),
as the carbon precursor caused a significant decrease in the band gap from 2.96 eV to
2.37 eV [41].
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Recently, C/TiO2 with anatase/rutile multi-phases coated on granular activated car-
bon was used under visible light for the removal of nonylphenol. A significant doping
effect was observed in the band gap, which saw a decrease from 3.17 eV to 2.72 eV, respec-
tively [119,120]. Indeed, carbon-based (nano) composites have improved photocatalytic
activity due to the coupling effect from the incorporation of carbon species. However,
several types of carbon–TiO2 composites such as C-doped TiO2, N–C-doped TiO2, metal–C-
doped TiO2, and other co-doped C/TiO2 composites have been reported (Table 4), which
were synthesized by the solvothermal/HT method and sol-gel process [121].

Table 4. Methods and precursors used for the synthesis of C-doped TiO2 photocatalysts.

Methods TiO2 Precursor Carbon Source References

Chemical bath deposition (CBD) Titanium isopropoxide (TTIP) Melamine borate [122]

Sol-gel Titanium isopropoxide (TTIP) Microcrystalline cellulose (MCC) [58]

Hydrothermal TiC - [123]

Sol-gel TTIP, TBOT, TiCl4, TiCl3
Ethanolamine (ETA), glycine,

polyacrylonitrile (PAN),
polystyrene (PS), starch, TBOT

[124,125]

Solvothermal treatment and
calcinations TiCl4

Alcohols (benzyl alcohol and
anhydrous ethanol) [126]

Solvothermal TTIP Acetone [127]

Electrospinning followed by
heat treatment TTIP Acetic acid [128]

Hydrolysis TBOT Glucose [129]

Sol-gel Titanium butoxide - [30]

Hydrothermal route - Various carbon sources [42]

The C/TiO2 photocatalyst exhibits enhanced photocatalytic activity in comparison
to titania because the catalyst alters the crystal structure, lowers the pH, and narrows the
band gap. C/TiO2 supported by granular activated carbon for photocatalytic degradation
of nonylphenol and anatase ratio is much better for the degradation in comparison to
rutile [130]. Furthermore, it was discovered that annealing can increase the crystallinity of
C/TiO2 nanotubes, as shown in Figure 4 in the presence of Argon (Ar), instead of oxygen or
nitrogen [131]. In addition, Ar or N2 has proven beneficial in increasing the photocatalytic
activity. The recombination of e−/h+ pairs is reduced by doping titania with carbon. TiO2
nanoflakes (TNFs) and C/TiO2 nanoflakes (CTNFs) were synthesized by the HT method,
which is superior (92.7%) in the degradation of MB [40].

C/TiO2 composites were further modified with nitrogen (as N–C-doped TiO2 compos-
ites), and it was observed that N–C-doped TiO2 composites exhibit improved photocatalytic
activity as compared to only C/TiO2 nano-formulations. High meso-porosity and a well-
defined large surface area (102 m2 g−1) were obtained by N–C-doped TiO2 composites
synthesized by the solvothermal method with high photocatalytic evaluation [132–135]. In
visible light, the catalytic image functions of non-metal-doping photocatalysts with differ-
ent colors as model compounds are commonly used to analyze irradiation; however, this
strategy has already been reported in the literature as an ineffective method [136]. This is
due to the dye’s ability to absorb visible light, which means that the photocatalytic process
may not be driven solely by visible-light absorption. However, this is not only by the
photocatalyst, but also by the dye’s absorption of light (that is, dye sensitization). The most
employed dyes in the literature are on visible-light active photocatalysts. In addition, Song
and his colleagues reported a C-doped TiO2/carbon nanofiber film (CTCNF) under visible-
light irradiation for the breakdown of rhodamine B (RhB). The dye started to degrade, and
its discoloration rate was 66.4–94.2% after 150 min of visible-light irradiation [137].
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In addition, the removal of other organic substances from pharmaceuticals, personal
care items, and even microbes from water and hydrogen production are the best examples
of compounds being removed with the help of a C/TiO2 photocatalyst. C-TiO2/rGO is
used to form a hybrid nanocomposite that exhibits excellent photocatalytic activity for the
better production of H2 instead of pure TiO2, as shown in Figure 5 [127].
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The C/TiO2 photocatalyst was prepared by the sol-gel process by using microcrys-
talline cellulose (MCC) as a carbon source material. In comparison to pure and C-TiO2 a
reduced band gap was observed. On the other hand, when Fe is co-doped with C-TiO2
further reduction in the band gap exhibit stronger visible light absorption [138]. Some
other carbon material, such as graphdiyne, plays a significant role in a variety of applica-
tions [139,140].

5. N-Doped TiO2 (N/TiO2)

Nitrogen is the most often-utilized non-metal dopant among all non-metal dopants [130].
N/TiO2 has been reported (Table 5) for various photocatalytic applications [141–145].
Nitrogen (N) doping in TiO2 nanotubes was prepared by the hydrothermal process for the
degradation of dye and H2 gas evolution. Urea was used as a N source, and optimized
N/TiO2 nanotubes (TiO2 nanotubes vs. urea at 1:1 ratio) showed the highest degradation
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efficiency over methyl orange (MO) dye (~91% in 90 min) and manifested the highest rate
of H2 evolution (~19,848 µmol h−1·g−1) under solar-light irradiation [67].

N/TiO2 was synthesized by the direct hydrolysis of titanium tetraisopropoxide and
ammonia as a nitrogen source for the photocatalytic degradation of organic dyes in liquid
phase with visible light. A batch photo-reactor was used to study the photocatalytic evalu-
ation of methylene blue (MB) dye degradation under the optimum operating parameters to
obtain the maximum efficiency toward dye degradation. The band gap energy of titanium
dioxide was shifted toward a lower band gap, i.e., in the visible range from 3.3 to 2.5 eV.
This is because of its low ionization energy and the atomic size being comparable to the
size of oxygen [146]. As proven within Table 5, quite a few nitrogen precursors were used
in the synthesis of N-doped TiO2.

The photocatalytic activity of N/TiO2 and N-doped TiO2 with transition metals (Fe,
Cu) was reported for the degradation of MB under sunlight [147]. N/TiO2 showed the high-
est activity among the doped TiO2 nanoparticles (0.006 min−1). Titanium nitride/nitrogen-
doped titanium oxide (TiN/N-doped TiO2) composite films were synthesized by the
sputtering process. A Raman spectral analysis revealed the formation of TiO2 with anatase,
which later transformed to the rutile phase, but the results showed that the photodegra-
dation efficiency of MB was higher in the case of titania anatase after exposure to visible
light [65].

Table 5. Summary of N-doped TiO2 photocatalysts synthesized by variety of methods and source
precursor materials.

Year of Study Method TiO2 Precursor Nitrogen Source Ref.

2017 Addition of N source to the
TiO2 precursor solution TBOT Tetra methyl-ethylene-diamine [148]

2020 CVD TICl4 Tert-butylamine, benzyl amine [149]

2017 Hydrothermal TBOT KNO3 [150]

2019 Hydrolysis TTIP NH4Cl, pyridine [151]

2016 Electrochemical Titania nanotubes Diethylenetriamine,
ethylenediamine, hydrazine [152]

2019 Sol-gel TTIP, TBOT, TiCl4,
Titanic acid

Urea, NH3, nitro methane,
n-butyl amine, N2,
hydrazine, HNO3,

[153]

For the solar-driven photocatalysis over Ti3+ and N co-doped photo catalysts, Cao et al. [154]
proposed a modified mechanism. The materials were made by reducing urea-modified
mesoporous TiO2 spheres with NaBH4 at 350 ◦C in an Ar environment. The above-
mentioned N-doping of TiO2 resulted in the emergence of a new impurity level above the
VB. In addition, by introducing Ti3+ and O below the CB, an intermediate energy level
was created. As a result, the band gap was decreased, which increased photocatalytic
effectiveness in the visible light. The schematic diagram of N-doped TiO2 is shown in
Figure 6.
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The activity of N-doped TiO2 as a photocatalyst has been examined in various studies.
In general, N/TiO2 photocatalysts have been utilized to remove organic chemicals from wa-
ter, namely dyes and medicines, but phenol, furfural parabens, surfactants, and herbicides
were among the other pollutants that were destroyed using doped TiO2 with N [155]. It
was also suggested that N/TiO2 photocatalyst could be used to remove pollutants from the
gaseous phase, such as acetaldehyde, benzene, ethylbenzene, NH3, and NOx. Antibacterial
characteristics were found in some of the photocatalysts, such as against Escherichia coli
and oral cariogenic biofuels. Furthermore, the use of N-doped TiO2 for human breast cancer
diagnostics, and cancer treatment such as for melanoma, has been reported previously in
Figure 7 [156]. N/F co-doped mp TiO2 has been shown to have the highest adsorption and
photocatalytic activity. The solvothermal method was adopted for the synthesis of N/F mp
TiO2 by using urea as a nitrogen source and ammonium fluoride as a fluorine source [29]
The L-amino acid (C-N co-doped or C-N-S tri-doped) -TiO2 photocatalyst was used for
dyes removal under visible dye. The photodegradation of methyl orange and direct red
16 was studied by the first order kinetics, and the rate constant for DR16 photocatalytic
removal using L-Arginine (1 wt.%)-TiO2 was 2.9 and 4.3 times greater compared to those of
L-Methionine (1.5 wt.%)-TiO2 and L-Proline (2 wt.%)-TiO2, respectively [157].
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6. S-Doped TiO2 (S/TiO2 or SdT)

Amongst all the non-metals, sulfur would have been difficult to dope with titania
because a large amount of formation energy is required for the replacement of S with O
in titanium dioxide [158]. In contrast to the previous statement, S/TiO2 (SdT) (anatase)
was synthesized using TiS2 (titanium disulfide) by the oxidative annealing. Therefore,
this doping led to the red shift in the absorption band of SdT rather than the undoped
titania. Furthermore, it was used for the photocatalytic degradation of methylene blue (MB).
SdT instigated MB’s irradiation quite efficiently in the visible-light region, as shown in
Figure 8 [159]. SdT was also prepared by the heating of powder TiS2 in the solution of HCl at
180 degrees, a comparatively lower temperature in comparison to the conventional methods
of synthesizing SdT. Traditionally, it has been prepared by the thermal decomposition
of thiourea (ThU) at elevated temperatures, whereas ThU is the source of sulfur. The
formulated SdT at a demoted temperature was used for the desolation of 4-chlorophenol;
it was concluded that the one-step hydrothermal process for the production of SdT was
successful for the irradiation of 4-chlorophenol by visible-light photocatalytic activity [160].

Sulfur-doped and sulfate TiO2 (SdST) were synthesized using the solvothermal method;
potassium per sulfate (KPS) was taken as a source of sulfur and the irradiation rate of
phenol was studied. As we know, titania showed lower photocatalytic activity in the visible
light because it has a broad band gap energy, which limits the absorbance of UV light of less
than 387 nm. However, the SdST catalyst showed higher degradation activity for phenol
instead of pure TiO2, especially in the range greater than 450 nm (longer visible-light range).
Almost 51.3% of the containment (phenol) was degraded at a 0.5 ratio of the catalyst (SdST)
for 10 h under the ranges, as mentioned in Figure 9 and Table 6 [161].
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Figure 8. (a) Response of different concentrations of sulfur in S-doped TiO2; (b) photocatalytic
degradation of 4-chlorophenol by pure TiO2, SdT prepared by ThU and SdT by hydrothermal process
studied via UV-vis [160].
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Table 6. Summary of S-doped TiO2 photocatalysts synthesized by variety of methods and source
precursor materials.

Year of Study Method TiO2 Precursor Sulfur Source Ref.

2003 Oxidative heating Anatase TiS2 [159]

2006 Low-temp hydrothermal Anatase TiS2 powder with HCl solution [160]

2012 Solvothermal TBOT Potassium per sulfate [161]

2016 Free oxidant peroxide method Anatase Thiourea (ThU) [162]

2018 HT Titanium sulfate (TiOSO4) TiOSO4 [163]

7. P-Doped TiO2 (P/TiO2 or PdT)

In the recent years, P/TiO2 (PdT) has gained attention because of their potential to
increase the surface area, restrain the transformation of anatase to rutile, enhance the
absorption of visible light and decrease grain growth [164] (Table 7). Therefore, many
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studies have been conducted for the generation of PdT and to study their properties
regarding water splitting [165], dye-degradation, etc. [166]. Similarly, the synthesis of PdT
nanoparticles using the sol-gel process was performed. The results showed a remarkable
increased activity of the degradation of MB because of high visible-light pursuit, and the
ESR spectroscopy (electron spin resonance) deduced its refined charge separation [167].

The fabrication of P doped over titania nanofibers (PdTNFs) was first reported by
Zhu. Y. et al., from the method known as chemical vapor deposition (CVD), which showed
remarkable results for electrochemical water splitting [168]. The doping of phosphorous
decreases the band gap of titania and creates disproportion between O2 and Ti4+ charges;
therefore, the recombination of charge carriers is hindered. In TiO2 (anatase type), the
substitution of P3− over O2- is much greater than substituting P5+ onto Ti4+ (1.32 eV)
because it requires high formation energy (15.48 eV). Hence, it shows that the incorporation
of P5+ into titania lattice is achievable by forming the Ti-O-P bond rather than the Ti-P
bond [169]. The separation of charges in the photocatalytic phenomenon is facilitated by
the phosphate ions, which act as an electron-withdrawing species [170].

The photocatalytic activity of sulfamethazine (SMHZ) was investigated using mixed
oxide novel-doped Fe2O3 and TiO2. The weight percentage of 1.2 of mixed oxide had
successfully degraded 30% of SMHZ; the percentage degraded is much higher than Fe2O3-
TiO2 or pure TiO2 (Figure 10). [171].
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Table 7. Summary of P/TiO2 photocatalysts synthesized by variety of methods and source precur-
sor materials.

Year of Study Method TiO2 Precursor Phosphorous Source Ref.

2020 Chemical vapor deposition Titanium (IV) butoxide
(Ti(OC4H9)4) Red phosphorous [171]

2014 Sol-gel method TBO Phosphorous acid [172]

2011 Sol-gel process Silicate/TiO2 NPs Phosphoric acid (H3PO4) [164]

2009 Sol-gel TBO H3PO4 [173]

8. B-Doped TiO2 (B/TiO2 or BdT)

The non-metal doping of anatase TiO2 was further doped with B, C, N, and F [174–176].
The B/TiO2 hybrid hollow microspheres were synthesized by hydrothermal treatment.
This boron-doped titania photocatalyst was used for MB degradation in aqueous solution
and served as a target pollutant to evaluate the photocatalytic activity under sunlight. A
higher photocatalytic activity of boron-doped hybrid hollow microspheres was observed
(Table 8), which was comparatively much greater than undoped titania [177].
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B/TiO2-nanotubes (B/TiO2NTs) were synthesized by the electrochemical anodization
method with boron concentrations of 70, 140, 280, and 560 ppm and activated via UV-visible
irradiation. The results showed that the dye-degradation rate of Acid Yellow1 (AY1) was
twice greater at the doped electrode, which contained 280 ppm of B, and the activation
of the electrode was maximum there, as observed from the UV-visible light. When the
AY1 (100 ppm) was treated at the B/TiO2NTs electrode for 120 min at +1.2 V, pH 2 and
in 0.01 mol L−1 of sodium sulfate solution (Na2SO4), 100% discoloration of the dye was
observed. Therefore, the synthesized amalgamation has the potential to become a stable
electrochemical catalyst [178].

The synthesized BdT nanostructures was carried out using the sol-gel method. Studies
have shown that, after the doping of boron, the band gap decreased from 2.98 eV of
undoped titania to 2.95 eV of B/TiO2 (7% boron content) (Figure 11a). Boron has the
tendency to occupy the interstitial sites in the crystal lattice of TiO2 and forms a Ti-O-B
bond. Therefore, the degradation studies of 4-nitrophenol were studied using the said
nanoformulations. The results showed that BdT (7%) displayed a 90% degradation efficacy
compared to the undoped titania (79%) because the Ti-O-B linkage has a synergistic effect
on supplementing the catalytic activity, as shown in Figure 11b [179].
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order plot of photocatalytic degradation of 4-nitrophenol using UV-visible-light irradiation in the
presence of BdT and undoped TiO2 [171].

Table 8. Summary of B/TiO2 photocatalysts synthesized by variety of methods and source precur-
sor materials.

Year of Study Method TiO2 Precursor Boron Source Ref.

2020 Sol-gel Titanium isopropoxide Boric acid [179]

2015 Electrochemical anodization Titanium sheets NaBF4 [178]

2011 HT (NH4)2TiF6 H3BO3 [177]

9. Halogens-Doped TiO2 (X = F, Cl, Br, and I)

The hydrogenated F/TiO2 (FdT) nanocrystals were synthesized using the physico-
chemical method. F-doping has the potential to increase the surface area of TiO2; further,
hydrogenation plays a pivotal role in forming the F-H and O-H bonds on the surface of
titania and creating vacancies of Ti3+ and O2−, which increases the range of absorption
alongside the light utilization capacity of TiO2. The bonds O-H and F-H can favor trapping
the holes and can also react with water to produce an active species (OH• ). Now, these hole
and electron pairs can easily be separated to participate in the photocatalysis. Irradiation
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studies of MB were conducted and showed that the degradation rate constant of hydro-
genated FdT is 0.146 min−1, which is almost twice the rate of pure TiO2 (0.063 min−1) [180].

Hydrogen and fluoride co-doped TiO2 nanostructures have been made from annealing.
The doping of halogens decreases the band gap and bestows the oxide material a greater
absorbance capacity. The results demonstrated that FdT is a better photocatalyst, as shown
in Figure 12 and Table 9 [181].

Catalysts 2022, 12, x FOR PEER REVIEW 18 of 31 
 

 

 

Figure 12. Suggested photocatalytic degradation for H2 production and dye degradation [180]. 

Table 9. Summary of halogens-doped TiO2 photocatalysts synthesized by variety of methods and 

source precursor materials. 

Year of Study Method TiO2 Precursor Fluorine Source Ref. 

2020 Oxidative annealing  Titanium isopropoxide NH4F [181] 

2019 Physicochemical  TTIP NH4F [180] 

2017 Sol-gel Titanium isopropoxide Trifluroacetic acid [182] 

2014 Sol-gel Tetrabutyl titanate NH4F [183] 

Year of Study Method TiO2 Precursor Chloride Source  Ref. 

2020 Oxidative annealing  Titanium isopropoxide NH4Cl [181] 

2012 Sonochemical synthesis Tetraisopropyl titanate NaCl [184] 

2008 Hydrolysis Tetrabutyl titanate HCl [185] 

Year of Study Method  TiO2 Precursor Bromide Source Ref. 

2017 HT TBOT NH4Br [186] 

2009 Sol-gel TBOT 
Cetyl trimethyl Ammoni-

um bromide (CTAB) 
[187] 

2004 HT Titanium chloride Hydrobromic acid [188] 

Year of Study Method TiO2 Precursor Iodide Source Ref. 

2017 Sol-gel Titanium (IV) ter-butoxide Potassium iodide [189,190] 

A Cl/TiO2 (CldT) photocatalyst was prepared, which shows greater absorption in the 

range of visible light. The doping of chlorine decreases the band gap of titania; therefore, 

the absorption spectra are extended. CldT shows better degradation of phenol than the 

pure one that is 42.5% after 120 min [185]. 

The synthesized Br/TiO2 (BrdT) hollow spheres are made by the hydrothermal 

method. Studies have revealed that the adsorption peak of BrdT hollow spheres is near 

517 nm, which is greater than that of undoped titania. The band enhanced towards the 

visible-light range. The band gap of the fabricated spheres decreased (1.75 eV), whereas 

the band gap of undoped TiO2 was around 2.85 eV; this illustrates that the doping of Br 

Figure 12. Suggested photocatalytic degradation for H2 production and dye degradation [180].

Table 9. Summary of halogens-doped TiO2 photocatalysts synthesized by variety of methods and
source precursor materials.

Year of Study Method TiO2 Precursor Fluorine Source Ref.

2020 Oxidative annealing Titanium isopropoxide NH4F [181]

2019 Physicochemical TTIP NH4F [180]

2017 Sol-gel Titanium isopropoxide Trifluroacetic acid [182]

2014 Sol-gel Tetrabutyl titanate NH4F [183]

Year of Study Method TiO2 Precursor Chloride Source Ref.

2020 Oxidative annealing Titanium isopropoxide NH4Cl [181]

2012 Sonochemical synthesis Tetraisopropyl titanate NaCl [184]

2008 Hydrolysis Tetrabutyl titanate HCl [185]

Year of Study Method TiO2 Precursor Bromide Source Ref.

2017 HT TBOT NH4Br [186]

2009 Sol-gel TBOT Cetyl trimethyl Ammonium
bromide (CTAB) [187]

2004 HT Titanium chloride Hydrobromic acid [188]

Year of Study Method TiO2 Precursor Iodide Source Ref.

2017 Sol-gel Titanium (IV) ter-butoxide Potassium iodide [189,190]
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A Cl/TiO2 (CldT) photocatalyst was prepared, which shows greater absorption in the
range of visible light. The doping of chlorine decreases the band gap of titania; therefore,
the absorption spectra are extended. CldT shows better degradation of phenol than the
pure one that is 42.5% after 120 min [185].

The synthesized Br/TiO2 (BrdT) hollow spheres are made by the hydrothermal method.
Studies have revealed that the adsorption peak of BrdT hollow spheres is near 517 nm,
which is greater than that of undoped titania. The band enhanced towards the visible-light
range. The band gap of the fabricated spheres decreased (1.75 eV), whereas the band
gap of undoped TiO2 was around 2.85 eV; this illustrates that the doping of Br instigates
the impurity level between the conduction and valence bands; therefore, the transition of
electrons is promoted [186].

I/TiO2 photocatalysts were prepared via the sol-gel method. They tend to have
higher photo-degradation potential under direct-sunlight irradiation. Without catalysts, the
photocatalytic degradation of RhB was not observed. The mechanism of the photocatalytic
degradation of RhB using I/TiO2 involves the following steps as shown in Scheme 2 [189]:
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10. Si-Doped TiO2 (SidTiO2)

Scheme 2 is based on nanotubes for MO. The results showed that 5% SidTiO2 has a
higher catalytic efficacy for MO degradation than the tubes synthesized with titania [75].
Similarly, in another study, SidTiO2 was synthesized using the hydrothermal method for
the photocatalytic degradation of organic pollutant, phenol. The results showed a nine-
times higher percentage degradation with SidTiO2 than undoped titania nanotubes [191]
(Table 10).

Table 10. Summary of Si/TiO2 photocatalysts synthesized by variety of methods and source precur-
sor materials.

Year of Study Method TiO2 Precursor Silicon Source Ref.

2019 Hydrothermal Commercial TiO2 SiO2 commercial [191]

2017 Solvothermal Titanium oxysulfate Tetraethoxysilane [75]

11. Factors Affecting the Degradation of Photocatalytic Activity

The photocatalytic degradation of dyes is strongly affected by consideration of the
following parameters: pH, dye concentration, the size and structure of the photocatalyst,
pollutants concentration and types, light intensity and irradiation time, dopants’ effect on
dye concentration, etc. These factors and their impact on the dye-degradation performance
are demonstrated with details in this section.

11.1. Effect of pH

pH is a pivotal parameter that impacts the photocatalytic activity. Some of the results
on the effect of pH on dye degradation are presented in Table 11 pH fluctuations in
combination with calcinated non-metal-doped titania possess the best catalytic degradation
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results because of the synergistic effect of phase structure and crystallinity [192]. The
results reported in Table 11 show that the facet TiO2 can be deprotonated/protonated
under alkaline/acidic conditions, respectively. Therefore, it can be concluded that pH
alterations can result in the escalation efficacy of the dye degradation of titania without
influencing the rate equation [193]. The effect of pH on the decomposition of MO was
investigated by Guttai N et al., and it turned out to be the first-order reaction rate, which
was 25 times higher at pH 2 than at pH 9 [194]. This also means that some types of
dyestuff are preferentially photo-degraded on TiO2 surfaces. Dyes can be degraded in
three ways as a function of pH: directing hydroxyl radical, (ii) the direct involvement of a
hole in the oxidation reaction, and (iii) a tête-à-têtes reduction in the participation of the
activated electron in the steering band [195]. The effect of pH on the photo-degradation
efficiency of the dyes must be considered in conjunction with several other parameters.
The interaction of hydroxide ions can produce hydroxyl radicals. At a low pH, holes are
the dominant forms of oxidation, and at a neutral or high pH, hydroxyl radicals are the
dominant species, respectively.

Table 11. Different types of dyes under optimum pH.

Dye Type Light Source Photocatalyst pH Range Optimum pH Ref.

Orange G (OG) UV Sn/TiO2/Ac 1.0–12.0 2.0 [196]

(OG) Visible N-TiO2 1.5–6.5 2.0 [197]

Bromo-cresol purple (BCP) UV TiO2 4.5 & 8.0 4.5 [198,199]

Methyl Red (MR) Visible 3%Ag+1.5%Ni-TiO2 3–10 4 [199]

Malachite Green (MC) Sun light Ni/MgFe2O4 2.0–10.0 4 [200]

Indigo Carmine (IC) UV TiO2 4.0–11.0 4 [201]

Textile dye (TD) UV TiO2 3.0–7.0 5 [202]

Basic Yellow 28 (BY28) UV TiO2 3.0–9.0 5 [203]

Methylene Blue (MB) UV TiO2ZnO 1.0–6.0 2 [204]

Reactive Blue 4 (RB4) UV Anatase TiO2 3.0–13.0 3–7 [205]

Procion Yellow (PY) UV TiO2 2.0–10.0 7.8 [206]

Acid Orange (AO) UV WO3-TiO2 1.0–9.0 3 [84]

Methyl Orange (MO) UV TiO2 2.0–10.0 8 [207]

Rhodamine B (RhB) UV ZnO 2.0–12.0 12 [208]

MO, RhB UV ZnO 2.0–10.0 Basic medium [209]

Hydroxide (OH-) is easy to produce in an alkaline solution with an oxidizing ion,
which then penetrates through the semiconductor surface. Therefore, the efficiency of
the process increases reasonably [210]. According to the findings, pH plays an important
role in altering the charges on the dyes; for example, BCP dye degradation was better
in acidic media than in alkaline media [198]. Azo dyes are positively charged at pH 6.8
and negatively charged at a higher pH, which affects their adsorption on semiconductor
surfaces. When charged species are present in a solution an electrical double layer forms,
which affects the electron–hole pair separation and adheres the adsorption properties of
the dye on the surface of the semiconductor. pH and the amount of dye present influence
the rate of photocatalytic activity [85].

11.2. Effect of Dye Concentration

The optimum concentration of the dye is very important for the photocatalytic reaction,
as it is highly dependent on the type of dye being considered. Generally, by increasing the
concentration of the colorant, the photocatalytic degradation efficiency of the dyestuff will
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decrease by suppressing the active sites, therefore, hindering the activity [211]. However, a
small quantity of the dye is subjected to degradation and it only contributes to the process
of photocatalysis. The initial concentration of the dye in the photocatalytic process is
important to consider [81]. This is because as the dye concentration increases, more organic
molecules are adsorbed on the surface of TiO2, but fewer photons reach the catalyst surface,
resulting in less OH production, and thus, lowering the percentage degradation [212].
On the other hand, the ionic behavior of dye molecules may result in either accelerating
or slowing down the process of the degradation of dyestuff. Normally, metal ions are
adsorbed on the surface of the photocatalyst and make them slightly positively charged.
As this effect reduces the electrostatic repulsion for anionic dyes, they can be adsorbed and
degraded readily in the presence of metal ions. On the contrary, a retarding effect can also
be observed for cationic dyes due to the decrease in attraction between positively charged
dyestuff and neutral or slightly positive catalyst surfaces [213].

11.3. Photocatalyst’s Size and Structure

Surface morphology, such as particle size and agglomerate size, is an important com-
ponent to address while discussing photocatalytic degradation, since there is a direct
relationship between organic molecules and photocatalyst surface coverage. The speed of
the reaction is determined by the number of photons striking the photocatalyst; therefore,
it can be suggested that the reaction happens solely in the phase absorbed by photocata-
lysts [214]. Titania and Cu-TiO2 nanocomposites were used to degrade MR. Studies have
suggested that the Cu-modified titania shows more promising results for the catalytic
degradation of MR in comparison to the titania because the morphology of the latter is
different than the modified version of titania, which facilitates the advancement of organic
molecules towards the catalyst [215].

11.4. Pollutant Concentrations and Types

The rate of the photocatalytic destruction of a pollutant is determined by the type
of pollutant employed, along with its concentration and other chemicals present in the
aqueous matrix. Many researchers have found that the rate of reaction of TiO2 is influenced
by the concentration contaminants present in water. High levels of water contaminants fill
the TiO2 site, reducing photonic efficiency, and moving the image of the catalyst towards
malfunctioning [216]. The chemical structure of the target component, in addition to the
concentrations of the pollutant, alters the photocatalytic degradation performance of the
catalyst being used because of its conversion into its respective intermediates. For example,
studies have shown that 4-chlorophenol takes longer to release irradiation than oxalic acid
because it converts directly into carbon dioxide and water [217].

11.5. Surface Area of the Photocatalyst

The surface of TiO2 is crucial in its employment as a photocatalyst because its reactions
occur at the surface. This usually increases its availability either by utilizing it in the form
of very fine particles, molding it into a porous sheet, or suspending it in some liquids [218].
Nanomaterials with a crystallite size/grain of less than 20 nm have gained particular inter-
est among researchers because their physical characteristics differ significantly from their
bulk counterparts. This has also opened new opportunities for their use as photographic
catalysts in various fields. As the surface area of the image catalyst grows, more active sites
become prominent [219].

11.6. Effect of the Intensity of Light and Irradiation Time

The intensity of light plays an important role in photocatalytic dye degradation, which
results in the formation of less toxic byproducts of the dye under consideration. A large
amount of research has been conducted on these specific parameters [220]. The effect of the
intensity of light on the degradation and decolorization of RY14 is studied in [221]. The dye
degradation is affected by both the strength of the light and the time it takes to expose it to
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degrade the dye or pollutants [193]. As the intensity of light significantly increases, the dye
degradation rate enhances; this is because of an increase in the number of photons striking
per unit time per unit area of the photocatalyst. Conversely, by further increasing the
intensity of light, there might be a chance of higher thermal effects [173]. It was confirmed
that N/TiO2 showed higher dye degradation (almost 60% in 6 h) under visible light. On
the contrary, under sunlight irradiation, N/TiO2 unveiled degradation efficiency that was
a little higher as compared to the non-doped TiO2 efficiency of degradation. A negative
light intensity effect on Congo Red was studied when the light intensity varied from 50 to
90 J·cm− [222].

11.7. Dopants’ Impact on Dye Degradation

The main goal of doping is to cause a chromic change in the optical properties, which
is defined as the reduction in the band gap or the introduction of intra-band gap conditions
that leads to an increase in the absorption of visible light. Non-metal dopants’ effects
on photocatalytic activity is a challenging problem to tackle. The performance of TiO2
can be improved by doping with non-metals to enhance the photocatalytic efficiency of
titania. Depending on the type of dopants and its concentration, it can also allow light to
be absorbed into the visible area at different levels. As a result, visible light can be used to
stimulate photocatalysis on modified TiO2. In mixed systems, dye deterioration is often
much faster than systems alone, as the oxidation of dyes utilizes exciting holes quickly and
effectively, reducing electron–hole regeneration [214]. The prime concentration of dyes
for a photocatalytic reaction is a key parameter that is highly dependent on the type of
dye employed. Typically, by increasing the pollutants concentration, the photocatalytic
degradation efficiency deceases. The reason for this is that maximum or higher dye
molecules compete for limited active sites along with turbidity increases [223].

11.8. Effect of Mass Loading on the Catalytic Activity

TiO2 has been made to absorb lower-energy photons using a variety of approaches.
Kaur et al., reported that under optimized conditions with the highest efficiency, the catalyst
dosage for the maximum photocatalytic degradation of RR 198 is 0.3 g [224]. It is manifested
that the photodegradation rate increases with the increase in the amount of photocatalyst
and then decreases with the increase in the catalyst concentration [225]. In another study,
an increase was reported in the weight of the catalyst from 1.0 to 4.0 g L−1, which increases
the dye decolorization sharply from 69.27% to 95.23% at 60 min and the dye degradation
from 74.54% to 97.29% at 150 min. The optimum concentration of the catalyst for efficient
solar photo decolorization and degradation is found to be 4 g/L [226].

12. Conclusions

This review focused on the comprehensive study of the fundamental aspects of non-
metal-doped/TiO2 nanoparticles. Titania is considered as the best visible-light-driven
photocatalyst for the degradation of numerous dyes. Plentiful research has been carried
out that encompasses the importance of non-metals-doped titania in comparison to the
undoped TiO2 for their better photocatalytic dye degradation of various anionic and cationic
dyes, in order to overcome the environmental pollution issues via industrial effluents
or other pollutants. We must incorporate most of the literature present on non-metals
such as C, Si, N, P, B, halogens, etc. The effect of different parameters, for instance, pH,
dyes concentration, photocatalyst’s size and structure, pollutants concentration and types,
the surface area of photocatalysts, the effect of light intensity along with its irradiation
time, catalyst loading, variation in temperature, and doping (non-metals) impact with
optimization has a strong correlation with pollutants degradation rate, which is also
discussed in this review. The photocatalytic performance of non-metal-doped titania can
be further improved with the design of efficient synthesis methodologies.
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13. Opportunities, Challenges and Future Prospects

Titanium dioxide has a wide range of properties associated to it; it is a semicon-
ductor [227] with varied properties such as being non-toxic [228], highly efficient [229],
cost-effective [230], highly reactive [231], and eco-friendly. It has been accepted globally as
a photocatalyst because of its high pore size [232], notable band gap [233], and large surface
area [234]. Nevertheless, it has certain drawbacks, of which the following are related: the
rejoining of the photo-generated charge bearers, low adsorption range, and the ineffectual
visible-light utilization which requires improvement for the intensified photocatalytic ac-
tivity. Numerous researchers have been regulated to undermine the limitations related to
the photocatalysis of titania; the incorporation of nanoparticles and the doping of metals
and non-metals have helped in enhancing its process to a larger extent. The amalgamation
of NPs has been of utmost importance lately because they produce the desired results by
amending the particle shape and size along with the physicochemical properties of TiO2.
Moreover, doping can strengthen the photocatalytic property by minimizing the reposting
of charge carriers and decreasing the band-shift towards the region of visible light.

The photooxidation of organic effluent in wastewater and the elimination of nitrates
and sulfates, along with acidic, basic, VAT, and azo dyes, can be achieved by the non-
metallic doping of TiO2. Moreover, the sensitization of dyes can be achieved by the doping
of non-metals with titania; it can help in the breakdown of pesticides, the industrial dis-
charge of dyes which have toxic and malignant effects, and the generation of photocatalytic
hydrogen [235].

It is important to understand the prospects and future aspects on improving the pho-
tocatalytic activity of TiO2 by different means, either by doping or co-doping. The studies
have shown that both manifest remarkable results. The subject of high noticeability here is
that whose process has produced more beneficial and long-lasting outcomes. More studies
focusing on the engineered edges via doping for the improvement of the conduction and
valence bands are required for enhancement of the absorption band of titania. Furthermore,
the movability of charge carriers should be increased by introducing an impurity to im-
prove the working efficiency of TiO2. Therefore, the use of photocatalysis along with some
other technologies would improve its application, which would benefit the environment
for a longer period.

Moreover, a gradual deactivation of the photocatalytic materials concerns all the poten-
tial industrial applications. A periodical regeneration of the photocatalytic materials would
be required, which would also increase the overall cost. Therefore, cost would obviously
remain an essential issue for commercialization. Hence, to overcome this obstacle, exten-
sive research would be necessary to develop both economical reactors and photocatalytic
materials. Concomitant, concerted, and extensive research progress to achieve these goals
is necessary for the practical implementation of this technology.
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