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Abstract: A theoretical and experimental study was carried out on the biocatalytic production of
babassu biodiesel through enzymatic hydroesterification. The complete hydrolysis of babassu oil was
carried out using a 1:1 mass solution at 40 ◦C for 4 h using 0.4% of lipase from Thermomyces lanuginosus
(TLL). Then, with the use of Eversa® Transform 2.0 lipase in the esterification step, a statistical design
was used, varying the temperature (25–55 ◦C), the molar ratio between free fatty acids (FFAs) and
methanol (1:1 to 1:9), the percentage of biocatalyst (0.1% to 0.9%), and the reaction time (1–5 h) using
the Taguchi method. The ideal reaction levels obtained after the statistical treatment were 5 h of
reaction at 40 ◦C at a molar ratio of 1:5 (FFAs/methanol) using 0.9% of the biocatalyst. These optimal
conditions were validated by chromatographic analysis; following the EN 14103 standard, the sample
showed an ester concentration of 95.76%. A theoretical study was carried out to evaluate the stability
of Eversa with FFAs. It was observed in the molecular docking results that the ligands interacted
directly with the catalytic site. Through molecular dynamics studies, it was verified that there were
no significant conformational changes in the studied complexes. Theoretical and experimental results
show the feasibility of this process.

Keywords: biodiesel; hydroesterification; Taguchi method; molecular docking; molecular dynamics

1. Introduction

Petroleum is the most used fossil fuel in the world since, when refined, it generates
several by-products such as diesel, gasoline, and lubricants, among others [1]. Because of
this, the United States International Energy Agency (IEA) estimates that there will be a
global oil supply deficit from 2025 onwards [2]. Thus, renewable fuels emerge as a viable
alternative to meet this energy demand [3]. Renewable fuels, also known as biofuels, are
materials with energy applications from agricultural products such as sugars, animal and
vegetable oils, and forest biomass, among others. Among the fuels from renewable sources,
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biodiesel stands out. This material can partially replace diesel in internal combustion
engines [4].

Benefits such as excellent lubricity, accessible transport, storage, and lower toxicity
and environmental damage make biodiesel an excellent alternative to diesel. Biodiesel can
be obtained from vegetable oil, animal fat, and residual oil [3]. Oil sources are formed by
condensing fatty acids and glycerol, forming glycerides [5]. It is worth mentioning that the
physiological characteristics of the oil source used directly influence the properties of the oil
and, consequently, the physicochemical characteristics of the biodiesel produced [6]. Due
to the factors mentioned above, this work studied the application of babassu oil (Attalea
speciosa) in the ecological production of biodiesel. The babassu fruit was chosen because it
is present in about 196.000 km2 of the Brazilian territory, with most palm trees located in
the northern and northeastern regions [7,8].

As biodiesel is formed mainly by esters, it is necessary to apply chemical processes to
transform oils, such as thermal cracking, esterification, and transesterification [9]. However,
the synthesis via hydroesterification has been widely studied since this process can be
carried out with any oil source, regardless of its purity, acidity, and humidity [10]. Except
for thermal cracking, these processes can be performed in the presence of homogeneous,
heterogeneous, or enzymatic catalysts. Enzymatic catalysts are a viable alternative among
the various types of existing catalysts, as these materials generate less waste and are less
harmful to the environment when compared to chemical catalysts [11–15].

However, problems are associated with applying biocatalysts on an industrial scale
since these materials have a high price and low operational stability. Thus, several strategies
are employed to expand the application of biocatalysts in the industry [16–20]. Techniques
of enzymatic immobilization, green solvents, and genetic manipulation in the production
of enzymes are some techniques that can be used [21].

Genetic manipulation is used in the production of soluble enzymes, and this modifica-
tion can increase the activity of the enzyme. In addition, genetically modified enzymes can
be commercialized with a value of 30 to 50 times lower than their immobilized alternatives.
Eversa® Transform 2.0 stands out among the genetically manipulated enzymes. This bio-
logical material is produced through the genetic modification of the lipase of Thermomyces
lanuginosus expressed in a strain of Aspergillus oryzae. This biocatalyst was designed to be
an economically viable material that can be applied in reactions to produce free fatty acids,
glycerides, and biolubricants [22–24].

Thus, understanding the behavior of Eversa lipase at the molecular level through com-
putational tools and the optimization of the reaction process can facilitate the application
of these materials on a large scale. Thus, the present study proves to be an alternative
for the development of future babassu biodiesel synthesis processes using Eversa lipase
as a biocatalyst. [25]. Thus, the present work sought to evaluate the potential of Eversa®

Transform 2.0 lipase in synthesizing babassu methyl esters (FAMEs). For the production
of FAMEs, enzymatic hydroesterification was used since this strategy has less impact on
the environment when compared to conventional routes [26,27]. In addition, theoretical
studies of the esterification stage were carried out. Molecular docking was used to obtain
the best conformation between the fatty acids and the enzyme’s catalytic site and to under-
stand the nature of these interactions. In molecular dynamics studies, the stability of the
enzyme–substrate complex under reactional production conditions was evaluated.

2. Results and Discussion
2.1. Enzymatic Hydrolysis

The proposed enzymatic hydrolysis was performed satisfactorily since there was an
increase in the acidity index of the oil from 0.75 mg NaOH/g to 127.03 mg NaOH/g. The
acidity index obtained is consistent with expectations since refined babassu oil was used
during hydrolysis. Carvalho et al. (2021) [22] performed the complete hydrolysis of refined
and residual soybean oil within 3 h of reaction. In this process, Candida rugosa-free lipase
was used as a biocatalyst.
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2.2. Taguchi Planning-Optimization of the Production of Methyl Esters of Babassu Fatty Acids

In this stage of the work, Taguchi planning with an orthogonal matrix L9 was used.
This strategy was employed to optimize and reduce the number of trials. Furthermore, this
method makes it possible to understand the effects and interaction of parameters related
to the process [28–30]. Table 1 shows the results obtained relating them to the proposed
reaction parameters. It is worth noting that all experiments were performed in triplicate
and that the results remained within the expected margin of error.

Table 1. Experimental Taguchi design for the production of methyl esters from babassu.

Reaction Time (h) Temperature
(◦C)

Molar Ratio
(FFA/Methanol)

Biocatalyst (%
w/w) Conversion (%) S/N

1 1 25 1:1 0.1 3.16 ± 0.48 9.99
2 1 40 1:5 0.5 58.79 ± 0.078 35.39
3 1 55 1:9 0.9 19.43 ± 0.66 25.77
4 3 25 1:5 0.9 95.20 ± 0.031 39.57
5 3 40 1:9 0.1 7.75 ± 0.30 17.79
6 3 55 1:1 0.5 8.44 ± 0.53 18.52
7 5 25 1:9 0.5 94.65 ± 0.036 39.52
8 5 40 1:1 0.9 75.36 ± 0.51 37.54
9 5 55 1:5 0.1 2.80 ± 0.18 8.94

Based on the data in Table 1, it was possible to observe that test 4 presented the best
conversion and signal-to-noise ratio (S/N) results, 95.20 ± 0.031 and 39.57, respectively.
In this assay, 0.9% of biocatalyst was used, with a molar ratio of 1:5 (FFA/methanol), for
3 h of reaction at 40 ◦C. It was observed that the percentage of biocatalysts significantly
influenced the process since the experiments using 0.9% of catalyst (experiments 3, 4, and 8)
presented, on average, better results in conversion and signal-to-noise ratio when compared
to tests conducted with 0.1 and 0.5% of the biocatalyst. In order to identify the influence of
temperature, time, and molar ratio, further statistical analysis is necessary.

2.2.1. S/N Ratio Analysis

Taguchi planning employs S/N relationships to identify the impact of parameters
on the process. In this work, the “bigger is better” function was used to determine the
S/N ratios since the present planning was intended to obtain a higher conversion. Table 2
shows the S/N averages for the individual factors and levels. Furthermore, the table
shows the delta values. These values were calculated through the difference between each
factor’s highest and lowest S/N ratio. Through the delta values, it is possible to assess the
impact of the levels on the process and therefore identify the parameters that had the most
significant influence.

Table 2. Response to the averages of the S/N ratios.

Factors/Levels Time (h) Temperature (◦C) The Molar Ratio
(FFA/Methanol) Biocatalyst (% w/w)

1 23.72 29.70 22.02 12.24
2 25.29 30.24 27.97 31.14
3 28.67 17.74 27.69 34.29

Delta 4.95 12.50 5.95 22.05
Ranking 4 2 3 1

It is possible to observe that the amount of biocatalyst and temperature were the
most influential variables in the process, as they presented the highest delta values, 22.05
and 12.50, respectively. Thus, the data in Table 2 confirm the influence of the percentage
of biocatalysts and the temperature on the process. It is evident that the increase in the
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percentage of biocatalysts in the reaction medium from level 1 (0.1%) to level 3 (0.9%)
significantly increased the response of the S/N ratio and, consequently, the conversion.
This expansion can be attributed to the increased catalytic sites in the reaction medium.
This availability is related to a more significant number of reactions coinciding [31].

On the other hand, the temperature showed different behavior. It was observed that
the change from level 1 (25 ◦C) to level 2 (40 ◦C) favored the expansion of the conversion.
However, the change from level 2 (40◦ C) to level 3 (55 ◦C) had the opposite effect. This is
because enzymes are sensitive biological materials that operate in a specific temperature
range. In addition, an excessive temperature increase can reduce activity, leading to
deactivation [32]. Finally, the molar ratio and reaction time factors proved less effective
in the process, with delta values equal to 6.75 and 3.73, respectively. It was observed that
the amplification of methanol in the reaction medium from level 1 (1:1 FFA/methanol)
to level 2 (1:5 1 FFA/methanol) significantly impacted the response of the S/N ratio and,
consequently, the conversion. However, switching from level 2 (1:5 1 FFA/methanol) to
level 3 (1:9 1 FFA/methanol) showed a slight drop in response. This low variance can be
attributed to Eversa’s high resistance to methanol since this enzyme was developed to
produce methyl ester [33]. The low variation in the response of the S/N ratio over time may
be associated with high enzyme activity so that, according to the data shown in Table 1, it
is possible to obtain 95.20 ± 0.029 (assay 4) in 3 h of reaction.

2.2.2. Analysis of Variance (ANOVA)

Conversion data obtained through experimental design were statistically evaluated
using Analysis of Variance (ANOVA). According to the literature, the p-value ensures the
significance of each factor for the process studied. Table 3 shows the results obtained in
the ANOVA.

Table 3. Analysis of variance of the parameters that affect the esterification of babassu oil.

Factors SS DF MS F-value p-Value Contribution (%)

Time 38.40 2 - - - 3.05%
Temperature 299.30 2 149.65 7.79 0.11 23.77%
Molar ratio 67.62 2 33.812 1.76 0.36 5.37%
Biocatalyst 853.63 2 426.817 22.23 0.043 67.80%
Residual 38.40 2 19.20 -

Total 1258.98 6 - - -

In order to ensure the significance of a factor with a 95% confidence interval, the
p-value must be less than 0.05. Thus, the table clarifies that among the factors studied,
only the percentage of biocatalysts showed significance with a p-value equal to 0.043 and a
contribution percentage equal to 67.80%. Moreira et al. (2020) [26] studied the production
of ethyl esters from babassu. The researchers reported that the percentage of biocatalysts
was the most influential parameter in the process, with a p-value equal to that obtained in
this work. Sun, Guo, and Chen (2021) [34] studied the production of ethyl biodiesel from
Semen Abutili (Abutilon theophrasti Medic.), using Eversa® Transform 2.0 in its liquid form
as a catalyst. During the study, the authors verified the influence of the biocatalyst on the
reaction rate, and it was observed that the increase in the percentage of biocatalysts from
1% to 6% increased the production rate of esters in the same proportion. Thus, the results
obtained in this work are in agreement with the literature data since, as mentioned above,
the increase in the percentage of the biocatalyst is related to the increase in the availability
of active sites and, consequently, to the more significant number of reactions coinciding [32].
It is worth noting that this work demonstrated that babassu oil could be a viable alternative
for producing FAME, as a smaller amount of biocatalyst was used in a shorter time when
compared to authors such as Sun, Guo, and Chen (2021) [34].

After statistical analysis and discussion of the collected data, the optimal conditions
for the production of methyl esters were defined based on the range of levels (1, 2, and 3) of
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each factor (time, temperature, molar ratio (FFA/methanol) and percentage of biocatalyst),
i.e., time (5 h), temperature (40 ◦C), the molar ratio (1:5 FFA/methanol), and percentage
of biocatalyst (0.9% w/w). Under these conditions, the theoretical conversion was 98.64%.
These optimal conditions were validated by the chromatographic analysis of methyl esters,
following the EN 14103 standard with some modifications. The sample showed an ester
concentration of 95.76%. This variation of approximately 2.88% is within the expected
margin of error, as biocatalysts can quickly lose their catalytic activity as they are more
sensitive to external factors than chemical catalysts [35].

2.3. Physicochemical Characterization of the Oil Produced

The babassu methyl esters were separated from the by-products (water, glycerin,
and alcohol in excess) and characterized regarding their physicochemical properties. The
biodiesel produced is within the quality standards established by the “American Society
for Testing and Materials” (ASTM), following the specifications of ASTM D6751. According
to the standard, the kinematic viscosity at 40 ◦C of the monoalkyl esters from vegetable
oil must be between 1.9 and 6.0 cSt. The produced oil had a viscosity equal to 2.52 cSt.
Kinematic viscosity is a property of fluids that relates to a fluid’s molecular diffusion
momentum. This property is of paramount importance, as it can directly interfere with
the motor’s efficiency [36]. In addition, the standard establishes that the density at 20 ◦C
is between 860 and 900 Kg/m3, and the density of biodiesel produced from babassu was
872.90 Kg/m3. The specific mass is an intensive property of matter calculated through the
ratio between two extensive properties (mass/volume) [37]. Therefore, the results obtained
indicate that the biodiesel produced has potential application.

2.4. Theoretical Study
2.4.1. Protein Modeling by Homology

The Ramachandran graph was used to validate the homology modeling (Figure 1).
This diagram represents all possible combinations of dihedral angles (Ψ versus ϕ) in the
amino acids of a polypeptide chain [38]. This technique exposes the combinations of the
excellent stability of these angles, making it possible to validate the probable structure
of the biomolecule [39]. According to the diagram, 91.5% of the residues of the modeled
protein are in favorable regions (red region), 6.5% of the residues are in the additionally
allowed region (Regions a, b, l, p, yellow), 1.6% are located in the generously allowed
regions (Regions ~a, ~b, ~l, ~p, i.e., light yellow), and 0.4% are in unfavorable regions
(black region). It is worth noting that the residues found in unfavorable regions refer to
the structures used as a template. In addition, some residues are located at the ends of
the protein [39]. The VERIFY 3D (Figure 2) was used to stipulate the compatibility of an
atomic model (3D) with an amino acid sequence (1D) for the modeled protein. The % of
residues with a mean 3D-1D score ≥ 0.2 are acceptable [25]. In the present study, about
93.71% of the residues had a mean 3D-1D score ≥ 0.2. These results show that the proposed
model was compatible with its frequency. Thus, the Ramachandran diagram made it
possible to identify the regions that maintained the conserved structure and the variable
locations with alignment since 91.5% of the modeled protein residues are in favorable
regions. Furthermore, VERIFY 3D proved the compatibility of the atomic model (3D) with
the amino acid sequence (1D) since the model developed had an average score 3D-1D ≥ 0.2
of 93.71%. Therefore, the data from the Ramachandran chart and Verify 3D validate the
model obtained in this work.

2.4.2. Molecular Docking

From molecular docking, nine conformations were generated for each ligand and
their respective values of binding affinity and mean square deviation of atomic positions
(RMSD). The best conformation established by Autodock Vina was the one that exhibited
the lowest values of energy affinity and RMSD. Table 4 elucidates the values obtained in
the molecular docking of the six substrates studied.
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Table 4. Results obtained in the molecular docking process.

Substrate Chosen Pose Binding Affinity
(kCal/mol)

Vina
RMSD (Å)

Octanoic acid 2 −5.1 1.566
Decanoic acid 2 −5.4 1.561

Dodecanoic acid 4 −5.6 1.658
Tetradecanoic acid 2 −5.8 0.970
Hexadecanoic acid 4 −5.8 2.296
cis-9-octadecenoic

acid 5 −6.2 1.426
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Overall, the ligands showed good binding affinity with the catalytic site. Among
the ligands evaluated, oleic acid showed the highest binding affinity. This result suggests
that the combination of this substrate with the enzyme was the most stable and suitable
for esterification [40]. Furthermore, it is possible to observe a direct relationship between
the increase in binding affinity and the increase in the carbonic chain of the esters. This
expansion may be related to increased interactions between the ligands and the enzyme’s
catalytic site [25]. The types of residues involved in the interactions between free fatty acids
and Eversa® Transform 2.0 are shown in Table 5 and Figure 3.
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Table 5. Interactions of ligands with lipase after docking.

Substrate Waste Involved

Hydrogen Bonds Van der Waals
Interactions

Hydrophobic
Interactions

Octanoic acid -
ASP276, HIS268,
LEU154, SER91,
SER153, TYR29

ILE94, PHE265,
TYR92,
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Table 5. Cont.

Substrate Waste Involved

Hydrogen Bonds Van der Waals
Interactions

Hydrophobic
Interactions

Decanoic acid TYR92 (2.94 Å)
ASP276, HIS268
LEU154, SER91,
SER153, TYR29

ILE94, PHE265

Dodecanoic acid HIS152 (3.06 Å)
ASP276, HIS268,
LEU154, SER153,

TYR29

ILE94, LEU262,
PHE265, TYR92

Tetradecanoic acid -

ASP276, HIS266,
HIS268, HIS274,
ILE94, LEU154,

LEU285, SER153,
TYR29

LEU283, PHE265,
TYR92, VAL269

Hexadecanoic acid

HIS152 (2.73 Å),
HIS268 (2.96 Å),
SER153 (2.86 Å),
TYR29 (2.78 Å),
TYR29 (2.59 Å)

ASP276, LEU154,
LEU262, VAL269

ILE94, LEU283,
PHE265, TYR92

cis-9-octadecenoic
acid SER 91 (2.27 Å)

APS276, HIS266,
HIS268, HIS274,

LEU154, TYR29, SER
153, SER93

ILE94, LEU283,
PHE265, VAL269,

TYR92

The catalytic triad of lipase Eversa® Transform 2.0 comprises ASP206, HIS268, and
SER153 [41]. Thus, it is possible to observe that the ligands interacted directly with residues
HIS268 and SER153 [42]. In addition, the oxyanion cavity of the enzyme can interact with
the substrate since the function of residues in this region is to balance the negative charges
of the intermediates formed during the reaction. The oxyanion cavity of lipase Eversa®

Transform 2.0 comprises LEU154 and SER91 residues [43]. The residue of the oxyanion
region LEU154 interacted with all ligands, in the vast majority, from Van der Waals forces.
Electrostatic interactions, hydrogen bonds, hydrophobic interactions, and Van der Waals
forces are significant as they stabilize the enzyme–substrate complex [44,45].

Thus, ligand VI showed higher binding affinity. In general, Van der Waals interactions
have low binding energy. However, the combination of several Van der Waals forces confers
a stabilizing force on the protein–protein and protein–ligand complexes [46]. Most of the
time, the first interactions between the enzyme and the substrate are non-covalent. They
are electrostatic, Van der Waals, and hydrophobic interactions. Thus, the formation of these
interactions may favor the occurrence of a reaction [25,40,47].

2.4.3. Molecular Dynamics Simulations
Root Mean Square Deviation—RMSD

It was observed that the ligands studied were correctly accommodated in the catalytic
site of lipase Eversa® [48]. Thus, through the lipase–ligand complexes (I–VI), simulation
studies were carried out to evaluate not only the conformational changes of the enzyme but
also its stability after each conformational change. The Root Mean Square Deviation (RSMD)
of the lipase–ligand complexes was used to evaluate the extent to which conformational
changes occurred in the studied molecule during the simulation time. Figure 4 shows the
RSMD behaviors of the complexes studied in the equilibration stage.
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From the equilibrium simulations of the lipase–ligand complexes in the solvent, it was
possible to obtain preliminary information on the behavior of the conformations for the
dynamics. In this step, it was observed that the RSMD stabilization values of the studied
ligands oscillated between 0.25 and 1.0 Å in the evaluated time. These low RSMD values
may be associated with the movement of ions and solvents in the system during the initial
conformation of the complexes. Figure 5 shows the results obtained in the production stage.
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It was observed that the RMSD stabilization values of the production stage ranged
from 0.5 to 3.5 Å at the time analyzed. As shown in Figure 5, octanoic, decanoic, dodecanoic,
and tetradecanoic acids had, on average, RMSD values below 2.0 Å. On the other hand,
hexadecanoic and cis-9-octadecenoic presented values of around 3.0 Å. Therefore, it was
concluded that there were no significant conformational changes in the complexes studied
during the simulation periods [49]. Thus, the theoretical and experimental results presented
in this work indicate that fatty acids from babassu oil form stable complexes with the
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catalytic site of Eversa (Ser 153, His 268, and Asp 206), which may indicate a viable
alternative for future applications.

It is worth noting that the data presented in this work agree with the results obtained
by Qin, Zhong, and Wang (2021) [25]. These authors evaluated the affinity and molecular
stability of different fatty acids (octanoic, tetradecanoic, octadecanoic, cis-9-octadecenoic,
(9Z,12Z)-octadeca-9,12-dienoic and (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acids) with T1
lipase from Geobacillus zaliha [25]. As in the present work, the authors observed that among
the complexes studied, cis-9-octadecenoic acid presented one of the highest RSMD values
and therefore one of the lowest stability values when compared to the other complexes.

Hydrogen Bonds

Another analysis refers to the number of intermolecular hydrogen bonds since these
bonds are of great importance for the stability of the complex. Figure 6 shows the hydrogen
bonds formed between the ligands and the lipase in the equilibration and production steps.
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Figure 6. Hydrogen bonds formed between the protein and the ligand during the two simulation steps.
(a) Octanoic acid; (b) Decanoic acid; (c) Dodecanoic acid; (d) Tetradecanoic acid; (e) Hexadecanoic
acid; (f) cis-9-octadecenoic acid.
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The number of intermolecular hydrogen bonds is a factor of great importance for
the stability of the complexes [50]. According to Figure 6, modifications occurred in the
networks of hydrogen bonds throughout the simulation, so the number of bonds varied
between 1 and 5. The instant in which the bonds were broken indicates that stability was
maintained by the interactions of Van der Waals or hydrophobic forces [25]. Furthermore, it
was possible to verify that the increase in the average number of bonds was directly related
to the increase in the carbonic chain of the ligands. These results corroborate the data
obtained in the molecular docking process [51]. However, it was observed that, contrary
to what was exposed in the molecular docking results (Table 4), all ligands at some point
formed hydrogen bonds in molecular dynamics. These results can be explained by the
difference between a dynamic process (molecular dynamics) and a static process (molecular
docking) [46]. In addition, the excess of exposed bonds in molecular dynamics may be due
to bonds formed with the solvent of the system [25].

3. Materials and Methods
3.1. Materials

The commercial lipase Eversa® transform 2.0 from Aspergillus oryzae and lipase from
Thermomyces lanuginosus were purchased from Sigma–Aldrich Brasil Ltda (Cotia, São Paulo,
Brazil). All other chemical reagents used were analytical grades from Synth (São Paulo,
Brazil) and Vetec (São Paulo, Brazil). Statistica® 10 software Statsoft (Tulsa, OK, USA)
was used to develop the experimental design based on the Taguchi method. The refined
babassu oil used in this work belongs to Leve (São Luis, Maranhão, Brazil).

3.2. Methods
3.2.1. Hydroesterification

In this study, babassu methyl esters were obtained through the enzymatic hydroes-
terification process. This strategy is organized in two stages. In the first step, free fatty
acids are formed using refined babassu oil via enzymatic hydrolysis using free lipase from
Thermomyces lanuginosus (TLL) as a biocatalyst. The reaction system was developed based
on the methodology proposed by Carvalho et al. (2021) [22] with adaptations. Initially, the
solution containing oil and water in a 1:1 mass ratio was heated until the system reached a
temperature of 40 ◦C. Then, 0.4% of the biocatalyst was added to the oil mass. The system
remained at a temperature of 40 ◦C for 4 h under constant stirring.

After the process, the solution was transferred to a separatory funnel (500 mL), then
100 mL of distilled water at 60 ◦C was added to separate the aqueous phase from the free
fatty acids (FFAs) produced. With this, the lower (aqueous) phase was excluded and the
FFAs were washed three times. Then, the mixture containing the FFAs was transferred to a
beaker and heated at 80 ◦C for 10 min. At the end of 10 min, the mixture was transferred
to a funnel with filter paper and anhydrous sodium at 20% m·v−1, which was previously
dried in a muffle oven at 250 ◦C for 4 h [22,52].

The initial and final acid numbers (AI) (after the hydrolysis step) were calculated
from Equation (1). For this, 0.3 g aliquots were removed from the reaction supernatant
volume and diluted in 10 mL of ethyl alcohol. Then, 3 drops of phenolphthalein were
added, followed by titration with sodium hydroxide solution [53].

AI
(

mgNaOH
g

)
=

MMNaOH .MNaOH . f .VNaOH
m

(1)

where MMNaOH (g/mol) is the molar mass of NaOH; MNaOH (mol/L) is the molarity of
the NaOH solution; f is the correction factor determined by standardizing NaOH; VNaOH is
the volume of NaOH used during the titration, and, m (g) is the mass of the sample to be
studied. The conversion of free fatty acids into esters (Equation (2)) was determined by
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taking into account the initial acidity of the sample (IAI) and of the sample after the reaction
(IAF) [52,53].

Conversion FFA (%) =

(
IAI − IAF

IAI

)
(2)

In the second step, direct esterification of FFAs derived from refined babassu oil and
methanol was performed using lipase Eversa® Transform 2.0 in its free form as a biocatalyst.
The production reactions of fatty acid methyl esters were carried out in 10 mL flasks with a
lid containing the biocatalyst and the substrate on a rotary shaker with digital temperature
and rotation control (TE-4200 incubator) at 200 rpm. During the studies, the temperature
(25–55 ◦C), molar ratio between FFAs and methanol (1:1 to 1:9), percentage of biocatalyst
(0.1% to 0.9%), and reaction time (1–5 h) accorded with the proposed static planning [54].
To determine the molar mass of the acids produced, the work of Figueredo et al. (2020) [55]
was taken into account. The protein concentration was determined using the method
described by Bradford (1976) [56], and bovine serum albumin was used as a reference.

3.2.2. Gas Chromatography–Mass Spectrometry (GC/MS) Analysis

For the determination of the ester content (C) of the obtained biodiesel samples,
GC/MS analysis was performed based on the methodology described in the EN 14,103
norm [57], with adaptations. Approximately 50 mg of biodiesel sample was added to
a vial (2 mL) containing 1 mL of the methyl nonadecanoate solution (10 mg/mL). This
mixture was injected (1 µL) into a gas chromatograph–mass spectrometer SHIMADZU
QP-2010 ULTRA (Kyoto, Japan) equipped with a (5%-phenyl)-methylpolysiloxane (DB-5)
capillary column (30 m × 0.25 mm × 0.25 µm film thickness) using helium as a carrier gas
in splitless mode.

3.2.3. Experimental Design and Statistical Analysis (Taguchi Method)

The Taguchi method used an advanced experimental design with a standard orthogo-
nal matrix L9 (where L refers to the Latin square and 9 to the number of experiments) to
determine the reaction parameters. During the study, four factors were examined at three
levels to optimize the esters’ production. Table 6 correlates the four independent factors
(temperature, reaction time, percentage of biocatalyst, and molar ratio between FFAs and
methanol) and their corresponding levels [58].

Table 6. Independent factors and their corresponding levels for the optimization of biodiesel production.

Time (hours) Temperature (◦C) Molar Ratio
(FFA/Methanol) Biocatalyst (% w/w)

Level 1 (L1) 1 25 0.1
Level 2 (L2) 3 40 0.5
Level 3 (L3) 5 55 0.9

Statistica® software was used to elaborate the experimental design and statistical
analysis. The results of the S/N ratios were obtained from the characteristics of the function
“bigger is better”, as this research aimed to enhance the response (conversion). The S/N
ratio values were obtained from Equation (3) below [59].

S
N

= −10log

(
1
n

n

∑
i=1

1/y2
i

)
·100 (3)

where yi corresponds to the response variable, i represents the number of repetitions,
and n is the number of experiments for the combination of factor levels for any planning
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arrangement. Through Equation (4), the expected S/N ratio was determined for the ideal
conditions of the predicted maximum conversion.

S
NPREDICTION

= S
∣∣R + ∑n

i=1

(
S|Rj − S/R

)
(4)

where S
∣∣R refers to the arithmetic mean of all relations S|R, S|Rj is the S/N ratio optimal

for each factor, and n is the number of factors significantly influencing the procedure.

3.2.4. Physicochemical Characterization of Babassu FAME
Kinematic Viscosity

The kinematic viscosity at 40 ◦C of the biodiesel produced was determined based on
ASTM D-7042. An Anton Paar SVM 3000-Stabinger digital viscodensimeter (São Paulo, São
Paulo, Brazil) was used during the analysis.

Density
To determine the density of oils at 20 ◦C, the ASTM D-7042 standard was used.

For analysis, an Anton Paar SVM 3000-Stabinger digital viscodensimeter (Graz, Austria)
was used.

3.2.5. In Silico Study
Protein Modeling by Homology

The comparative modeling of the Eversa® Transform 2.0 lipase protein was carried out
in four steps. Initially, the recognition and selection of the model protein were performed.
In this step, the amino acid sequencing of the Eversa lipase protein was used, with its CAS
number 9001-62-1 from the Sigma–Aldrich company. The sequence was submitted to a
comparative analysis using the BLAST program (Basic Local Alignment Search Tool) www.
ncbi.nih.gov/BLAST (accessed on 25 August 2022) [60] and its respective PDB database.
Thus, a protein that was related to the amino acid sequence, the lipase enzyme, classified as
hydrolase, was recognized by the organism Aspergillus oryzae, expressed through the shuttle
Escherichia coli–Pichia pastoris, obtained from the Protein Bank (https://www.rcsb.org/)
accessed on 15 March 2022, with the code 5XK2 being the target protein [61]. Then,
the alignment between the sequences was performed using the Modeller program http:
//www.salilab.org/modeller/ (accessed on 25 August 2022) [61]. Thus, a new protein
named Eversa ® Transform 2.0 was obtained and evaluated according to the objective
function and stereochemical parameters [62]. Finally, the model was approved at the
stereochemical, conformational, and energetic levels. The Ramachandran graph and Verify
3D [59] determined the mold quality with the PROCHECK program https://saves.mbi.
ucla.edu/ (accessed on 25 August 2022), which estimated its three-dimensional structure,
indicating its three-dimensional structure and possible stereochemical quality.

Molecular Docking

A charge correction process and the addition of hydrogen atoms were carried out in
the protein generated by homology—the protein generated by homology Eversa® Trans-
form 2.0, through the Discovery Studio Visualizer Program (BIOVIA, Dassault Systémes,
Discovery Studio Visualiser, San Diego, CA, USA) [63].

The structures of babassu-free fatty acids were determined using caprylic, capric,
lauric, myrisitic, palmitic, and oleic acids (octanoic, decanoic, dodecanoic, tetrathnoic,
hexanoic, and cis-9-octadecenoic acids, respectively), which together accounted for about
95% of the fatty acids present in the hydrolyzed oil. For the modulation of these structures,
the software ChemDraw 3D (ChemOffice 2018, Perkin-Elmer Informatics, Shelton, CT,
USA) was used, and later the structure was minimized with an MM2 force field with an
RMS gradient of 0.0001.

www.ncbi.nih.gov/BLAST
www.ncbi.nih.gov/BLAST
https://www.rcsb.org/
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
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Molecular Dynamics Simulations

For the construction of the study solutions, in addition to the molecular dynamics
scripts, the CHARMM-GUI website https://www.charmm-gui.org/ (accessed on 25 Au-
gust 2022) was used [64,65]. The PDB file of the complex formed by the enzyme and the
ligand was chosen in its best docking pose, and a rectangular water box set at an edge
distance of 10 Å from the protein was added [66]. A cubic system with an edge equal
to 75 Å and crystalline angles of 90◦ (alpha, beta, and gamma) was then created. The
periodic boundary conditions PME and FFT were generated automatically [67,68]. The
force field adopted was the Charmm36m. All molecular dynamics simulations used the
following fixed conditions: temperature of 313.15 K, pressure of 1 atm, and pH 7.0, and the
TIP3P water model [69]. For each simulation, energy minimization was performed with
ten thousand steps in ensemble NVT. Then, equilibrium simulations were performed at
10 ns in NpT ensemble. Finally, a production simulation starting at 10 ns, being extended
until a situation of equilibrium of the complex was observed in the RMSD graph but never
exceeding the time of 100 ns. All simulations had an integration step of 1 fs [69,70]. The
graphics were visualized using Visual Molecular Dynamics (VMD) software (University of
Illinois, Urbana-Champaign, IL, USA) [71].

4. Conclusions

This work evaluated the biocatalytic production of babassu biodiesel through enzy-
matic hydroesterification. This process has several advantages over conventional processes,
as it allows the application of any raw material (vegetable oils, animal fats, and residual
oil) regardless of its level of humidity and acidity. The proposed enzymatic hydrolysis
was successfully performed since there was an increase in the acidity index of the oil from
0.75 mg NaOH/g to 127.03 mg NaOH/g.

A Taguchi design with an L9 orthogonal matrix was used to optimize the production
of babassu esters. The analysis of variance of the factors related to the process (ANOVA)
showed that the percentage of biocatalysts contributed significantly to the process (67.80%
contribution) with a p-value of 0.043. Under optimal conditions (5 h of reaction at 40 ◦C,
molar ratio FFA/alcohol 1:5, and 0.9% of biocatalyst), the theoretical conversion was 98.64%.
After carrying out the proposed reaction, a 95.76% conversion was observed. The difference
in the result between the theoretical conversion and the natural reaction can be explained
due to the influence of external factors in the system. The kinematic viscosity and density
results indicate that the biodiesel produced has potential for future applications.

The modeling of Eversa® transform 2.0 was validated by the Ramachandran graph,
which showed 91.5% of the residues in favorable regions. In addition, the obtained model
presented an average 3D-1D score ≥ 0.2 of 93,71% in the Verify 3D function, proving the
compatibility of the atomic model with the sequence. Thus, the modeled enzyme proved
valid and suitable for further studies.

The molecular docking results suggest that the ligands studied showed an energetic
affinity with the enzyme’s catalytic site. It was possible to observe that all ligands studied
interacted directly with the catalytic site and the oxyanion cavity. Through these results,
the complexes were generated that were evaluated in molecular dynamics simulations.

Through molecular dynamics, it was possible to observe that the formed complexes
accelerated high stability during the production and equivalence steps. The enzyme–
substrate complexes showed low RMSD values, indicating that the chosen poses were
appropriate for the study. The hydrogen bond graphs showed that the formed complexes
showed stability, thus corroborating the data obtained in the present work. Furthermore,
the theoretical and experimental results from this work indicate that fatty acids from
babassu oil form stable complexes with the catalytic site of Eversa (Ser 153, His 268 and
Asp 206), which may indicate a viable alternative for applications future

https://www.charmm-gui.org/
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