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Abstract: Manganese oxides (MnOx) have attracted particular attention in the selective catalytic
reduction of NOx with NH3 (NH3-SCR) because of their excellent low-temperature activity. Herein,
we prepared a highly efficient MnO2 (MnO2-M) catalyst through a facile ball milling-assisted redox
strategy. MnO2-M shows a 90% NOx conversion in a wide operating temperature window of
75–200 ◦C under a gas hourly space velocity of 40,000 h−1, which is much more active than the
MnO2 catalyst prepared by the redox method without the ball-milling process. Moreover, MnO2-M
exhibits better H2O and SO2 resistance. The enhanced catalytic properties of MnO2-M originated
from the high surface area, abundant oxygen vacancies, more acid sites, and higher Mn4+ content
induced by the ball-milling process. In situ DRIFTS studies probed the reaction intermediates, and
the SCR reaction was deduced to proceed via the typical Eley–Rideal mechanism. This work provides
a facile method to enhance the catalytic performance of Mn-based catalysts for low-temperature
denitrification and deep insights into the NH3-SCR reaction process.

Keywords: MnO2; ball-milling; high surface area; oxygen vacancies; low-temperature NH3-SCR

1. Introduction

One of the most significant factors causing environmental pollution is NOx emitted by
burning fossil fuels, leading to a series of environmental concerns such as ozone depletion,
acid rain, and photochemical smog [1,2]. At present, selective catalytic reduction by NH3
(NH3-SCR) is one of the effective technologies to reduce NOx [3–5], typically using the
V2O5-WO3/TiO2 and V2O5-MoO3/TiO2 catalysts [6,7]. However, the V-based catalysts
have some disadvantages, e.g., the narrow working temperature window and biological
toxicity. Additionally, their operating temperature is required to be above 300 °C, which
is energy-consuming [8,9]. Therefore, it is essential to develop novel non-V-based SCR
catalysts with high activity at low temperatures [10–12].

Mn-based catalysts have been widely investigated for low-temperature NH3-SCR due
to their high catalytic activity, good redox properties, relatively low toxicities, and low
cost [13,14]. In the case of pure MnOx catalysts, their different valence states typically affect
the catalytic activity. Yang et al. [15] found that MnO2 exhibited higher NO conversion at
75–250 ◦C than Mn2O3 and Mn3O4 because of the higher valence state of Mn in MnO2. In
addition, the crystallinity and surface area of MnOx can also affect its catalytic performance.
Tang et al. [16] found that amorphous MnOx with a higher specific area had higher activity
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than highly crystallized MnOx. Moreover, the NH3-SCR reaction involves the participation
of reactive oxygen species, e.g., NO oxidation to NO2. Oxygen vacancies (OVs) are also
helpful in improving the catalytic activity of MnOx [17]. For example, Liu et al. [18] reported
that mesoporous α-MnO2 nanosheets with more OVs reached 100% NO conversion under
a gas hourly space velocity (GHSV) of 700,000 h−1 at 100 ◦C.

Several strategies have been developed to generate OVs in metal oxides. For example,
Chen et al. [19] employed aqueous NaBH4 to reduce Co3O4, and OVs were generated
during the surface reduction process. Sun et al. [20] found that the post-acid-etching process
effectively made OVs in MnOx. Hilpert et al. [21] prepared LaCrO3-δ with many OVs by
exposing LaCrO3 to oxidizing and reducing atmospheres under 900–1100 ◦C operating
conditions. Yim et al. [22] used ion sputtering and annealing reduction method to obtain
rutile TiO2 with high OVs concentration. Although these approaches have proven effective,
they are relatively complicated and costly. Increasing the OVs concentration of MnOx
through simple and economical alternative routes to improve its catalytic performance is
essential but challenging.

Herein, we report a facile ball milling-assisted redox strategy to obtain a high-performing
MnO2 catalyst (MnO2-M) by introducing abundant OVs. In contrast to the MnO2 catalyst
obtained by the conventional redox method (MnO2), MnO2-M exhibits much higher activity
in the NH3-SCR reaction. This is mainly attributed to the abundant OVs, more acid
sites, and higher Mn4+ content induced by the ball-milling process. The corresponding
structure-activity relationship and reaction mechanism was elucidated by investigating the
catalyst structure in detail. This work demonstrates significant progress for the practical
applications of pure MnOx in NOx elimination at low temperatures.

2. Results and Discussion
2.1. Characterization of the Catalysts
2.1.1. XRD and PSD Analysis

Figure 1a shows the XRD patterns of the catalysts. In the pattern of MnO2-M, three
prominent diffraction peaks appear at 37.5◦, 42.0◦, and 57.0◦, which can be indexed as the
(211), (301), and (431) planes of α-MnO2 (PDF#44-0141), respectively [23]. Compared with
the MnO2-M catalyst, MnO2 shows more diffraction peaks. These diffraction peaks match
well with the standard pattern of the α-MnO2 phase (PDF#44-0141), where the stronger
diffraction peaks at 2θ = 28.8◦, 37.5◦, and 42.0◦ can be ascribed to the (310), (211), and (301)
planes of the MnO2, respectively [24,25]. It should be noted that the XRD pattern of the
MnO2-M catalyst shows significantly broadened diffraction peaks with poor crystallinity,
indicating that its crystal growth is suppressed during the ball milling-assisted redox
process. Indeed, M-MnO2 obtained by the ball-milling of MnO2 for 1 h also presents
lower crystallinity and smaller particle size, indicating that the ball-milling process does
affect the structure of the catalyst. The crystal sizes of the MnO2-M catalyst based on the
Debye–Scherrer equation calculated from the strongest diffraction peak at 2θ = 37.5◦ is
4.92 nm, while that at 2θ = 28.8◦ calculated at 27.17 nm for the MnO2 catalyst (Table 1).
The particle size of the catalysts was measured using a laser particle size analyzer, and the
results are shown in Figure 1b. The size of MnO2 is centered at 1–20 µm. However, the
MnO2-M catalyst has different distributions at 0.2–2, 2–6, and 6–20 µm, suggesting that
both small and large particles coexist. The mixture of particles with different sizes benefits
the formation of inter-particle pores.

2.1.2. N2 Adsorption Measurements

The BET surface area and total pore volume of the catalysts are listed in Table 1. The
MnO2-M catalyst possesses a larger surface area (177.9 vs. 66.4 m2/g) and pore volume
(0.335 vs. 0.149 cm3/g) than the MnO2 catalyst. The larger surface area may be because the
MnO2-M catalyst contains abundant inter-particle pores, which can also be deduced from
the PSD results. To interpret such a difference, the N2 adsorption–desorption isotherms
and pore size distribution of the two catalysts are also shown in Figure 2. The two catalysts
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display the type IV adsorption isotherms with H3-type hysteresis, indicating the formation
of a porous structure [26]. As seen in Figure 2b, the pore size distributions of the two
catalysts obtained from nitrogen adsorption are both in the range of 5–30 nm. However,
the peak intensity of the pore size distribution in the MnO2-M catalyst is much higher than
in the MnO2 catalyst, which means that more pores, including large and small sizes, exist
in the MnO2-M catalyst.
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Figure 1. XRD patterns (a) and PSD curves (b) of the catalysts.

Table 1. Physical properties of the catalysts.

Catalyst
SBET

i

(m2 g−1)
VP

ii

(cm3 g−1)
Lattice Parameter iii (Å) Average Crystallite

Size iv (nm)a = b c

MnO2-M 177.9 0.335 9.7904 2.8544 4.92
MnO2 66.4 0.149 9.8156 2.8561 27.17

i Surface area derived from the BET equation. ii Pore volume was obtained from the volume of nitrogen adsorbed
at a relative pressure of 0.99. iii XRD results for the MnO2 phase in the catalysts, calculated by the Bragg
equation. iv Estimated from the XRD diffraction peak (2θ = 37.5◦ for MnO2-M and 28.8◦ for MnO2) using the
Debye–Scherrer equation.
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2.1.3. SEM Observation

Figure 3 depicts the typical SEM images of MnO2-M and MnO2. The MnO2-M cat-
alyst exhibits irregular particles of varying sizes, while the MnO2 catalyst displays a
unique waxberry-like shape with consistent dimensions. Compared with the MnO2 cata-
lyst containing particles in close contact, the particles in the MnO2-M catalyst are in loose
connection, which is more conducive to forming inter-particle pores. This is also evidenced
by the PSD result (Figure 1b) and N2 adsorption result (Figure 2). In short, inter-particle
pores can increase the specific surface area of the catalyst and provide more active sites
between the catalyst and gas-phase reactants.
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Figure 3. SEM images of MnO2-M (a,b) and MnO2 (c,d).

2.1.4. H2-TPR Analysis

It is well known that the redox property of catalysts is a critical factor for the NH3-
SCR reaction [27]. Therefore, we investigated the reduction behavior of the catalysts by
H2-TPR test, and the results are presented in Figure 4. For the two catalysts, there are two
obvious reduction peaks located in the temperature range of 213–400 °C (I) and 400–533 °C
(II), which can be assigned to the successive reduction of MnO2 → Mn2O3/Mn3O4 →
MnO [28,29]. It should be noted that the reduction of MnO2-M catalyst starts at a lower
temperature but ends up at a higher temperature. In contrast, the two reduction peaks of
the MnO2 catalyst overlap, and the peaks are more concentrated. This difference between
the two catalysts may be attributed to their different particle size distributions. Smaller
particles in MnO2-M catalyst are easier to be reduced at a low temperature, while larger
particles are more difficult to be reduced because of limited mass transfer. Therefore, the
two reduction peaks of the MnO2-M catalyst have a larger temperature gap due to the
varying particle size. By contrast, the uniform particle size in the MnO2 catalyst leads
to a narrow reduction peak. This result indicates that the ball-milling process can create
small particles and improve the reduction potentials at low temperature. Furthermore,
quantitative analysis data of H2-TPR are listed in Table 2. Although the two catalysts in the
H2-TPR experiments are reduced to green MnO, the experimental H2 consumption of the
catalysts is significantly less than the theoretical consumption (11.5 mmol/g). This may be
due to some manganese in the Mn3+ oxidation state in catalysts. In addition, the MnO2-M
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catalyst shows more H2 consumption than the MnO2 catalyst, which indicates that there
exists more of an Mn4+ oxidation state than MnO2. It has been widely reported that Mn4+ is
the most effective oxidation state for NOx conversion [30]. Therefore, the MnO2-M catalyst
can be a significant advantage in NH3-SCR compared with MnO2.
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Figure 4. H2-TPR curves of the catalysts.

Table 2. H2 adsorption amount of the catalysts.

Catalyst

H2 Consumption i

(mmol g−1)
Total H2

Consumption i

(mmol g−1)

Theoretical H2
Consumption i

(mmol g−1)I II

MnO2-M 4.85 3.91 8.76 11.50
MnO2 3.91 2.27 6.18 11.50

i Calculated based on the H2-TPR results.

2.1.5. XPS Analysis

Figure 5 shows the XPS Mn 2p and O 1s spectra of MnO2-M and MnO2 catalysts.
The Mn 2p3/2 spectra can be separated into three characteristic peaks attributed to Mn2+

(641.0 eV), Mn3+ (642. 4 eV), and Mn4+ (643.5 eV), respectively (Figure 5a), by performing
peak-fitting deconvolutions [31–34]. The Mn4+/(Mn3+ + Mn2+) atomic ratio (Table 3) was
calculated from XPS spectra. The relative surface content of Mn4+/(Mn3+ + Mn2+) on
MnO2-M (0.81) is much higher than that of MnO2 (0.56). Therefore, much more Mn4+ is
exposed on the surface of the MnO2-M catalyst, which is beneficial for NO oxidation to
NO2, leading to high activity in the NH3-SCR reaction at low temperatures.

Two peaks can be distinguished in the O 1s spectra of the catalysts (Figure 5b). The
peak at 529.9 eV is assigned to the lattice oxygen (marked as Olatt), and the peak at 531.3 eV
is ascribed to the surface adsorbed oxygen (marked as Oads, O2

2− or O− belonging to
defect-oxide or hydroxyl-like group) [35,36]. It is well known that the Oads species are
more active than the Olatt species due to their higher mobility [37]. From Table 3, the
Oads/Olatt ratio in MnO2-M (1.17) is much higher than that in MnO2 (0.60), suggesting that
the ball-milling process could produce much more OVs in the MnO2-M catalyst. The above
results show that the MnO2-M catalyst has a higher Mn4+/(Mn3+ + Mn2+) content and more
surface oxygen species than the MnO2 catalyst, which is critical to the NH3-SCR reaction.
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Table 3. Surface compositions of the catalysts by XPS analysis.

Catalyst Mn4+/(Mn3+ + Mn2+) Oads/Olatt

MnO2-M 0.81 1.17
MnO2 0.56 0.60

2.1.6. NH3-TPD Analysis

The surface acidity of the catalyst also plays a vital role in the low-temperature SCR of
NO by NH3. Therefore, NH3-TPD was carried out to evaluate the acidity of the catalysts,
as shown in Figure 6. The detailed ammonia desorption parameters of the catalysts are
summarized in Table 4. From Figure 6, both MnO2-M and MnO2 catalysts exhibit one
broad desorption peak below 300 °C, which can be attributed to the subsequent desorption
of NH3 coordinated with weak acid sites [36]. As shown in Table 4, the total amount of
desorbed NH3 for MnO2-M (0.43 µmol g−1) is higher than that of MnO2 (0.32 µmol g−1),
possibly due to the larger specific surface area of the MnO2-M catalyst. The superiority of
acid sites on the MnO2-M catalyst could promote the adsorption and activation of NH3,
which favors the SCR reaction [38].
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Table 4. Quantitative analysis of NH3-TPD over the catalysts.

Catalyst Surface Acidity i (µmol g−1)

MnO2-M 0.43
MnO2 0.32

i Calculated based on the NH3-TPD results.

2.2. Formation Mechanism of MnO2-M

Previously, studies reported that MnO2 with different morphology structures could
be obtained by tailoring manganese precursors, such as MnCl2, MnSO4·H2O, Mn(NO3)2
H2O, and KMnO4 [39]. Here, we used Mn(NO3)2 solution and KMnO4 as precursors. Mn
precursors underwent an oxidation-reduction reaction (2KMnO4 + 3Mn(NO3)2 + 2H2O
= 5MnO2 +HNO3 + 2KNO3) to generate MnO2 sediment (Scheme 1). Ball-milling as a
mechanical technique is widely used to grind powders into fine particles. When ball-milling
was introduced into the catalyst preparation process, these Mn2+ and Mn7+ precursors
could quickly react and convert to irregular MnO2-M particles with uneven particle size.
The crystal cannot grow due to inadequate time, evidenced by SEM and PSD results. The
irregular particles with variable sizes in MnO2-M benefit the formation of inter-particle
pores, thereby increasing the surface area of the catalyst. The higher the surface area, the
more active sites are available for NH3-SCR reaction. Considering the ball milling method
is an environmentally friendly and cost-effective technique, the facile ball milling-assisted
synthesized strategy provides the potential for the scaled-up production of MnOx catalysts
in industrial applications.
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Scheme 1. Schematic illustration of the preparation of catalysts.

2.3. Catalytic Performance

Figure 7a shows the NOx conversion as a function of temperature in the NH3-SCR
reaction on MnO2-M and MnO2 catalysts. MnO2-M exhibits higher activity with NOx
conversion of 68% at 50 ◦C and 100% at 100 ◦C. In contrast, only 49.8% NOx conversion
is obtained at 50 ◦C on MnO2, and 100% NOx conversion is not achieved even at 200 ◦C.
In addition, the N2 selectivity of the catalysts was evaluated, and the results are shown in
Figure 7b. Both the catalysts exhibit an acceptable and similar N2 selectivity below 150 ◦C.
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Figure 7. Catalytic performances of the catalysts NOx conversion (a) and N2 selectivity (b) at different
temperature (reaction conditions: [NO] = 500 ppm, [NH3] = 500 ppm, [O2] = 5%, and N2 as balance
gas, GHSV = 40,000 h−1).

Based on the results of BET, H2-TPR, XPS, and NH3-TPD, the much higher NOx
conversion on MnO2-M can be attributed to its higher specific surface area, more adsorbed
surface oxygen, higher reducibility, and more acid sites. It should be noted that the
preparation process of the two catalysts is similar, except that the latter uses ball milling.
Therefore, it can be deduced that the ball-milling process may be the key to the optimization
of catalyst structure and the improvement in the SCR performance. To verify this, we
applied the ball milling method to the MnO2 catalyst and obtained the M-MnO2 catalyst.
As shown in Figure 8, the M-MnO2 catalyst presents an NOx conversion of 55% at 50 ◦C,
78% at 75 ◦C, and 97% at 100 ◦C, suggesting a much better NH3-SCR performance than the
pristine MnO2.
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Figure 8. Comparison of NOx conversion of MnO2, MnO2-M, and M-MnO2 catalysts at different
temperature (reaction conditions: [NO] = 500 ppm, [NH3] = 500 ppm, [O2] = 5%, and N2 as balance
gas, GHSV = 40,000 h−1).
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The resistance to H2O and SO2 under reaction conditions is important for low-
temperature SCR catalysts. The H2O and SO2 tolerance tests of the MnO2-M and MnO2
were conducted at 150 ◦C. Figure 9a shows the H2O tolerance results of the catalysts. When
10 vol.% H2O is added to the reaction gas, the NOx conversion on the MnO2-M catalyst
changes from nearly 100% at 4 h to 85.5% at 14 h, and that of MnO2 decreases from nearly
100% at 4 h to 76.9% at 14 h, suggesting that the MnO2-M catalyst shows better resistance to
H2O than MnO2. When H2O is cut off, its catalytic activities recover quickly. In particular,
the MnO2-M catalyst can be fully recovered to the original level. Therefore, the activity
decreases in the two catalysts caused by H2O originated from competitive adsorption of
H2O and NH3/NOx for active sites, but not the deactivation of active sites. As shown in
Figure 9b, further introduction of SO2 to the reaction gas significantly decreased the initial
NOx conversion over the two catalysts compared to the case of only H2O. In addition,
the NOx conversions of the two catalysts decrease gradually along with reaction time.
However, the NOx conversion on the MnO2-M catalyst is still much higher than that on
MnO2. Moreover, when the H2O and SO2 are removed from the reaction gas, the NOx
conversions of the MnO2-M and MnO2 catalysts cannot recover, which may be due to
the formation of sulfating Mn species. Even so, the MnO2-M catalyst could achieve more
than 88.4% NOx conversion after the process, implying that it has good resistance to H2O
and SO2.

Catalysts 2022, 12, 1291 10 of 17 
 

 

 

Figure 9. The effect of H2O on NOx conversion over the catalysts (a) and the effect of SO2 and H2O 

on NOx conversion at 150 °C (b) (reaction conditions: [NO] = 500 ppm, [NH3] = 500 ppm, [O2] = 5%, 

and N2 as balance gas, [H2O(g)] = 10 vol.% (in use), [SO2] = 50 ppm (in use), GHSV = 40,000 h−1). 

2.4. In Situ DRIFTS Studies 

To obtain insights about the reaction mechanism, in situ DRIFTS studies were con-

ducted. In situ DRIFTS spectra of MnO2-M and MnO2 catalysts exposed to NO + O2 at 50 

°C as a function of time are shown in Figure 10. Four main bands over the two catalysts 

appear after introducing NO + O2 into the IR cell. For the MnO2-M catalyst, the band lo-

cated at 1026 cm−1 is ascribed to monodentate nitrite, while those at 1539 and 1271 cm−1 are 

assigned to bidentate nitrate. The band at 1630 cm−1 is attributed to the NO2 ad-species 

(nitro group or adsorbed NO2 molecule) [40,41]. The intensity of these peaks becomes 

stronger with the increase in exposure time. On the MnO2 catalyst, the bands assigned to 

monodentate nitrite and the NO2 ad-species at 1031 and 1620 cm−1 are also detected. Ad-

ditionally, the bands that are indexed to monodentate nitrates (1313 cm−1) and ionic nitrate 

(1462 cm−1) appear on the MnO2 catalyst. However, those bands corresponding to biden-

tate nitrate disappear. The above results show that more stable nitrate exists, e.g., the bi-

dentate nitrate on the MnO2-M catalyst, which further proves that the formation of more 

OVs on the MnO2-M catalyst promotes NH3-SCR performance. 

To investigate the nature of the adsorbed NH3 species and potential intermediates, 

in situ DRIFTS spectra of the two catalysts exposed in the NH3 atmosphere at 50 °C were 

collected, as shown in Figure 10c,d. The bands in 3450–3000 cm−1 can be assigned to N-H 

stretching vibration of ordinated NH3 adsorbed on Lewis sites [42,43]. The corresponding 

bending vibrations are observed at 1170/1178 cm−1 [42–44]. With the increasing adsorption 

time, the bands of the two catalysts increase until the adsorption is saturated. For the 

MnO2-M catalyst, the band at 1597 cm−1 is assigned to NH3 coordinately linked to the 

Lewis acid sites, while the band at 1388 cm−1 can be ascribed to monodentate nitrites. In 

Figure 10d, these bands show a little shift over the MnO2 catalyst, e.g., from 1597 cm−1 and 

1388 cm−1 to 1608 cm−1 and 1398 cm−1, respectively. Compared with the MnO2 catalyst, a 

new band at 1641 cm−1 corresponding to bridging nitrates appears. This indicates that par-

tial NH3 at Lewis acid sites can be oxidized to bidentate nitrate and monodentate nitrites. 

The MnO2-M catalyst possesses stronger acid intensity to absorb the ammonia species, 

further explaining the higher SCR activity of the MnO2-M catalyst. 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100(a)

N
O
x 

C
o

nv
er

si
o

n
 (

%
)

Time (h)

10 % H2O  in

 off

MnO2

MnO2-M

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100(b)

Time (h)

 off

10 % H2O + 50 ppm SO2 in

N
O
x 

C
on

v
er

si
o

n
  

(%
)

MnO2

MnO2-M

Figure 9. The effect of H2O on NOx conversion over the catalysts (a) and the effect of SO2 and H2O
on NOx conversion at 150 ◦C (b) (reaction conditions: [NO] = 500 ppm, [NH3] = 500 ppm, [O2] = 5%,
and N2 as balance gas, [H2O(g)] = 10 vol.% (in use), [SO2] = 50 ppm (in use), GHSV = 40,000 h−1).

2.4. In Situ DRIFTS Studies

To obtain insights about the reaction mechanism, in situ DRIFTS studies were con-
ducted. In situ DRIFTS spectra of MnO2-M and MnO2 catalysts exposed to NO + O2 at
50 ◦C as a function of time are shown in Figure 10. Four main bands over the two catalysts
appear after introducing NO + O2 into the IR cell. For the MnO2-M catalyst, the band
located at 1026 cm−1 is ascribed to monodentate nitrite, while those at 1539 and 1271 cm−1

are assigned to bidentate nitrate. The band at 1630 cm−1 is attributed to the NO2 ad-species
(nitro group or adsorbed NO2 molecule) [40,41]. The intensity of these peaks becomes
stronger with the increase in exposure time. On the MnO2 catalyst, the bands assigned
to monodentate nitrite and the NO2 ad-species at 1031 and 1620 cm−1 are also detected.
Additionally, the bands that are indexed to monodentate nitrates (1313 cm−1) and ionic
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nitrate (1462 cm−1) appear on the MnO2 catalyst. However, those bands corresponding to
bidentate nitrate disappear. The above results show that more stable nitrate exists, e.g., the
bidentate nitrate on the MnO2-M catalyst, which further proves that the formation of more
OVs on the MnO2-M catalyst promotes NH3-SCR performance.
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Figure 10. In situ DRIFTS spectra of adsorption of NO + O2 at 50 ◦C on MnO2-M (a) and MnO2 (b).
In situ DRIFTS spectra of NH3 adsorption at 50 ◦C on MnO2-M (c) and MnO2 (d).

To investigate the nature of the adsorbed NH3 species and potential intermediates,
in situ DRIFTS spectra of the two catalysts exposed in the NH3 atmosphere at 50 ◦C were
collected, as shown in Figure 10c,d. The bands in 3450–3000 cm−1 can be assigned to N-H
stretching vibration of ordinated NH3 adsorbed on Lewis sites [42,43]. The corresponding
bending vibrations are observed at 1170/1178 cm−1 [42–44]. With the increasing adsorption
time, the bands of the two catalysts increase until the adsorption is saturated. For the MnO2-
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M catalyst, the band at 1597 cm−1 is assigned to NH3 coordinately linked to the Lewis acid
sites, while the band at 1388 cm−1 can be ascribed to monodentate nitrites. In Figure 10d,
these bands show a little shift over the MnO2 catalyst, e.g., from 1597 cm−1 and 1388 cm−1

to 1608 cm−1 and 1398 cm−1, respectively. Compared with the MnO2 catalyst, a new band
at 1641 cm−1 corresponding to bridging nitrates appears. This indicates that partial NH3
at Lewis acid sites can be oxidized to bidentate nitrate and monodentate nitrites. The
MnO2-M catalyst possesses stronger acid intensity to absorb the ammonia species, further
explaining the higher SCR activity of the MnO2-M catalyst.

To further investigate the SCR reaction mechanism over the two catalysts, in situ
DRIFTS spectra in a flow of NO + O2 + NH3 were conducted at different temperatures.
As shown in Figure 11, raising the temperature decreased the intensity of all the bands.
For the MnO2-M catalyst at 50 °C, the band at 1196 cm−1 is attributed to N-H bending
vibrations of NH3 adsorbed on Lewis sites. The bands at 1319, 1602, and 3200–3400 cm−1

are attributed to ordinated NH3 adsorbed on Lewis sites. And the band at 1319 cm−1 shifts
to lower wavenumbers with the increasing temperature, eventually reaching 1278 cm−1

at 300 °C. The bands at 1394 cm−1 were attributed to monodentate nitrate [40,45]. In situ
DRIFTS spectra of the MnO2 catalyst, as shown in Figure 11c, are similar to those obtained
over the MnO2-M catalyst. However, the intensities of the bands on MnO2 are much lower
than that on the MnO2-M catalyst, possibly due to the less active sites in the MnO2 catalyst.
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Figure 11. In situ DRIFTS spectra of adsorption of NO + O2 + NH3 at a different temperature over
MnO2-M (a) and MnO2 (b).

The above results suggest that the adsorption of NH3 is dominated under the SCR
reaction conditions for the two catalysts. The possible reaction mechanism over MnO2-M
at low temperature can be described in Scheme 2. The NO molecules in the gas phase
are adsorbed on the catalyst surface and react with O2 with OVs’ assistance to form NO2.
Due to Lewis acidity, the NH3 molecules are adsorbed onto the MnO2-M surface and
form NH3(ad). Then, the formed NH3(ad) can further react with NOx to generate N2
and H2O. Therefore, the SCR reaction on MnO2-M proceeds via the typical Eley–Rideal
(ER) mechanism.
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Scheme 2. The main reaction mechanism of the NH3-SCR over the MnO2-M catalyst.

3. Experiment
3.1. Chemical Reagents

Manganese nitrate solution (Mn(NO3)2, 50% in H2O) was purchased from Shanghai
Macklin Biochemical Co., Ltd., Shanghai, China and potassium permanganate (KMnO4)
was purchased from Beijing Chemical Works Co., Ltd., Beijing, China. All the chemicals
were analytical grade and used as received without further treatment. Deionized water
was used in all experiments.

3.2. Preparation of Catalysts

The Mn-based catalyst was prepared by the ball milling-assisted redox method.
Scheme 3 depicts the synthesis procedure of the catalyst. In brief, 3.64 g of KMnO4 and
6.17 g of Mn(NO3)2 were added to an agate jar (100 mL) along with some zirconia balls
(5 mm diameter). Here, the ball to powder mass ratio was 10:1. The agate jar was placed
in a high-speed ball milling apparatus (Planetary Ball Mill QM-3SP04, Nanjing Chishun
Sclence And Technology Development Co., Ltd, Nanjing, China), and the reactants were
ball-milling for 1 h at a frequency of 580 r/min. The resulting solid was washed several
times with deionized water, dried overnight at 105 ◦C, and calcined at 400 ◦C for 3 h to
obtain the Mn-based catalyst. The prepared catalyst was denoted as MnO2-M.

Catalysts 2022, 12, 1291 13 of 17 
 

 

3. Experiment 

3.1. Chemical Reagents 

Manganese nitrate solution (Mn(NO3)2, 50% in H2O) was purchased from Shanghai 

Macklin Biochemical Co., Ltd., Shanghai, China and potassium permanganate (KMnO4) 

was purchased from Beijing Chemical Works Co., Ltd., Beijing, China. All the chemicals 

were analytical grade and used as received without further treatment. Deionized water 

was used in all experiments. 

3.2. Preparation of Catalysts 

The Mn-based catalyst was prepared by the ball milling-assisted redox method. 

Scheme 3 depicts the synthesis procedure of the catalyst. In brief, 3.64 g of KMnO4 and 

6.17 g of Mn(NO3)2 were added to an agate jar (100 mL) along with some zirconia balls (5 

mm diameter). Here, the ball to powder mass ratio was 10:1. The agate jar was placed in 

a high-speed ball milling apparatus (Planetary Ball Mill QM-3SP04, Nanjing Chishun 

Sclence And Technology Development Co., Ltd, Nanjing, China), and the reactants were 

ball-milling for 1 h at a frequency of 580 r/min. The resulting solid was washed several 

times with deionized water, dried overnight at 105 °C, and calcined at 400 °C for 3 h to 

obtain the Mn-based catalyst. The prepared catalyst was denoted as MnO2-M. 

For comparison, the MnO2 catalyst was prepared without ball milling. First, 3.64 g of 

KMnO4 was dissolved in 100 mL of deionized water to obtain solution A. Next, 6.17 g of 

Mn(NO3)2 was dissolved in 100 mL of deionized water to obtain solution B. Subsequently, 

solution B was added dropwise into solution A under stirring at room temperature, and 

the obtained mixture was stirred for 4 h to form a slurry. Then, the slurry was filtered and 

washed several times with deionized water. The filter cake was dried overnight at 105 °C 

and calcined at 400 °C for 3 h. The obtained catalyst was named MnO2. For comparison 

with MnO2 and MnO2-M, part of the synthesized MnO2 catalyst was further ball-milled 

for 1 h, obtaining the reference catalyst named M-MnO2. 

 

Scheme 3. Synthesis procedures for the preparation of the MnO2-M catalyst. 

3.3. Characterization 

X-ray diffraction (XRD) patterns were recorded using a Cu Kα radiation (λ = 1.5148 

Å) range from 10.0 to 90.0° (X’Pert PRO MPD, PANalytical, Almelo, the Netherlands). The 

scanning electron micrograph (SEM) images were obtained at 5.0 kV (Regulus 8100, JEOL, 

Tokyo, Japan). The particle size distribution (PSD) was measured using a laser particle 

size analyzer (BT-9300Z, Bettersize Instruments Ltd., Dandong, China). The N2 adsorp-

tion-desorption isotherms were measured on a surface area and pore size analyzer 

(NOVA 3200e, Quantachrome, FL, USA). The specific surface areas of the catalysts were 

determined by using the Brunauer–Emmett–Teller (BET) method. The catalysts were de-

gassed at 200 °C for 4 h and analyzed at −196 °C. The pore volume and pore size distribu-

tion were measured from the desorption branch using the Barrett–Joyner–Halenda (BJH) 

method. 

H2 temperature-programmed reduction (H2-TPR) experiments were carried out on 

an automated chemisorption analyzer (ChemBET pulsar TPR/TPD, Quantachrome, FL, 

USA). 0.05 g of catalyst was loaded into a quartz U-tube, then the catalyst was degassed 

Scheme 3. Synthesis procedures for the preparation of the MnO2-M catalyst.

For comparison, the MnO2 catalyst was prepared without ball milling. First, 3.64 g of
KMnO4 was dissolved in 100 mL of deionized water to obtain solution A. Next, 6.17 g of



Catalysts 2022, 12, 1291 13 of 16

Mn(NO3)2 was dissolved in 100 mL of deionized water to obtain solution B. Subsequently,
solution B was added dropwise into solution A under stirring at room temperature, and
the obtained mixture was stirred for 4 h to form a slurry. Then, the slurry was filtered and
washed several times with deionized water. The filter cake was dried overnight at 105 ◦C
and calcined at 400 ◦C for 3 h. The obtained catalyst was named MnO2. For comparison
with MnO2 and MnO2-M, part of the synthesized MnO2 catalyst was further ball-milled
for 1 h, obtaining the reference catalyst named M-MnO2.

3.3. Characterization

X-ray diffraction (XRD) patterns were recorded using a Cu Kα radiation (λ = 1.5148 Å)
range from 10.0 to 90.0◦ (X’Pert PRO MPD, PANalytical, Almelo, the Netherlands). The
scanning electron micrograph (SEM) images were obtained at 5.0 kV (Regulus 8100, JEOL,
Tokyo, Japan). The particle size distribution (PSD) was measured using a laser particle
size analyzer (BT-9300Z, Bettersize Instruments Ltd., Dandong, China). The N2 adsorption-
desorption isotherms were measured on a surface area and pore size analyzer (NOVA
3200e, Quantachrome, FL, USA). The specific surface areas of the catalysts were determined
by using the Brunauer–Emmett–Teller (BET) method. The catalysts were degassed at 200 ◦C
for 4 h and analyzed at−196 ◦C. The pore volume and pore size distribution were measured
from the desorption branch using the Barrett–Joyner–Halenda (BJH) method.

H2 temperature-programmed reduction (H2-TPR) experiments were carried out on an
automated chemisorption analyzer (ChemBET pulsar TPR/TPD, Quantachrome, FL, USA).
0.05 g of catalyst was loaded into a quartz U-tube, then the catalyst was degassed at 150 ◦C
for 0.5 h under helium. When the temperature was cooled to 50 ◦C, the gas was changed
to 10% H2/Ar. Finally, the catalyst was heated from 50 to 1000 ◦C at 10 ◦C min−1 under a
H2/Ar flow (30 mL min−1). X-ray photoelectron spectra (XPS) were collected to analyze
the surface chemical compositions of the catalysts (Model VG ESCALAB 250 spectrometer,
Thermo Electron, London, UK). Temperature-programmed desorption of ammonia (NH3-
TPD) experiments were carried out on a FT-IR instrument (Nicolet 380, Thermo Fisher
Scientific, Waltham, MA, USA). Before the experiment, 100 mg of catalyst was treated in 5%
O2/N2 at 300 ◦C for 30 min. After cooling to 50 ◦C in the same gas mixture, the catalyst
was exposed to 500 ppm NH3/N2 for 30 min and then flushed in N2 gas flow for 30 min.
The NH3 desorption was recorded in N2 while heating to 500 ◦C at a rate of 10 ◦C/min.
In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) of the
catalyst was carried out with an FTIR (Nicolet iS50, Thermo Fisher Scientific, Waltham, MA,
USA) equipped with an in situ diffuse reflection chamber and MCT detector. The catalysts
were pretreated at 300 ◦C in a 5% O2/N2 atmosphere for 30 min and then gradually cooled
to 50 ◦C. Then, the catalysts were purged with the reaction atmosphere, and the spectra
were collected as a function of time.

3.4. Catalytic Measurement

The NH3-SCR activity reaction was carried out in a fixed-bed reactor operating at
atmospheric pressure. Before each test, 1.5 mL of catalyst was pretreated with N2 gas flow
in the reactor at 300 ◦C for 1 h. The inlet gas comprised NO (500 ppm), NH3 (500 ppm), O2
(5%), and N2 (the balance). The GHSV was 40,000 h−1. A FT-IR spectrometer monitored
the gaseous species (NO, NH3, NO2, and N2O) in the exhaust (Nicolet 380, Thermo Fisher
Scientific, Waltham, MA, USA).

The NH3-SCR stability reaction was carried out in a fixed-bed reactor operating at
atmospheric pressure. Before each test, 1.5 mL of catalyst was pretreated with N2 gas flow
in the reactor at 300 ◦C for 1 h. The inlet gas comprised NO (500 ppm), NH3 (500 ppm),
O2 (5%), SO2 (50 ppm, in use), H2O (10 vol.%, in use), and N2 (the balance). The GHSV
was 40,000 h−1. The NOx concentrations in the exhaust were analyzed by a multiple gas
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analyzer (Testo 350, Testo SE & Co. KGaA, Baden-Württemberg, Germany). The NOx
conversion and N2 selectivity were calculated as follows:

NOx conversion (%) =
[NOx]in − [NOx]out − 2 × [N2O]out

[NOx]in
× 100 (1)

N2 selectivity (%) = (1 −
2 × [N2O]out

[NH3]in − [NH3]out + [NOx]in − [NOx]out
) × 100 (2)

The “in” and “out” subscripts represent the inlet and outlet gas concentrations in the
steady state, respectively.

4. Conclusions

The ball milling-assisted redox method was successfully applied to prepare the MnO2-
M catalyst with a high specific surface area. Compared with the MnO2 catalyst obtained
by the redox method, the MnO2-M catalyst exhibits a higher catalytic activity and better
resistance against H2O and SO2 in NH3-SCR reaction at low temperatures. Based on
characterization analysis, more OVs can be manufactured, which is beneficial for NO
oxidation and promotes the NH3-SCR reaction. Moreover, the MnO2-M catalyst has more
acid sites, higher Mn4+ content, surface adsorbed oxygen, and active sites. All these features
can contribute to the high NH3-SCR performance of the MnO2-M catalyst. In situ DRIFTS
studies probed the reaction intermediates and predicted that the adsorption of NH3 is
dominated under the SCR reaction via the typical Eley–Rideal mechanism.
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