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Abstract: Organocatalysts for polymerization have known a huge interest over the last two decades.
Among them, heterocyclic nitrogen bases are widely used to catalyse the ring-opening polymerization
(ROP) of heterocycles such as cyclic carbonates. We have investigated the ring-opening polymer-
ization of trimethylene carbonate (TMC) catalysed by DMAP (4-dimethylaminopyridine) and TBD
(1,5,7-triazabicyclo[4.4.0]dec-5-ene) as case studies in the presence of methanol as co-initiator by
Density Functional Theory (DFT). A dual mechanism based on H-bond activation of the carbonyl
moieties of the monomer and a basic activation of the alcohol co-initiator has been shown to occur
more preferentially than a direct nucleophilic attack of the carbonate monomer by the heterocyclic
nitrogen catalyst. The rate-determining step of the mechanism is the ring opening of the TMC
molecule, which is slightly higher than the nucleophilic attack of the TMC carbonyl by the activated
alcohol. The calculations also indicate TBD as a more efficient catalyst than DMAP. The higher energy
barrier found for DMAP vs. TBD, 23.7 vs. 11.3 kcal·mol−1, is corroborated experimentally showing a
higher reactivity for the latter.

Keywords: organocatalysis; ring-opening polymerization; cyclic carbonate; mechanism

1. Introduction Section

Aliphatic polycarbonates are biodegradable and biocompatible polymers that are used
in the biomedical field and as long-chain diols for the synthesis of polyurethanes [1–3].
They can be synthesized by transcarbonatation between a diol and a dialkyl- or diphenyl-
carbonate precursor, by epoxide CO2 alternating copolymerization, or by the ring-opening
polymerization of a cyclic carbonate. Both metal-based complexes and organic molecules
have been reported as catalysts for these reactions. Among organocatalysts, heterocyclic
nitrogen bases have been successfully used for the ring-opening polymerization of cyclic
carbonates such as trimethylene carbonate (TMC) [4–6]. TMC is commercially available
and can be readily polymerized in comparison to e.g., 5-membered cycles. The reaction can
be carried out in solvent as well as in bulk. Using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD,
see Scheme 1) as a catalyst in combination with a protic co-initiator, the polymerization
is well controlled and occurs without side reactions [4]. Catalyst economy can also be
reached via the so-called immortal polymerization, where several equivalents of a protic
co-initiator vs. catalyst can be used to efficiently initiate the growth of macromolecular
chains. Both TBD and 4-dimethylaminopyridine (DMAP, see Scheme 1) were reported to be
effective catalysts for the immortal ROP of TMC [5]. TBD can also initiate the ring-opening
polymerization of TMC without a protic co-initiator, leading to a faster polymerization rate
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than that observed in the presence of an alcohol, and yielding a mixture of linear and cyclic
poly(trimethylene carbonate) macromolecules [6]. The surface functionalization of cellulose
nanocrystals by ring-opening polymerization of TMC catalysed by TBD and initiated by
the surface hydroxyl groups on the nanocellulose surface is also possible, highlighting the
robustness of this catalyst [7].
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Scheme 1. Heterocyclic nitrogen bases catalysts considered in this study. From left to right,
4-dimethylaminopyridine (DMAP)and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD).

The mechanisms involved in the ring-opening polymerization of cyclic esters catalysed
by N-heterocyclic bases have been largely studied by DFT in the literature [8–16] and nicely
reviewed recently [17]. Two main mechanisms have been shown to occur: a nucleophilic
attack of the catalyst on the carbonyl moieties of the monomer, and a basic activation of
a protic co-initiator followed by a nucleophilic attack. The latter mechanism is generally
preferred to the monomer nucleophilic activation by the catalyst, as soon as a protic co-
initiator is present in the reactive medium. In the case of bases such as TBD, additional
H-bond activation of the carbonyl moieties of the cyclic ester has been advanced to occur.

Regarding the ring-opening polymerization of cyclic carbonates, coordination inser-
tion mechanisms have been well discussed based on DFT studies for various metal-based
catalysts [18–23]. Theoretical mechanistic insights of organocatalyzed ring-opening poly-
merizations were in turn devoted to rationalising the polymerization of an N-substituted
eight-membered carbonate ring [24], to support regioselectivity results of the polymer-
ization of carbohydrate-based carbonates [25–27] or to explain the absence of reactivity
observed using a Brønsted pair as catalyst [28]. Elucidation of the basic steps of the
mechanism of the ring-opening polymerization of cyclic carbonates catalyzed by organic
molecules has surprisingly not been treated in the literature as far as we know. The
understanding of these transcarbonatation mechanisms is of prime importance for the
optimization of those catalysts, for the development of new catalytic systems, or as a basis
for developing efficient copolymerization and chemical recycling strategies. In particu-
lar, despite obvious similarities with cyclic esters, the discrimination between the alcohol
activation pathway and the direct nucleophilic mechanism of the organocatalyzed ring-
opening polymerization of cyclic carbonates catalysed by performant heterocyclic nitrogen
bases, as represented in Scheme 2, has never been discussed in the literature. We report
in this contribution a DFT investigation of those two mechanisms for the ring-opening
polymerization of TMC catalysed by TBD and DMAP as case studies, and corroborate the
findings by experimental results.
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2. Results and Discussion
2.1. TBD Catalysed Ring-Opening Polymerization of TMC

We started our investigation with the H-bond/alcohol activation pathway for the TBD-
catalysed ring-opening polymerization of TMC, co-initiated by methanol. The reaction
progresses through two transition states (see Figure 1 and Scheme 3). It is initiated with the
formation of a complex with two hydrogen bonds, one between the tertiary amine catalyst
nitrogen and the alcohol hydroxyl and the second between the TMC carbonyl oxygen and
the catalyst protonated nitrogen. This dual activation of both the alcohol initiator and the
carbonate monomer leads to the addition of the MeO moieties to the carbonyl carbon and a
hydrogen transfer from the alcohol to the TBD. The structure is presented in Figure 1. This
bifunctional activation mechanism leads to an intermediate with a tetrahedral carbon due to
the formation of a new oxygen-carbon bond. Remarkably, the INT1 intermediate consists
of two charged moieties (−0.52e the carbonate moiety and +0.52e the protonated TBD
moiety) stabilized both by hydrogen bonding and Coulombic interactions. In the second
step, a new intermediate adduct INT2 is formed where a hydrogen bond activates one of
the TMC endocyclic oxygens, giving rise to a slightly elongated bond (1.463 Å, compared
with 1.421 Å for the other endocyclic C-O bond) that, through TS2 and concomitant transfer
of the TBD hydrogen to the endocyclic oxygen, opens the TMC ring and regenerates the
TBD catalyst.

Considering the free energy profile depicted in Scheme 3, a barrier height of 11.3 kcal/mol
for the ring opening of the TMC molecule is the rate-limiting step of this mechanism, slightly
higher than the initial activated nucleophilic attack, with a barrier height of 11.1 kcal/mol,
suggesting high plausibility for this mechanism.

The free energy profile for the nucleophilic mechanism is presented in Scheme 4. A
nucleophilic attack of the heterocyclic nitrogen TBD catalyst on the carbonyl group of
TMC occurs during the first reaction step, with concomitant activation of one of the TMC
endocyclic oxygens through hydrogen bonding. This leads to the zwitterionic tetrahedral
intermediate INT1 (Figure 2). The so-formed nitrogen-carbon bond (1.604 Å) is elongated
as well as the endocyclic C-O bond (1.449 Å) corresponding to the oxygen that shares a
hydrogen bond with the TBD catalyst. This intermediate presents a partial charge of −0.81e
on the carbonyl oxygen, −0.66e on the endocyclic oxygen ester involved in the hydrogen
bond, and −0.55e on the other endocyclic oxygen ester. The ring-opening step proceeds
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through TS2, with the transfer of the H-bonded hydrogen from the TBD to the oxygen
resulting in the formation of a hydroxyl end-capped carbamate.
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Figure 1. Optimized geometry structures of the species involved in the TBD catalysed ring-opening
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The reaction follows with a catalysed attack of the alcohol on the carbonyl group
(TS3) and hydrogen transfer of the alcohol hydrogen to the TBD catalyst, which is the
rate-limiting step in this mechanism. The associated barrier height of 25.7 kcal·mol−1

for this mechanism is significantly higher than the 11.3 kcal·mol−1 obtained for the H-
bond/alcohol activation pathway, suggesting that the latter preferentially occurs in the
presence of TBD. At this point the elongated nitrogen-carbon bond (1.587 Å) that connects
the TBD catalyst with the carbonate moiety promptly dissociates with a small energy barrier
corresponding to TS4, leading to the separated products and release of the catalyst.

2.2. DMAP Catalysed Ring-Opening Polymerization of TMC

The first step of the H-bond/alcohol activation mechanism in the presence of DMAP
is shown in Figure 3, while the free energy profile is given in Scheme 5. The reaction
starts with an intermediate INT1 exhibiting a weak non-classical hydrogen bond of the
TMC carbonyl oxygen with one hydrogen atom of the DMAP pyridinium ring (O . . . H
2.367 Å), together with a hydrogen bond of the alcohol with the basic nitrogen of DMAP
(N-H 1.747 Å). The so-activated alcohol oxygen is added to the carbonyl carbon while the
hydrogen is transferred to DMAP.

With the hydrogen transferred to the DMAP nitrogen and the methoxy oxygen bonded
to the TMC carbonyl carbon, an ion-pair character intermediate (INT2 see Figure 4) with
the negative charge mainly located on the TMC oxygens (−0.88e for the carbonyl oxygen,
−0.57e and −0.61e for the ester endocyclic oxygens and −0.48e for the methoxy exocyclic
oxygen) and a positively (0.74e) charged DMAP ring is formed. In addition, the DMAP
hydrogenated nitrogen interacts with one of the endocyclic TMC oxygens (O . . . H 1.724 Å)
and the TMC carbonyl oxygen with a close ortho-hydrogen atom of the DMAP pyridinium
ring, forming a weak nonstandard hydrogen bond (O . . . H 2.213 Å). This results in a
slight elongation of the oxygen bond with the carbonyl carbon (1.470 Å, compared with
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1.432 Å for the other carbonyl carbon endocyclic oxygen bond) that leads to TS2. The
barrier of 23.7 kcal/mol found for this step makes it the rate-determining step for this
mechanism. Finally, a subsequent transfer of the DMAP hydrogen back to TMC leads to
the ring opening of the TMC.
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The free energy profile for the nucleophilic mechanism is presented in Scheme 6.
The reaction starts with the formation of a zwitterionic tetrahedral intermediate (INT1,
see Figure 5), which is only slightly more stable than that of the previous transition state
TS1. This intermediate possesses an elongated N-C bond (1.659 Å) linking the DMAP
pyridinium ring and the carbonyl carbon and presents a partial charge of 0.48e on the
DMAP ring, −0.61e on the endocyclic oxygen ester closest to the hydrogen ring, −0.58e on
the other endocyclic oxygen ester, and −0.79e on the carbonyl oxygen. The ring opening
follows through TS2 via the linear zwitterionic intermediate INT2. In the open ring
intermediate the charges modify to 0.61e on the DMAP pyridinium ring, −1.17e on the
endocyclic oxygen, −0.56e on the carbonyl oxygen, and −0.43e on the terminal oxygen.
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It is interesting to note that the zwitterionic tetrahedral intermediate INT1 is more stable
than the ring-opened zwitterion INT2, as tetrahedral zwitterionic intermediates are not
usually considered stable species in zwitterionic polymerization reactions [12]. A similar
situation has been reported by Waymouth’s calculations on the zwitterionic ring-opening
polymerization of δ-valerolactone [13].
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Scheme 4. Free energy profile for the nucleophilic mechanism of the TBD catalysed ring-opening
polymerization of TMC.

This ring-opened zwitterionic intermediate is a highly reactive species and one can
speculate that it might react with other TMC molecules leading to the formation of polymers
of ring-opened TMC molecules as was suggested by Waymouth for polymerisation of δ-
valerolactone [13]. Other possible intermediates are neutral bicyclo species like BICY1.
Actually, this bicyclo species is 10.8 kcal·mol−1 more stable, when compared with the
open zwitterion (INT2) and 16.1 kcal·mol−1 less stable than the INT1 intermediate. The
reaction then proceeds with methanol addition to the carbonyl and concomitant hydrogen
transfer to the carbonyl oxygen. This transition state (TS3) has a high barrier becoming the
rate-limiting step of this mechanism, with a value of 90.3 kcal·mol−1. The H-bond/alcohol
activation mechanism, with an energy barrier of 23.7 kcal·mol−1, is thus likely prone to
occur in the presence of DMAP.

The ring-opened zwitterion is finally stabilized by a hydrogen transfer through a small
energy barrier (Scheme 6), with the formation of the INT3 intermediate (see Figure 6) where
the negative charge is mainly located on the carbonyl oxygens (−0.75e for the carbonyl
oxygen and −0.55e and −0.52e for the ester oxygens) closer to the positively (0.48e) charged
DMAP ring. Finally, the INT3 complex, which possesses an extended N-C bond of 1.594 Å
promptly dissociates into products through the transition state TS5 with a tiny barrier
of 0.50 kcal·mol−1 relative to INT3, leading to the reaction products. The free energy
difference that one can find in the final products of the two mechanisms (Schemes 5 and 6
as well as in Schemes 3 and 4) reflects the different conformation of the reaction product
and the catalyst adducts.
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H white.

2.3. Experimental Confirmation

Regarding the more favourable H-bond/alcohol activation mechanism, the highest
energy barrier for TBD is 11.3 kcal/mol, which is significantly lower than the energy
barrier of 23.7 kcal/mol found for DMAP. This correlates well with the activity of the
polymerizations of TMC mediated with these organocatalysts reported in Table 1. In 1 h at
room temperature in dichloromethane, the reaction is quantitative using TBD, while only
19% conversion is reached using DMAP.
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Table 1. Experimental results. Reactions conducted for 1 h at room temperature in 2 mL CH2Cl2.
TMC/Catalyst/Benzyl alcohol = 100/1/1. a determined by 1H NMR. b Number average molecular
weight determined by size exclusion chromatography. c Dispersity determined by size exclusion
chromatography. d after reference [4].

Catalyst Conv. a (%) Mn
b

(g/mol)
ÐM

c

DMAP 19 5 500 1.7

TBD d >99 9 900 1.3



Catalysts 2022, 12, 1280 11 of 14

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

carbonyl oxygen and −0.55e and −0.52e for the ester oxygens) closer to the positively 
(0.48e) charged DMAP ring. Finally, the INT3 complex, which possesses an extended N-
C bond of 1.594 Å promptly dissociates into products through the transition state TS5 
with a tiny barrier of 0.50 kcal·mol−1 relative to INT3, leading to the reaction products. The 
free energy difference that one can find in the final products of the two mechanisms 
(Schemes 5 and 6 as well as in Schemes 3 and 4) reflects the different conformation of the 
reaction product and the catalyst adducts. 

 
Figure 6. Optimized geometry structures of the species involved in the final steps of the nucleophilic 
mechanism of the DMAP-catalysed ring-opening polymerization of TMC. Colour code: C grey, O 
red, N blue and H white. 

2.3. Experimental Confirmation 
Regarding the more favourable H-bond/alcohol activation mechanism, the highest 

energy barrier for TBD is 11.3 kcal/mol, which is significantly lower than the energy bar-
rier of 23.7 kcal/mol found for DMAP. This correlates well with the activity of the polymer-
izations of TMC mediated with these organocatalysts reported in Table 1. In 1 h at room 
temperature in dichloromethane, the reaction is quantitative using TBD, while only 19% 
conversion is reached using DMAP. 

  

Figure 6. Optimized geometry structures of the species involved in the final steps of the nucleophilic
mechanism of the DMAP-catalysed ring-opening polymerization of TMC. Colour code: C grey, O
red, N blue and H white.

3. Materials and Methods
3.1. Methodological Details

We adopt a simple model with methanol as a co-initiator, TMC as a cyclic carbonate,
and TBD and DMAP as organocatalysts. All calculations in this study were conducted with
the Gaussian 16 program package [29]. Geometries of the chemical relevant species were
obtained by DFT from optimizations using the hybrid meta-GGA exchange-correlation
functional M06-2X [30] together with the 6-31+G(d,p) basis set. The choice of this functional
was determined by its broad applicability and remarkable performance in many areas of
chemistry including thermochemistry and reaction kinetics, providing reliable energies
and barrier heights while considering midrange noncovalent interactions [30–32]. In all
calculations, the solvent effects were considered by using the SMD continuum solvation
model [33] with the parameters of dichloromethane. Frequency analysis confirmed opti-
mized geometries as energy minimum by the non-existence of imaginary frequencies or
as transition states by the existence of a sole imaginary frequency that links reactants and
products along the reaction coordinate. Intrinsic reaction coordinate (IRC) calculations
were conducted to confirm that the transition states were found to connect the reactants and
products. The relative stability of the different species was established by calculating their
Gibbs free energy in solution at 298.15 K, which was used to describe the reaction profiles.
Due to the well-known limitations of the harmonic oscillator model for low-frequency
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vibrational modes thermal corrections were calculated by means of the Grimme approach
for entropy [34] and the Head-Gordon method for enthalpy [35]. Atomic charges were cal-
culated by fitting the molecular electrostatic potential with the Breneman and Wiberg [36]
CHELPG scheme. Optimized coordinates of the structures together with energies are
provided as Supplementary Material.

3.2. Experimental Details
3.2.1. Reagents

Dichloromethane was obtained from Sigma Aldrich and purified through an alumina
column (Mbraun SPS). Trimethylene carbonate (TMC, 99.5%) was purchased from Actuall
Chemicals and purified by drying over calcium hydride, filtered under an inert atmosphere,
and then recrystallised. The purified monomer was subsequently stored in a glove box.
4-Dimethylaminopyridine (DMAP, 99%) was purchased from Aldrich and co-evaporated
three times with toluene followed by sublimation under vacuum at 85 ◦C and stored in a
glovebox before use. Benzyl alcohol (99%, Aldrich) was dried over CaH2, distilled under
reduced pressure and stored in a glove box.

3.2.2. Polymerizations

TMC (1 g, 9.8 mmol), DMAP (12.0 mg, 0.098 mmol), benzyl alcohol (10.2 µL, 0.098 mmol)
and 2 mL dichloromethane were added in a glass tube reactor and left to react at room
temperature for 1 h. The reaction was then quenched with a solution of benzoic acid in
dichloromethane. The resulting product was precipitated in methanol, filtered and dried
for 48 h under vacuum.

3.2.3. Analytics

Size exclusion chromatography (SEC) was performed at a concentration of 2 g/L
in THF as eluent at 40 ◦C using a Waters SIS HPLC-pump, a Waters 2414 refractometer,
and Waters Styragel columns HR3 and HR4. The calibration was done using polystyrene
standards (Mw 820, 2 727, 4 075, 12 860, 32 660, 45 730, 95 800, 184 200, 401 340 and 641
340 g/mol). 1H NMR analyses were conducted in CDCl3 at 25 ◦C with a Bruker AVANCE
III HD 300 spectrometer at 300.13 MHz (7.05 Tesla). The conversion was determined by
integration of the peak at 4.45 ppm and 4.23 ppm, corresponding to CH2OCOO of the
monomer and polymer respectively, and calculating Ip/(Im + Ip), where Ip and Im are the
values obtained for the integrals.

4. Conclusions

We have investigated in this study using computational methods the mechanisms of
the ring-opening polymerization of TMC catalysed by DMAP and TBD and co-initiated by
methanol. For both catalysts, a mechanism based on the activation of the alcohol co-initiator
by the C=N moieties together with an H-bond between a proton of the catalyst and the
carbonyl moieties of the monomer was found to lead to significantly lower energy barriers
than the direct nucleophilic attack of the heterocyclic nitrogen molecule on the carbonate
monomer, 11.3 and 25.7 vs. 23.7 and 90.3 kcal·mol−1 for TBD and DMAP, respectively. For
both catalysts, we found the ring-opening of the TMC molecule as the rate-limiting step,
slightly higher than the initial activated nucleophilic attack. The calculations also indicate
TBD as a more efficient catalyst than DMAP, probably due to its polyfunctionality that
allows simultaneous alcohol and carbonyl activation via conventional H-bonding on two
different sites. The lower energy barriers found for TBD vs. DMAP were corroborated by
ring-opening polymerization experiments conducted in dichloromethane at 25 ◦C.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/catal12101280/s1, Coordinates of selected structures presented in the Supplementary Materials section.

https://www.mdpi.com/article/10.3390/catal12101280/s1
https://www.mdpi.com/article/10.3390/catal12101280/s1
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