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Abstract: While a few derivatives of cinnamamides exhibited anti-inflammatory and/ or analgesic
activity, in this study, we developed a highly efficient method for the synthesis of cinnamamides
from methyl cinnamates and phenylethylamines catalyzed by Lipozyme® TL IM in continuous-flow
microreactors. The reaction parameters and broad substrate range of the new method was studied.
Maximum conversion (91.3%) was obtained under the optimal condition of substrate molar ratio of
1:2 (methyl 4-chlorocinnamate: phenylethylamine) at 45 °C for about 40 min. The remarkable features
of this work include short residence time, mild reaction conditions, easy control of the reaction
process, and that the catalyst can be recycled or reused, which provide a rapid and economical
strategy for the synthesis and design of cinnamamide derivatives for further research on drug activity.

Keywords: enzymatic synthesis; cinnamamides; continuous-flow reaction technology; continuous-

flow microreactor; ammonolysis reaction

1. Introduction

The discovery of novel anti-inflammatory agents derived from natural active products
has attracted a lot of attention from medicinal chemists. Cinnamic acid is a natural organic
acid in plants with high safety and a variety of pharmacological activities, such as antioxi-
dant, antimicrobial, anticancer, and anti-inflammatory activities [1-5]. Due to their common
occurrence in plants and their low toxicity, cinnamic acid derivatives have been evaluated
as pharmacologically active compounds [6]. Among the derivatives, cinnamamides consti-
tute an interesting scaffold within medicinal chemistry; thus, they have been incorporated
in several synthetic compounds with therapeutic potentials including neuroprotective,
anti-microbial, anti-tyrosinase, and anti-inflammatory properties (Figure 1) [7-11]. Cin-
namoyl phenylethylamine derivative is a class of compounds with important biological
activity in cinnamamide compounds. Additionally, the phenolic hydroxyl group on the
benzene ring enhances the effect of inhibiting the expression of P-selectin, tyrosinase, and
cyclooxygenase [11,12]. Cinnamoyl tyramine inhibits the expression of cyclooxygenase
II [13] and p-coumarinyl tyramine inhibits yeast x-glucosidase [14] (Figure 1).
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Figure 1. Structures of cinnamamide compounds with potential drug activities.

Construction of amide bonds is the key to the synthesis of cinnamamide derivatives.
Traditional chemical synthesis always used condensation reagents such as 2-ethoxy-1-
ethoxycarbonyl-1, 2-dihydroquinoline (EEDQ), dicyclohexylcarbodiimide (DCC) or tri-
azine reagents to synthesize cinnamamide derivatives in N, N-dimethylformamide (DME),
tetrahydrofuran (THF) or pyridine [12,15-19]. However, these methods have problems
such as environmental pollution, waste of energy, complexity of recycling and disposal,
and may even cause allergic reactions [20-24]. In recent years, a number of new chemical
catalysts for amide bond synthesis have been reported, such as iron catalysts, boron cata-
lysts, aluminum catalysts, diacetoxyiodobenzene, and 5-nitro-4,6-dithiocyanatopyrimidine
(NDTP), but they also suffered from high temperatures, complicated post-treatment, long
reaction times or complicated and toxic catalyst preparation [25-29]. So, it is urgent to
develop a highly efficient green technology for the synthesis of cinnamamide derivatives.

Biocatalysis, using enzymes for organic synthesis, has emerged as a powerful tool for
the synthesis of active pharmaceutical ingredients [30,31]. Enzymes are employed to enable
shorter, more efficient, and more sustainable alternative routes toward small-molecule
active pharmaceutical ingredients and are additionally used to perform standard reactions
in active pharmaceutical ingredients synthesis more efficiently [32-34]. For example,
recently, an evolved E. coli cytidine deaminase was used for a simple enzyme-mediated
transformation, paving the way for a total greener synthesis of the COVID-19 antiviral
Molnupiravir [35]. Lipozyme® TL IM is a commercial heterogeneous biocatalyst supplied
by Novozymes prepared via physical adsorption of the lipase from Thermomyces laguginosus
on silica gel particles with a catalyst reactivity of 250 TUN-g~! [36]. The development and
attributes of Lipozyme® TL IM established the industrial applications for immobilized
enzymes, including interesterification of food fats and oils [37,38] and development of
biodiesel [39] and lipophilic antioxidants [40,41].

Compared with the traditional chemical synthesis of cinnamamides, there are rela-
tively few studies on enzyme-catalyzed synthesis of cinnamamide derivatives. Novozym®
435 was used to catalyze the synthesis of coumaroyltyramine derivatives from hydrox-
ycinnamate and phenylethylamines in methyl fert-butyl ether (MTBE) for about 24 h, and
65-93% yields of coumaroyltyramine derivatives were obtained [42]. However, enzymatic
chemical reaction also has some shortcomings, such as requiring a long reaction time to
obtain the desired yield. In addition, the enzymes that can be used for the synthesis of
cinnamamide derivatives need to be further developed.

How to explore enzyme-catalyzed cinnamamide derivatives’ synthesis reactions while
improving the efficiency of traditional enzyme catalytic reactions? We think of continuous-
flow biocatalysis technology as a solution. In a continuous reactor, the substrates are
pumped through the reactor, and the product is collected continuously. This set up im-
proves mass transfer, shortens reaction time, and inhibits the occurrence of side reactions
effectively [43-47]. The use of Lipozyme® TL IM has received significant attention due to
its easy recovery from the reaction mixture and recycling, relative inexpensiveness, and
the fact that it is suitable for developing continuous-flow processes [48,49]. So, in this
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work, we developed a highly efficient method for the synthesis and design of cinnamamide
derivatives catalyzed by Lipozyme® TL IM in continuous-flow microreactors (Scheme 1).
To the best of our knowledge, this is the first description of the highly efficient synthesis of
cinnamamides from methyl cinnamates and phenylethylamines catalyzed by Lipozyme®
TL IM under continuous-flow microreactors. The reaction parameters and broad substrate
range of the new method was studied. The reaction conditions were optimized with the
choice of mild temperatures and environmentally friendly solvents. At the same time, the
reaction time and economic cost were saved. It is hoped to provide a rapid strategy for the
synthesis and design of cinnamamide derivatives for further research on drug activity.
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Scheme 1. Synthesis and design of cinnamamide derivatives catalyzed by Lipozyme® TL IM in
continuous-flow microreactors.

2. Results
2.1. Effect of Reaction Media and Catalyst

Reaction media and catalyst are important factors in enzymatic reactions. During
our research on cinnamamide derivatives’” synthesis reaction from methyl cinnamates
and phenylethylamines catalyzed by enzyme in continuous-flow microreactors, methyl
cinnamate (la) and phenylethylamine (2a) were selected as the model reaction. First, we
performed a blank control experiment without the enzyme and found that reactions did not
occur. Then, we screened the enzyme and solvent species, chose Lipozyme® TL IM from
Thermomyces lanuginosus and Subtilisin® from Bacillus licheniformis as a comparison, and
tert-amyl alcohol, acetonitrile, DMSO, DMF, tert-butanol, and n-hexane as another control
group. Different enzymes have various resistance levels in different reaction systems [50].
The results are shown in Table 1; Lipozyme® TL IM and tert-amyl alcohol can catalyze the
reaction with a higher yield (Table 1, entry 1). For the synthesis of N-phenethylcinnamamide
catalyzed by Lipozyme® TL IM, a moderate log P solvent will better promote the reaction.
Neither too high nor too low reactions can be carried out. Therefore, Lipozyme® TL IM
and tert-amyl alcohol were selected to synthesize cinnamamide derivatives from methyl
cinnamates and phenylethylamines under continuous-flow microreactors.
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Table 1. The effect of reaction media and catalyst on the enzymatic synthesis of N-
phenethylcinnamamide in continuous-flow microreactors 2.

S
O~ O )
H,N H
1a 3a

2a Microreactor

Entry Solvent Catalysts Log P Yield b (%)
1 tert-amyl alcohol Lipozyme® TL IM 1.04 712 £15
2 tert-butanol Lipozyme® TL IM 0.51 36.2 0.8
3 acetonitrile Lipozyme® TL IM —-0.33 335+ 1.1
4 n-hexane Lipozyme® TL IM 3.9 n.d.
5 DMF Lipozyme® TL IM -1.0 n.d.
6 DMSO Lipozyme® TL IM -1.3 n.d.
7 tert-amyl alcohol Subtilisin® 1.04 n.d.
8 tert-amyl alcohol None 1.04 n.d.

@ Reaction conditions: feed 1, 5.0 mmol methyl cinnamate (1a) dissolved in 10 mL fert-amyl alcohol, feed 2,
10.0 mmol phenylethylamine (2a) dissolved in 10 mL tert-amyl alcohol, Lipozyme® TL IM (catalyst reactivity:
250IUN-g~1) 0.87 g, flow rate 20.8 L. min~!, 30 min residence time at 50 °C.  Isolated yield. Yield: 100x (actual
received quantity/ideal calculated quantity). The data are presented as average + SD of triplicate experiments.

2.2. Effect of Reaction Temperature

In biocatalysis reactions, reaction temperature affects the catalytic activity of enzymes
and the thermodynamic equilibrium of the reaction. Using Lipozyme® TL IM as catalyst,
flow reaction was carried out in tert-amyl alcohol at reaction temperatures of 30 °C to
55 °C for 30 min. With the rise in temperature, there was an increased rate of diffusion since
the viscosity of the system was lowered so that mass transfer between the enzyme and
the substrate may occur more easily. Moreover, the increase in temperature increased the
kinetic energy of the molecules that led to faster and efficient collisions [51,52]. As shown
in the Figure 2, when the reaction temperature was 45 °C, the best yield was obtained.
However, it is best to avoid temperatures above 45 °C because an excessive increases in
temperature can cause irreversible denaturation of the enzyme and a sharp decrease in
enzyme activity [53].
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Figure 2. The effect of reaction temperature on the synthesis of N-phenethylcinnamamide catalyzed
by Lipozyme® TL IM in continuous-flow microreactors.
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2.3. Effect of Substrate Ratio

Methyl cinnamate contains C=C double bonds, which can generate the formation of a
side-product resulting from an aza-Michael addition [26,54]. So, a lower concentration of
methyl cinnamate inhibited the by-reaction effectively. At the same time, the amidation
reaction was a reversible reaction. With the increase in the substrate concentration of the
amine, the thermodynamic equilibrium shifted in a direction favorable to the formation of
N-phenethylcinnamamide. As seen in Figure 3, a maximum yield of 77.2% was obtained
when the molar ratio (methyl cinnamate: phenylethylamine) was 1:2. However, when
the molar ratio was increased further, there was a negative impact on the conversion rate.
Excessive concentration of the substrate increased the viscosity of the solvent, interfered
with mass transfer, changed the polarity of the solvent, and affected the activity of the
enzyme, while reducing the economic efficiency [41].
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o
o
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o

Figure 3. The effect of substrate ratio (methyl cinnamate: phenylethylamine) on the synthesis of
N-phenethylcinnamamide catalyzed by Lipozyme® TL IM in continuous-flow microreactors.

2.4. Effect of Residence Time

Residence time is an important parameter affecting the conversion of reaction. We
designed reactions from 20 to 50 min to investigate the effect of residence time on the reaction.
As we can see from Figure 4, the optimum yield was reached within 40 min at a flow rate of
15.6 uL/min~!. Therefore, we chose 40 min as the optimal residence time for further research
on the synthesis of cinnamamide derivatives under continuous-flow microreactors.

2.5. The Effect of Enzyme Reusability

The reusability of Lipozyme® TL IM was investigated under optimal conditions. The
catalytic activity of the biocatalyst remained practically unaltered in the first two cycles,
and after that, a slight decrease in activity could be detected. Additionally, after 8 catalytic
cycles of the same enzyme sample, it was found that the catalytic yield of the last catalysis
could still reach 46.7% (Figure 5). Such decreased activity after successive reaction cycles
could be due to the desorption of immobilized lipase during the continuous flow. In
addition, the accumulation of residual starting material and/or products remaining in the
biocatalyst microenvironment might also lead to enzyme inactivation [49,53,55].
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Figure 4. The effect of residence time on the synthesis of N-phenethylcinnamamide catalyzed by
Lipozyme® TL IM in continuous-flow microreactors.
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Figure 5. The effect of reused times on the synthesis of N-phenethylcinnamamide catalyzed by
Lipozyme® TL IM in continuous-flow microreactors.

2.6. Comparing the Synthesis of Cinnamamide Derivatives from Methyl Cinnamates and
Phenylethylamines in a Continuous-Flow Microreactor and a Batch Bioreactor

To investigate the effect of enzymatic reactions in different reactors, we optimized the
conditions of enzymatic reactions in a continuous-flow microreactor and a batch bioreactor
for the synthesis of N-phenethylcinnamamide. (Table 2) In the batch bioreactor (method B),
it took about 24 h to reach the expected yield. However, in the continuous-flow microreactor,
better yields were obtained in 40 min (method A). Space-time yield (STY) is a common
index to evaluate the production capacity of different reactors [56—60]. Therefore, we
calculated STY(g L~! h™!) to evaluate the productivity in the two reactors and found that
the STY in the continuous-flow microreactor was higher. The results suggest that the choice
of continuous-flow microreactors is more favorable to improve the efficiency of enzymatic
synthesis of cinnamamide derivatives.

STY =mp x T~ x V! 1)

where my, is the mass of the generated product (g), T is the residence time (h), and Vy is the
reactor volume (L).
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Table 2. Enzyme-catalyzed synthesis of N-phenethylcinnamamide in a Continuous-Flow Microreac-
tor or a Batch Bioreactor ?.

L|pozyme® TLIM

2a Microreactor or Batch bioreactor
Entry Method STY(gL-1h-1) Yield P (%)
1 A 20.68 842112
2 B 1.09 64.3 £ 0.8

@ Reaction conditions: Method A: feed 1, 5.0 mmol methyl cinnamate (1a) dissolved in 10 mL tert-amyl alcohol,
feed 2, 10.0 mmol phenylethylamine (2a) dissolved in 10 mL tert-amyl alcohol, Lipozyme® TL IM (catalyst
reactivity: 250I[UN-g 1) 0.87 g, flow rate 15.6 uL min~!, 40 min residence time at 45 °C. Method B: batch bioreactor,
5.0 mmol methyl cinnamate (1a), and 10.0 mmol phenylethylamine added to 20 mL tert-amyl alcohol, Lipozyme®
TL IM (catalyst reactivity: ZSOIUN-g’l) 0.87 g, 200 r min~1, 45 °C, 24 h. ? Isolated yield. Yield: 100x (actual
received quality/ideal calculated quality). The data are presented as average & SD of triplicate experiments.

2.7. The Scope and Limitation of the Synthesis of Cinnamamide Derivatives Catalyzed by
Lipozyme® TL IM in Continuous-Flow Microreactors

In the ammonolysis of esters, ammonia can attach to the x-carbon in the carbonyl
group of the ester as a nucleophile. The electronic part on the x-carbon is transferred to
oxygen, and then the amine cation can provide a proton to the methoxy group to generate
methanol leaving the group, thus forming an amide [26]. We further studied the scope
and limitations of the enzymatic aminolysis of cinnamate derivatives under continuous-
flow microreactors; the reactions of four methyl cinnamate derivatives (methyl cinnamate,
methyl trans-p-Coumarate, methyl ferulate, and methyl 4-chlorocinnamate) with four
amine compounds (phenylethylamine, tyramine, tryptamine, and 5-methoxytryptamine)
were studied under optimal reaction conditions (40 min, 45 °C, tert-amyl alcohol, methyl
cinnamate derivative:amine compound = 1:2) in continuous-flow microreactors. As shown
in Table 3, we found that the substituents on the benzene ring of the ester would affect the
reactivity of the ammonolysis reaction. When there was an electron withdrawing on the
benzene ring, it was conducive to the reaction, and when there was an electron-donating
group, it reduced the reactivity. Then, we studied the effects of different amine compounds
on the reaction and found that the substituents on the benzene ring or indole ring had no
significant effect on the reaction, which may be due to the fact that phenylethylamines had
a long fat chain and weakened the influence of substituents.
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Table 3. Effect of substrate structure on the synthesis of cinnamamide derivatives catalyzed by
Lipozyme® TL IM in continuous-flow microreactors 2.

R /\/O/Rs
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o) i NH
H
Rs k,

/\/©/ "
o HaN Lipozyme® TL IM
R’]D/\)ko/ + H —W*
|
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i i /\/©
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2 Reaction conditions: feed 1, 5.0 mmol methyl cinnamate derivative dissolved in 10 mL tert-amyl alcohol, feed
2, 10.0 mmol amine compounds dissolved in 10 mL tert-amyl alcohol, Lipozyme® TL IM (catalyst reactivity:
250IUN-g~1) 0.87 g, flow rate 15.6 L min~!, 40 min residence time at 45 °C.  Isolated yield. Yield: 100x (actual
received quantity/ideal calculated quantity). The data are presented as average + SD of triplicate experiments.

3. Materials and Methods
3.1. Materials

All chemicals in this study were obtained from commercial sources and did not require
further purification. Subtilisin® was purchased from Sigma., and Lipozyme® TL IM from
Thermomyces lanuginosus was purchased from Novo Nordisk (Copenhagen, Denmark).
Methyl cinnamate, 5-methoxytryptamine was purchased from Shanghai bide Pharma-
ceutical Technology Co., Ltd. (Shanghai, China). Methyl trans-p-Coumarate, tyramine
was obtained from Aladdin (Shanghai, China). Methyl ferulat, phenylethylamine was
obtained from Innochem (Beijing, China). Methyl 4-chlorocinnamate was purchased from
Macklin (Shanghai, China). Tryptamine was purchased from Rhawn (Shanghai, China).
Harvard Instrument PHD 2000 syringe pump was purchased from Harvard University
(Holliston, MA, USA). The flow reactor and Y-mixer were purchased from Beijing Haigui
Medical Engineering Design Co., Ltd. (Beijing, China). A 400 MHz NMR spectrometer
(Billerica, MA, USA) was also used in this study.

3.2. Experimental Setup and Experiment Conditions

The apparatus configuration used for the synthesis of cinnamamide derivatives in the
continuous-flow microreactor is shown in Figure 6 and Figure S1. The experimental setup
consisted of five main parts: a syringe pump (Harvard Apparatus Dr. 2000), substrate
injectors, a Y-mixer, a flow reactor, and a product collector. Preparation: the flow reactor
(2 mm inner diameter) was first filled with 0.87 g Lipozyme® TL IM with a particle size
of 0.3-1.0 mm, reactivity of 250 [IUN-g !, followed by immersing the reactor in a constant
temperature water bath at 45 °C. Starting of work: 5.0 mmol methyl cinnamate derivative
dissolved in 10 mL tert-amyl alcohol in feed 1 and 10.0 mmol amine dissolved in 10 mL
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tert-amyl alcohol in feed 2. The two solutions were intersected in the Y-mixer, and the
mixed stream was passed through the flow reactor at a flow rate of 15.6 uL min~! with
a residence time of 40 min. The reaction solution was finally collected, evaporated, and
dried. Following up: The products were separated by silica gel chromatography (eluent:
petroleum ether/ethyl acetate from 10/1 to 2/1). The main products were determined by
"H NMR and *C NMR.

A Feed 1

Lipozyme® TL IM

b 0000000

A \\ |
= ST ﬂ
Feed 2
continuous-flow microreactor

constant temperature: 45°C

J@M”EQ

Figure 6. Equipment for the synthesis of cinnamamides from methyl cinnamates and phenylethy-
lamines catalyzed by Lipozyme® TL IM under continuous-flow microreactors.

3.3. Analytical Methods
3.3.1. Thin-Layer Chromatography (TLC)

The developing solvent was petroleum ether/ethyl acetate from 6/1 (v/v) to 1/1 (v/v),
and the results are detected under UV light irradiation at 254 nm.

3.3.2. Nuclear Magnetic Resonance (NMR)

The product obtained by column chromatography separation and purification was
subjected to 'H NMR and 3C NMR structure confirmation on NMR spectrometer.
N-phenethylcinnamamide (3a). White power. 'H NMR (400 MHz, DMSO-dg) 5
8.21 (t, | = 5.6 Hz, 1H), 7.57-7.50 (m, 2H), 7.43-7.14 (m, 9H), 6.59 (d, | = 15.9 Hz, 1H),
3.40-3.27 (m, 2H), 2.76 (t, ] = 7.3 Hz, 2H).; '3C NMR (101 MHz, DMSO) 6 165.16, 139.62,
138.82, 135.04, 129.66, 129.14, 128.84, 128.56, 127.71, 126.33, 122.31, 40.56, 35.30.
N-(4-hydroxyphenethyl)cinnamamide (3b). White powder. "H NMR (500 MHz, DMSO-
de) 6 9.19 (s, 1H), 8.15 (t, | = 5.7 Hz, 1H), 7.55 (d, | = 7.4 Hz, 2H), 7.45-7.34 (m, 4H),
7.02 (d, ] = 8.2 Hz, 2H), 6.72-6.65 (m, 2H), 6.62 (d, ] = 15.8 Hz, 1H), 3.34-3.32 (m, 2H), 2.66
(t, ] = 7.5 Hz, 2H).; '3C NMR (101 MHz, DMSO) &: 165.06, 155.77, 138.65, 135.06, 129.60,
129.58, 129.46, 128.99, 127.58, 122.43, 115.27, 40.86, 34.48.
N-(2-(1H-indol-3-yl)ethyl)cinnamamide (3c). Orange yellow solid. 'H NMR (400 MHz,
DMSO-dg) 6 10.81-10.77 (m, 1H), 8.20 (t, ] = 5.7 Hz, 1H), 7.55-7.49 (m, 3H), 7.44-7.27 (m,
5H), 7.13 (d, ] =2.3 Hz, 1H), 7.03 (ddd, ] = 8.1, 6.9, 1.2 Hz, 1H), 6.94 (ddd, ] = 8.0, 6.9, 1.1 Hz,
1H), 6.60 (d, ] = 15.8 Hz, 1H), 3.44 (td, | = 7.4, 5.7 Hz, 2H), 2.85 (t, | = 7.4 Hz, 2H).; 13C NMR
(101 MHz, DMSO) $ 165.01, 138.57, 136.36, 135.07, 129.50, 129.05, 127.60, 127.33, 122.79,
122.49,121.05, 118.39, 118.35, 111.88, 111.49, 39.73, 25.35.
N-(2-(5-methoxy-1H-indol-3-yl)ethyl)cinnamamide (3d). Yellow powder. 'H NMR (400
MHz, DMSO-dg)  10.66 (s, 1H), 8.23 (q, ] = 4.8, 4.2 Hz, 1H), 7.55 (ddd, | =8.1, 3.4, 1.7 Hz,
2H), 7.48-7.34 (m, 4H), 7.25-7.19 (m, 1H), 7.13 (d, ] = 2.5 Hz, 1H), 7.04 (d, ] = 2.5 Hz, 1H),
6.74-6.68 (m, 1H), 6.68-6.60 (m, 1H), 3.76-3.72 (m, 3H), 3.46 (td, ] = 7.5, 4.2 Hz, 2H), 2.85 (td,
J =7.3,2.5 Hz, 2H).; 3C NMR (101 MHz, DMSO) 6 165.01, 153.08, 138.56, 135.07, 131.49,
129.50, 129.05, 127.67, 127.59, 123.47, 122.52, 112.13, 111.75, 111.21, 100.20, 55.39, 40.51, 25.35.
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(E)-3-(4-hydroxyphenyl)-N-phenethylacrylamide (3e). White powder. 'H NMR (400 MHz,
DMSO-dg) 6 9.88 (s, 1H), 8.07 (t, ] = 5.7 Hz, 1H), 7.34 (dd, | = 24.1, 8.6 Hz, 3H), 7.28-7.17 (m,
5H), 6.80-6.73 (m, 2H), 6.37 (dd, ] = 15.8, 1.1 Hz, 1H), 3.40-3.33 (m, 2H), 2.75 (t, | = 7.4 Hz,
2H).; 3C NMR (101 MHz, DMSO-dg) § 165.64, 159.00, 139.69, 138.92, 129.43, 128.83, 128.55,
126.30, 126.06, 118.76, 115.93, 40.53, 35.38.

(E)-N~(4-hydroxyphenethyl)-3-(4-hydroxyphenylacrylamide (3f). White powder. "H NMR
(400 MHz, DMSO-dg) 6 9.81 (s, 1H), 9.15 (s, 1H), 7.99 (t, ] = 5.7 Hz, 1H), 7.40-7.34 (m, 2H), 7.30
(d, ] =15.7 Hz, 1H), 7.04-6.97 (m, 2H), 6.81-6.74 (m, 2H), 6.71-6.63 (m, 2H), 6.38 (d, ] = 15.7 Hz,
1H), 3.32-3.28 (m, 2H), 2.63 (t, ] = 7.4 Hz, 2H).; 13C NMR (101 MHz, DMSO) & 165.37, 158.86,
155.70, 138.63, 129.62, 129.55, 129.25, 126.01, 118.83, 115.81, 115.19, 40.75, 34.52.

(E)-N-(2-(1H-indol-3-yl)ethyl)-3-(4-hydroxyphenyl)acrylamide (3g). Orange yellow solid.
'H NMR (400 MHz, DMSO-dg) & 10.80 (d, ] = 2.6 Hz, 1H), 9.82 (s, 1H), 8.08 (t, ] = 5.8 Hz,
1H), 7.54 (dd, ] = 7.7, 1.1 Hz, 1H), 7.40-7.28 (m, 4H), 7.15 (d, ] = 2.4 Hz, 1H), 7.05 (ddd,
J=81,69, 12 Hz, 1H), 6.96 (ddd, | = 8.0, 7.0, 1.1 Hz, 1H), 6.81-6.74 (m, 2H), 6.40 (d,
] = 15.8 Hz, 1H), 3.49-3.39 (m, 2H), 2.86 (t, ] = 7.4 Hz, 2H).; '*C NMR (101 MHz, DMSO) &
165.47, 158.89, 138.67, 136.36, 129.30, 127.34, 126.06, 122.76, 121.04, 118.93, 118.40, 118.34,
115.85,111.95, 111.48, 39.67, 25.43.

(E)-3-(4-hydroxyphenyl)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)acrylamide (3h). Yellow solid.
'H NMR (400 MHz, DMSO-dg)  10.64-10.60 (m, 1H), 9.81 (s, 1H), 8.06 (t, ] = 5.8 Hz, 1H),
7.38-7.30 (m, 2H), 7.28 (s, 1H), 7.19 (d, ] = 8.8 Hz, 1H), 7.09 (d, | = 2.4 Hz, 1H), 7.00 (d,
] =2.4 Hz, 1H), 6.79-6.72 (m, 2H), 6.67 (dd, ] = 8.7, 2.4 Hz, 1H), 6.38 (d, ] = 15.8 Hz, 1H),
3.71 (s, 3H), 3.39 (dd, | = 14.3, 7.6 Hz, 2H), 2.81 (t, ] = 7.3 Hz, 2H).; 3C NMR (101 MHz,
DMSO) 6 165.47, 158.87, 153.06, 138.64, 131.47, 129.27, 127.67, 126.06, 123.43, 118.96, 115.84,
112.10, 111.80, 111.19, 100.21, 55.39, 48.71, 25.42.

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (3i). White solid. 'H NMR
(400 MHz, DMSO-dg) 6 9.47 (s, 1H), 8.08 (t, ] = 5.7 Hz, 1H), 7.37 (d, ] = 15.7 Hz, 1H),
7.33-7.16 (m, 5H), 7.14 (d, ] = 2.0 Hz, 1H), 7.01 (dd, | = 8.2, 2.0 Hz, 1H), 6.82 (d,
J = 8.1 Hz, 1H), 648 (d, | = 15.7 Hz, 1H), 3.81 (s, 3H), 3.47-3.40 (m, 2H), 2.79 (t,
J = 7.3 Hz, 2H).; *C NMR (101 MHz, DMSO) § 165.62, 148.43, 147.98, 139.66, 139.19,
128.78,128.48, 126.58, 126.23, 121.72, 119.09, 115.82, 110.90, 55.65, 40.49, 35.38.

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acrylamide (3j). White pow-
der. '"H NMR (500 MHz, DMSO-dy) § 9.37 (s, 1H), 9.13 (s, 1H), 7.94 (t, ] = 5.7 Hz, 1H),
7.26 (d, ] =15.7 Hz, 1H), 7.07 (d, ] = 2.0 Hz, 1H), 7.00-6.94 (m, 2H), 6.94 (dd, ] = 8.2, 2.0
Hz, 1H), 6.74 (d, ] = 8.1 Hz, 1H), 6.68-6.60 (m, 2H), 6.38 (d, ] = 15.7 Hz, 1H), 3.76 (s, 3H),
3.28 (s, 2H), 2.60 (t, ] = 7.4 Hz, 2H).; 3C NMR (101 MHz, DMSO) &: 165.85, 156.08, 148.72,
148.31, 139.37,130.02, 129.92, 126.94, 121.99, 119.53, 116.15, 115.60, 111.31, 56.04, 41.12, 34.88.

(E)-N-(2-(1H-indol-3-yl)ethyl)-3-(4-hydroxy-3-methoxyphenylacrylamide (3k). Orange
solid. 'H NMR (400 MHz, DMSO-ds) & 10.85-10.80 (m, 1H), 9.44 (s, 1H), 8.07 (t,
] = 5.7 Hz, 1H), 7.56 (d, | = 7.8 Hz, 1H), 7.44-7.23 (m, 2H), 7.42-6.94 (m, 5H), 6.79 (d,
J=8.1Hz, 1H), 6.45 (d, ] = 15.7 Hz, 1H), 3.80 (s, 3H), 3.52-3.42 (m, 2H), 2.88 (t, ] =7.4 Hz,
2H).; 13C NMR (101 MHz, DMSO) & 165.44, 148.31, 147.91, 138.95, 136.35, 127.33, 126.54,
122.75,121.60, 121.03, 119.22, 118.38, 118.33, 115.73, 111.92, 111.47, 110.80, 55.60, 40.01, 25.40.

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-(2-(5-methoxy-1H-indol-3-ylethyl)acrylamide (31).
Orange solid. 'H NMR (400 MHz, DMSO-dg) & 10.64-10.60 (m, 1H), 9.40 (s, 1H), 8.04 (t,
J=5.7Hz, 1H), 7.30 (d, ] = 15.6 Hz, 1H), 7.19 (d, ] = 8.8 Hz, 1H), 7.08 (t, ] = 2.7 Hz, 2H)),
7.03-6.92 (m, 2H), 6.75 (d, ] = 8.1 Hz, 1H), 6.67 (dd, ] = 8.7, 2.4 Hz, 1H), 6.42 (d, ] = 15.7 Hz,
1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.41 (q, ] = 6.8 Hz, 2H), 2.81 (t, ] = 7.3 Hz, 2H).; 3C NMR (101
MHz, DMSO) 6 165.48, 153.07, 148.31, 147.92, 138.94, 131.49, 127.69, 126.56, 123.44, 121.58,
119.26,115.75, 112.11, 111.80, 111.19, 110.82, 100.23, 55.62, 55.41, 48.72, 25.42.

(E)-3-(4-chlorophenyl)-N-phenethylacrylamide (3m). White solid, 'H NMR (400 MHz,
DMSO-dg) 6 8.18 (t, ] = 5.7 Hz, 1H), 7.58-7.51 (m, 2H), 7.46-7.41 (m, 2H), 7.36 (d, ] = 15.8
Hz, 1H), 7.30-7.13 (m, 5H), 6.58 (d, ] = 15.8 Hz, 1H), 3.42-3.34 (m, 2H), 2.74 (t, ] = 7.3 Hz,
2H).; 13C NMR (101 MHz, DMSO) 6 164.82, 139.53, 137.33, 133.99, 133.93, 129.33, 129.08,
128.75,128.47, 126.24, 123.12, 40.47, 35.21.
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(E)-3-(4-chlorophenyl)-N-(4-hydroxyphenethyl)acrylamide (3n). White powder. 'H NMR
(400 MHz, DMSO-dg) 6 9.18 (s, 1H), 8.16 (t, ] = 5.7 Hz, 1H), 7.60-7.53 (m, 2H), 7.50-7.42 (m,
2H), 7.38 (d, ] = 15.8 Hz, 1H), 7.04-6.97 (m, 2H), 6.71-6.63 (m, 2H), 6.61 (d, ] = 15.8 Hz, 1H),
3.36 (s, 2H), 2.64 (t, ] = 7.4 Hz, 2H).; 13C NMR (101 MHz, DMSO) § 164.75, 155.76, 137.25,
134.01, 133.91, 129.60, 129.54, 129.32, 129.07, 123.19, 115.23, 40.83, 34.43.

(E)-N-(2-(1H-indol-3-yl)ethyl)-3-(4-chlorophenyl)acrylamide (30). Yellow solid. "H NMR
(400 MHz, DMSO-d¢) 6 10.83-10.77 (m, 1H), 8.22 (t, ] = 5.8 Hz, 1H), 7.55 (dd, | = 11.4,
8.2 Hz, 3H), 7.49-7.44 (m, 2H), 7.40 (d, ] = 15.8 Hz, 1H), 7.32 (d, ] = 8.1 Hz, 1H), 7.15 (4,
J =2.3Hz, 1H), 7.05 (ddd, ] = 8.1, 6.9, 1.2 Hz, 1H), 6.96 (ddd, ] = 7.9, 7.0, 1.1 Hz, 1H), 6.62 (d,
J =15.8 Hz, 1H), 3.50-3.41 (m, 2H), 2.87 (t, ] = 7.3 Hz, 2H).; 1*C NMR (101 MHz, DMSO) &
164.77,137.20, 136.34, 134.04, 133.87, 129.28, 129.05, 127.30, 123.30, 122.77, 121.02, 118.36,
118.33,111.83, 111.46, 39.71, 25.29.

(E)-3-(4-chlorophenyl)-N-(2-(5-methoxy-1H-indol-3-ylethyl)acrylamide (3p). Yellow pow-
der. '"H NMR (400 MHz, DMSO-dq) § 10.62 (d, ] = 2.3 Hz, 1H), 8.21 (t, ] = 5.8 Hz, 1H),
7.58-7.51 (m, 2H), 7.48-7.42 (m, 2H), 7.39 (d, | = 15.8 Hz, 1H), 7.19 (d, ] = 8.7 Hz, 1H), 7.09
(d, ] = 2.3 Hz, 1H), 7.00 (d, ] = 2.4 Hz, 1H), 6.67 (dd, ] = 8.7, 2.4 Hz, 1H), 6.61 (d, ] = 15.9
Hz, 1H), 3.71 (s, 3H), 3.43 (q, | = 6.8 Hz, 2H), 2.82 (t, ] = 7.3 Hz, 2H).; 3C NMR (101 MHz,
DMSO) 6 164.81, 153.08, 137.21, 134.04, 133.89, 131.49, 129.29, 129.07, 127.66, 123.46, 123.32,
112.12,111.71, 111.20, 100.22, 55.40, 40.02, 25.31.

4. Conclusions

In conclusion, the highly efficient synthesis of cinnamamides from methyl cinnamates
and phenylethylamines catalyzed by Lipozyme® TL IM under continuous-flow microre-
actors was developed. Lipozyme® TL IM was first used for the synthetic reaction of
cinnamamides from methyl cinnamates and phenylethylamines by ammonolysis reaction.
Combined with the specificity of enzyme catalysis and the efficiency of continuous-flow
technology, the effects of reaction solvent, reaction temperature, reaction substrate ratio,
reaction residence time, and reactant structure on the synthesis of cinnamamides were
studied. The remarkable features of this study include short residence time (40 min), mild
temperature (45 °C), environmental protection of catalysts, and easy control of the reaction
process. Next, we will delve into more syntheses of cinnamamides, such as different amines,
and explore more efficient and green synthesis methods for cinnamamide derivatives. The
synthesized cinnamamide structures can be introduced into drug molecules to prepare new
composite drugs, thus laying a broader scope for drug screening.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/catal12101265/s1, Figure S1: Equipment for the synthesis of
cinnamamides from methyl cinnamates and phenylethylamines catalyzed by Lipozyme® TL IM under
continuous-flow microreactors. References [7,19,61-66] are cited in the Supplementary Materials.
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