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Abstract: The UN Environmental Protection Agency has recognized 4-n-Nonylphenol (NP) and
bisphenol A (BPA) as among the most hazardous chemicals, and it is essential to minimize their
concentrations in the wastewater stream. These industrial chemicals have been witnessed to cause
endocrine disruption. This report describes the straightforward hydrothermal approach adopted to
produce Ce0.1La0.9MnO3 (CLMO) perovskite’s structure. Several physiochemical characterization
approaches were performed to understand the Ce0.1La0.9MnO3 (CLMO) perovskite crystalline phase,
element composition, optical properties, microscopic topography, and molecular oxidation state.
Here, applying visible photon irradiation, the photocatalytic capability of these CLMO nanostructures
was evaluated for the elimination of NP and BPA contaminants. To optimize the reaction kinetics, the
photodegradation of NP and BPA pollutants on CLMO, perovskite was studied as a specification of
pH, catalyst dosage, and initial pollutant concentration. Correspondingly, 92% and 94% of NP and
BPA pollutants are degraded over CLMO surfaces within 120 and 240 min, respectively. Since NP and
BPA pollutants have apparent rate constants of 0.0226 min−1 and 0.0278 min−1, respectively, they can
be satisfactorily fitted by pseudo-first-order kinetics. The decomposition of NP and BPA contaminants
is further evidenced by performing FT-IR analysis. Owing to its outstanding photocatalytic execution
and simplistic separation, these outcomes suggest that CLMO is an intriguing catalyst for the
efficacious removal of NP and BPA toxicants from the aqueous phase. This is pertinent for the
treatment of endocrine-disrupting substances in bioremediation.

Keywords: Ce0.1La0.9MnO3; endocrine-disrupting chemicals; 4-n-Nonylphenol; bisphenol A;
photocatalysis; first order rate kinetics

1. Introduction

Today’s world is plagued by a lack of clean water, waterborne diseases, and deteri-
orating water quality. For these, one of the major classes of chemicals that are attracting
considerable interest due to the environmental harm and ecological consequences they
have on both humans and wildlife are the endocrine-disrupting chemicals (EDCs). Among
these, the alkylphenols, such as 4-n-Nonylphenol (NP), are widespread as a non-ionic sur-
factant in detergents in both commercial and domestic arenas [1,2], being further utilized
as precursors for surface modifiers, cosmetics, emulsifiers, resins, herbicide and pesticide
production, and the manufacture of PVC pipes [3–6], of which 60 percent is discharged into
water bodies [7]. However, it is found to disrupt the immune and reproductive systems,
cause mutagenic condensation, inhibit the binding of estrogen to receptors, and is also
associated with cancer, neurotoxicity, and DNA damage, thus being labeled as one of the
most noxious chemicals by the UN Environmental Protection Agency [8–12] and is required
to be maintained at <0.1 µM in ambient water.

Bisphenol A (BPA) is among the other globally used EDCs in epoxy exterior coatings,
flame retardants, and polycarbonate plastics, which are made into food and beverage
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packaging materials, containers, medical devices, and pipes, among others (leaving behind
residues in food, biological samples, and drinking water) due to the high solubility of BPA
apart from discharges by industrial units [13–16]. It is found to have detrimental effects
even at trace levels (below 1 ng/L) [17] and can spawn gynecologic cancer, lower fertility,
and impair cell activity with mitochondrial dysfunction [18–21] and hence necessitates an
efficient method to remove these toxic substances and mitigate their adverse effects. While
conventional methods such as adsorption and biological enzymatic/microbial treatments
are available, these are unfavorable due to the expensive nature of adsorbents [22–24]
and complications in extracting bacteria due to the bioaccumulation potential and toxicity
of EDCs demanding longer periods for removal [25–27]. Other methods such as electro-
chemical and ozone oxidation suffer from high operational costs and lower mineralization
rates [28,29]. Thus, advanced oxidation processes (AOPs) are considered as one of the best
solutions to remove and degrade such banned substances.

A variety of advanced oxidation process remedial approaches, including photocataly-
sis, offer a viable method of treatment that can entirely convert various organic contami-
nants to innocuous products based on extremely reactive radicals [30,31]. While TiO2 has
been extensively used for this purpose since the pioneering work by Pizzetta et al. [32], it
suffers from the major disadvantage of a large band gap of ∼3.2 eV requiring UV stimu-
lation which is only about 4% of solar radiation, thereby limiting its performance. Thus
multiple methods of lowering band gaps of TiO2 along with an array of other catalysts have
been implemented for the photochemical oxidation of NP and BPA, including boron doped
TiO2 [33], Ag-doped BiVO4 [34], ZnO [35], BiVO4 doped with carbon [36], Pt [37], Au [38],
graphene-oxide-doped FePO4 [39], Bi2WO6 [40], N-doped g-C3N4 [41], Au/Bi4Ti3O12 [42],
and BiOI [43]. Despite these efforts, facile fabrication of cheap, photostable and easily
processible catalysts remains a struggle.

Recently, perovskite-type oxides have been probed as alluring catalysts for solar
cells, photocatalysis, electrode materials in batteries, etc. on account of their affordability,
ease of fabrication, exceptional physicochemical properties, thermal stability, configurable
bandgaps, adequate oxygen vacancies, and substantial resistance to photo corrosion [44,45].
Crystalline perovskites with formula ABO3 have 12-coordinated rare-earth or alkaline-
earth metals at the A site and a transition metal BO6 octahedra. Additionally, partial
replacement of A-site cations by co-doping with ions of dissimilar valence could further lead
to defects due to structural twists and bond stretching, attributed to enhanced photocatalytic
activity [46,47], while NaBiO3 [48], Fe-doped NaBiO3 [2], Ag3PO4/LaCoO3 [17], and
SrTiO3 [49] have been applied for the remediation of EDCs; however, these perovskites
have limitations of reusability and display mediocre degradation.

Meanwhile, rare-earth perovskites could be feasible in terms of better catalytic proper-
ties and effectiveness. Among these, LaMnO3 has attracted attention due to its superior
properties, including high specific surface area, high volume of lattice defects due to cation
deficiency, stoichiometric excess of oxygen and varying ratio of manganese in multiple oxi-
dation states (Mn3+/Mn4+), which contribute to alleviated catalytic characteristics [50,51].
Ceria CeO2 is an abysmal catalyst in its natural state; however, a novel initiative would
be incorporation of small quantity of Ce into the perovskite lattice creating oxygen stor-
age capacity in addition to the synergistic effect between Ce3+/Ce4+ and Mn3+/Mn4+

due to atomic-scale interactions which can dramatically improve its redox ability, confer
greater oxygen mobility, and elevate catalytic proficiency [52–55]. Consequently, Ce-based
perovskites have the ability to absorb and release the oxygen vacancies, giving it high
catalytic robustness [56]. Herein, we describe a facile hydrothermal approach for the novel
synthesis of Ce0.1La0.9MnO3 (CLMO) perovskite-type photocatalyst and apply it for visible-
light-aided photodegradation of 4-n-Nonylphenol (NP) and bisphenol A (BPA) under full
spectrum illumination to achieve a high removal rate. Further, the degradation mechanism
was studied, and a suitable mechanism has been proposed.
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2. Results
2.1. Characterization Techniques

The powder X-ray diffraction (XRD) was performed to describe the crystal lattice of
CLMO as depicted in Figure 1, which shows good crystallinity and phase of CLMO nanos-
tructures. The XRD pattern matches the rhombohedral crystalline form of the LaMnO3
perovskite with the R-3c group corresponding to JCPDS No. 50-0298 satisfactorily [57].
The diffraction peaks of CLMO were prominently detected at 2θ angles of 22.9◦, 32.5◦,
40.1◦, 46.5◦, 52.5◦, 58.1◦, 68.2◦, 69.3◦, and 77.9◦, which are archived for (012), (110), (202),
(024), (122), (214), (220), (208), and (128) facets of the lattice, respectively. The flawed peaks
in the image would be attributed to MnOx entities that have emerged as a consequence
of non-stoichiometry of the Ce0.1La0.9MnO3 (CLMO) major phase [58]. The findings of
past research are consistent with the modest quantities of MnOx molecules available. The
crystallite size-induced broadening (Dhkl) of the CLMO nanostructures was estimated to be
about 14.5 nm applying the Debye-Scherrer Equation (1), which was ascribed to (110) plane:

Dhkl = Kλ/(β0.5 cos θ) (1)

where ‘λ’ denotes the wavelength of the (Cu-Kα, λ~1.5406 Å) X-rays, β0.5 signifies the full
width at half maximum intensity (FWHM), Dhkl refers mean crystallite size, and θ is the
XRD pattern Braggs angle.
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Figure 1. XRD patterns of the as-synthesized Ce0.1La0.9MnO3 (CLMO) perovskite sample.

FT-IR was performed to assess the substituents present, the available bonds, and to
certify the purity of the as prepared CLMO nanocatalyst, and the observations are provided
in Figure 2. The IR signal of the CLMO perovskite around 3407 cm−1 and 1631 cm−1 is
consistent with that of the –OH stretching/bending vibrations of adsorbed crystalized
water (H2O) molecules [59]. A sharp signal is noticed at 608 cm−1, which is attributed to the
Mn–O–Mn transmittance band stretching in the octahedral coordinated MnO6 associated
with perovskite-oxide-type CLMO material. The bands at 1378 cm−1 are ascribed to the
anti-symmetric acute vibrational –N–O stretching along with the accompanying less intense
bands at 1247 cm−1 [60].
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Figure 2. FTIR spectra of Ce0.1La0.9MnO3 (CLMO) photocatalyst.

The optical features of the CLMO nanostructure were determined by employing UV-
visible diffuse reflectance spectroscopy (DRS) in the 300–800 nm region, as illustrated in
Figure 3a. It is apparent that CLMO shows substantial visible light absorption, with the
absorption edge around 566 nm which plays a vital role in its performance as visible light
active catalysts for pollutant remediation by absorbing visible photons. The Kubelka–Munk
formula was applied to compute the energy band gap of CLMO sample, as depicted in
Equation (2) [61]:

(αhν)n = B (hν − Eg) (2)

where B, Eg, ν, α, and h are proportionality constant, energy band gap, light frequency,
absorption coefficient, and Planck constant, respectively. The type of photonic transition
of semiconductor influences the ‘n’ value, ca. n = 2 and n = 1/2 for direct and indirect
transition, respectively. The linear section of the graph is extrapolated toward the com-
mencement of the absorption edges to intersect the energy axis was performed to determine
the energy band gap [62]. The graphically computed energy band gap value for CLMO
nanostructure was 2.23 eV as depicted in Figure 3b. Owing to its synergistic essence, the
perovskite structure CLMO exhibited significant visible photon permeability and catalytic
properties. Subsequently, by applying Equations (3) and (4), it was achievable to compute
the catalyst’s coefficient of CB and VB edge positions:

EVB = χ − Eo + 0.5Eg (3)

ECB = EVB − Eg (4)

where χ denotes absolute electronegativity of the intended CLMO sample, which is assessed
to be 5.48 eV utilizing the “Pearson Absolute Electronegativity Chart”, and EVB and ECB
stand for VB and CB potential, respectively. Eo stands for the energy of the free electrons
just on hydrogen scale (4.5 eV). La, Ce, Mn, and O were discovered to have absolute
electronegativities of 3.1, 3.02, 3.72, and 7.54 eV, respectively [63]. Interestingly, it was
found that the as-synthesized CLMO’s EVB and ECB band positions were +2.095 eV and
−0.135 eV, respectively.

The FE-SEM micrographs and EDX analysis, as depicted in Figure 4a,b, describe the
structural morphologies and size distribution properties of the as-synthesized perovskite-
type CLMO photocatalyst. The estimated size of the agglomerates asymmetric spherical
form is evidenced in Figure S1. Greater resolution photographs of as-produced materials
disclose observable disrupted spherical shapes with a substantial surface area, as spotted
in Figure 4a. The homogeneously assembled aggregated CLMO perovskite nanospheres
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could promote in the appropriate separation of electron/hole pairs and the transition of
charge carriers, accordingly. Furthermore, to assess the as-synthesized catalyst’s chemical
and elemental components, TEM-EDX analysis was performed. The elemental component
of the manufactured CLMO uncontrollable nanosphere appearance was noticed to be Ce,
La, Mn, and O pertaining to EDX measurement in Figure 4b, indicating the remarkable
purity of the actual material.
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Figure 4. (a) FE-SEM image and (b) EDX analysis of as-prepared Ce0.1La0.9MnO3 (CLMO) nanos-
tructures. The spectrum shows a peak in 8 KeV, which is attributed to ‘Copper’ appearing from the
supporting microscopic grid.

Additionally, high-resolution transmission electron microscopy (HR-TEM) and SAED
assessments were conducted to reassess the grain dimensions and morphological specifics
of the CLMO catalyst, as illustrated in Figure 5a–d. These findings demonstrate that the
perfectly crystal lined CLMO nanospheres have distinct lattice spacing (d values). Inspect-
ing the TEM micrographs in Figure 5a,b allowed researchers to validate the randomly
distributed CLMO nanospheres topology with a large accumulation with an average parti-
cle dimension of 50 ± 5 nm. The rhombohedral phase CLMO’s lattice plane is evident in
the HR-TEM photographs of the better developed nanospheres and has a lattice spacing of
0.365 nm which attributed to (012) lattice plane (Figure 5c). The several characteristic diffrac-
tion sites seen in Figure 5d that index in the appropriate SAED display is consistent with
the CLMO lattice parameters and the polycrystalline framework. suggestion we performed
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the BET (Brunauer-Emmett-Teller) method and noted in revised manuscript. The approxi-
mate single-point BET (surface area), pore volume, and pore size of the Ce0.1La0.9MnO3
perovskite material is 6.32 m2/g, 0.0014 cm3/g and 17.52 A, respectively.
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2.2. Photocatalytic Degradation Study
2.2.1. Degradation of 4-n-Nonylphenol (NP) and Bisphenol A (BPA)

The photodegradation competency of the synthesized CLMO was investigated by
carrying out visible-light-aided decomposition of an aqueous solution of 4-n-Nonylphenol
(NP) and Bisphenol A (BPA) at optimum reaction conditions and monitored regularly
through UV-Visible spectrophotometry. NP shows bands in the UV region around 254 nm
and 275 nm ascribed to the π–π* transition in the aromatic ring [64]. The band at 275 nm is
taken as the characteristic absorption band of phenolic based compounds including nonyl
phenol. The chemical structure and absorption spectrum of nonyl phenol is depicted in
Supporting Materials Figure S2. BPA exhibits a sharp characteristic band at 277 nm owing
to the π–π* transition of the benzene rings in the molecule [16]. The chemical structure and
absorption spectrum of BPA have been depicted in Supporting Materials Figure S3.

Initially, the degradation process was carried out in the absence of the catalyst under
visible light irradiation at optimum condition and was found to be a meagre 14.8% of NP
and c.a. 5.6% of BPA degradation, respectively, as illustrated in Supporting Materials Figure
S4. The adsorption proficiency of the CLMO catalyst with NP and BPA solution in absence
of any external sources of illumination (dark condition) was found to be 13% and 12.4%,
respectively (See Supporting Materials Figure S5) and indicating that the catalyst surface
shows approximately same level of adsorption for both NP and BPA.

The CLMO nanostructures demonstrate superior visible light degradation efficiency of
92% in 120 min for an aqueous solution of NP with concentration 4× 10−4 M, 20 mg/100 mL
of catalyst loading at natural pH 7, and an aqueous solution of BPA depicts 94% pollutant
removal efficacy in 240 min under optimum conditions of initial BPA concentration of
2 × 10−4 M, 20 mg/100 mL of catalyst loading at natural pH 7, respectively.
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This was proven by the substantial decline in the absorption intensity of the corre-
sponding peak of NP and BPA at 275 nm and 277 nm, respectively, in the UV-Visible
spectrum as portrayed in Figure 6a,b. The reaction fits into pseudo-first-order kinetics
with an apparent rate constant of NP and BPA pollutants are evaluated to be 0.0226 min−1

and 0.0278 min−1, respectively, as evidenced in Figure 6c,d and Table 1. Hence this aug-
mented degradation proficiency of CLMO indicates its ability to produce reactive radicals
in the solution in presence of visible photons facilitating the remediation of the pollutant
molecules. After 2 h reaction of NP and 4 h reaction of BPA, the catalytic proficiency
shows a negligible increase indicating that the molecules cannot be further broken down
into simpler constituents. Furthermore, no peak shift is observed in the UV-Vis spectrum
suggesting that there was no hydroxylation prior to the ring opening process.
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Figure 6. (a,b) Time-dependent UV-Visible spectrum of photocatalytic degradation of NP (Conc.
4 × 10−4 M) and BPA (Conc. 2 × 10−4 M) pollutants and (c,d) pseudo-first-order rate kinetics plot of
NP (Conc. 4 × 10−4 M) and BPA (Conc. 2 × 10−4 M) pollutants, respectively, over CLMO catalyst
(20 mg/100 mL) at pH 7.

Table 1. The degradation efficacy and pseudo-first-order kinetics with an apparent rate constant of
NP and BPA pollutants over CLMO nanostructure.

Degradation Efficiency and First-Order Rate Kinetics

4-n-Nonylphenol Degraded in 120 min Bisphenol A Degraded in 240 min

Sample Degradation
Efficiency (%)

Rate Constant
(min−1) Sample Degradation

Efficiency (%)
Rate Constant

(min−1)

Photo 14.8 2.93 × 10−3 Photo 5.6 2.19 × 10−4

CLMO 13 1.25 × 10−3 CLMO 12.4 6.47 × 10−4

CLMO + Photo 92 2.26 × 10−2 CLMO + Photo 94 2.78 × 10−2
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2.2.2. Optimization Studies

To analyze the effect of catalyst dosage on the degradation efficiency, the initial catalyst
dose was varied from 10–40 mg/100 mL, and the degradation proficiency was determined
by fixing NP concentration of 4 × 10−4 M and BPA concentration of 2 × 10−4 M at neu-
tral pH 7. A notable increase in efficacy was observed with increase in catalyst dose due
to greater number of active sites, and the generation of higher number of reactive radi-
cals and photogenerated charge carriers. The optimum catalyst dosage was found to be
20 mg/100 mL with degradation efficiency around 92% of NP and 94% of BPA within 2 h
and 4 h, respectively, as depicted in Figure 7a,b. The reaction fits into pseudo-first-order
kinetics and corresponding plots of NP and BPA are evidenced in Supporting Materials
Figure S6a,b. With further increase in catalyst amount, the efficiency was found to decrease
due to light scattering effect and masking which has an appreciable effect on transmittance
of photons in the solution, thereby leading to poor degradation.
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This study carried out by varying the initial concentration of NP solution in the range
of 2 × 10−4 M–5 × 10−4 M and BPA concentration range from 1 × 10−4 M to 4 × 10−4 M,
respectively, with the catalyst dosage fixed at 20 mg/100 mL at pH 7. The visible photon-
induced degradation of NP pollutant was initially enhanced with an elevation in initial
concentration till optimum condition was reached after which it further decreased. This
may be a consequence of greater number of pollutant molecules in the solution but number
of active sites being constant and fully saturated.

The rate of photodegradation diminishes with increase in BPA pollutant concentration
as significant number of BPA molecules compete for the surface-active sites (screening effect)
which can lower its removal efficiency. Hence, due to non-availability of reaction centers
for adsorption and degradation the efficiency of NP and BPA with distinct concentrations
might decline as indicated in Figure 8a,b. The degradation reaction obeys the pseudo-first-
order rate kinetics and the attributing plots of NP and BPA are depicted in Supporting
Materials Figure S7a,b.

The pH of the solution was varied by either adding aq. NaOH for basic range or HCl
solution for the acidic pH while keeping the concentration of NP and BPA pollutants fixed
at 4 × 10−4 M and 2 × 10−4 M, respectively, with optimal catalyst dose of 20 mg/100 mL.
The degradation proficiency was examined at pH 3, 5, 7, 9, and 11 and was found to be
maximum at neutral pH 7 for both NP and BPA pollutants, as depicted in Figure 9a,b.
The pseudo-first-order rate kinetics plots are depicted in supporting information Figure
S8a,b, which satisfied the degradation of NP and BPA pollutants. The surface of the catalyst
becomes charged at highly acidic or basic conditions causing poor interactions between the
catalyst and pollutants leading to mediocre degradation. As the electrostatic interactions
between catalyst and pollutant molecules are maximum allowing better adsorption and
enhanced degradation. In the acidic or basic pH adsorption capacity of the pollutant
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decreases due to surface charges on catalyst. The efficiency in acidic pH 5 is markedly lower,
ca. 55% and 48% for NP and BPA, respectively, indicating that the anionic species generated
in acidic solution expedites the degradation process and its poor interaction among the
catalyst and pollutants shows minimum catalytic activity and high concentration of proton,
resulting in lower degradation efficiency. Furthermore, the alkaline pH is declining in
the decomposition of NP and BPA. In alkaline medium (pH > 10), on the other hand, the
presence of hydroxyl ions neutralizes the acidic end-products that are produced by the
photodegradation reaction. A sudden drop of degradation was observed when the initial
pH of the reaction mixture was kept at 11. Moreover, the changes in the structural behavior
of the pollutant molecule may be responsible for the change in the percentage degradation
of dye at higher pH.
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2.2.3. Proposed Photocatalytic Mechanism

The energy band edge orientations of semiconductor are schematically portrayed,
and the photochemical redox mechanism depicted in Figure 10 and thought to be the
probable mechanism for the photodegradation of NP and BPA contaminants over cata-
lyst surfaces. The reactive species generation and decomposition of NP and BPA toxins
adsorbed upon that photocatalyst surfaces can then be commenced with increased pho-
tocatalytic interaction attributable to complete separation of electrons and holes [65,66].
The h+/e− pairs are then created in the conduction and valence bands as a response of
the permeation of visible photons. The CLMOs predicted VB and CB potential spots are
+2.095 eV and −0.135 eV, respectively (vs. NHE). The CB of CLMO catalyst was located
significantly negative for the photo-oxidation of NP and BPA than the normal O2/O2

•−
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reduction potential (−0.046 eV vs. NHE) [67], demonstrating that the solubilized oxygen
can merely be converted to O2

•− radicals by the excited electrons residing on the CB of the
CLMO catalyst. Furthermore, H2O2 is created by the superoxide radicals’ abstraction of
the water proton with excited electrons. These H2O2 radicals cause the production of OH•

radicals, and then, OH• actively contributes to the degradation procedure. Contrarily, the
VB of CLMO is positioned at a quite positive energy level than the OH•/OH− reduction
potential of (+1.89 eV vs. NHE) [65,66]. As a consequence, photogenerated available holes
in the VB of CLMO interact with OH− ions to yield OH• radicals, which degrade NP and
BPA pollutants into intermediates before being converted to CO2, H2O, and byproducts.
A feasible reaction pathway for the photocatalytic decomposition of NP and BPA pollutants
over CLMO nanostructures is suggested as in the preceding conversation and is illustrated
in Equations (5)–(12).

CLMO + hν→ e−CB (CLMO) + h+
VB (CLMO) (5)

e−CB (CLMO) + O2 → O2
•− + CLMO (6)

H2O + O2
•− → HO2

• (7)

e−CB (CLMO) + HO2
• → H2O2 (8)

e−CB (CLMO) + H2O2 → OH• + OH− (9)

h+
VB (CLMO) + H2O2/OH− → OH• (10)

O2
•− + OH• + NP + BPA→ Reaction Intermediates (11)

Reaction Intermediates→ CO2 + H2O + Degradation By-products (12)
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2.2.4. FTIR Analysis

The proof for NP and BPA after decomposition over the surface of the CLMO catalyst
was proven by the FTIR spectra and exhibited in Figure 11a,b and Supporting Materials
Tables S1 and S2, respectively. As NP and BPA pollutants degrade, their FT-IR stretching
frequencies are revealed in detailed knowledge. The FTIR spectra of NP pollutants before
and after degradation are reported in Figure 11a and Table S1, respectively. In both
samples, a wide absorption band at around 3347–3363 cm−1, which is associated to the
stretching O–H bonds vibrations in hydroxyl groups. Prior degradation, flat bands due to
the vibrations of the C–H bonds alkyl and aromatic group in NP samples were discovered
at frequencies of 2979, 2956, 2849, and 3026 cm−1, respectively. These bands were no longer
present after degradation. A prominent absorption band of NP pollutants was found in the
lower frequency peak around 1258 cm−1, which corresponds to the C–O bond vibration,
which become undetectable after degradation [23,24].
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Figure 11. The FT-IR spectral proof for (a) NP and (b) BPA after decomposition over the surface of
the CLMO catalyst.

Figure 11b and Table S2 demonstrated the FTIR spectra of BPA pollutants before and
after degradation. The C–C groups vibrational stretching results in an absorption peak
of 758 cm−1 and substituted signal at 768 cm−1. The C–O molecule stretching in both
rings is allocated a rather significant absorption peak of 828 cm−1. Similar to that, C–C
stretching is accorded to the peaks at 1013, 1083, and 1177 cm−1. The C–C and C–C–H
vibrational stretching in both rings is responsible for the strong peaks around 1383, 1461,
1509, and 1611 cm−1. All of these bands have disappeared since BPA’s degradation. A broad
absorption spectrum around approximately 3340–3350 cm−1 is detected in both collections
and is correlated to the stretched O–H bonding vibrations in hydroxyl molecules [24,68].

2.2.5. Recyclability and Photostability Study

The feasibility of the perovskite photocatalyst for pollutant remediation depends on the
cost-effectiveness and stability of the material. The photocatalytic repeated cyclic analysis
of the degradation of NP and BPA over CLMO surface was studied under optimized
conditions and it showed impressive reusability up to 4 cycles with a meagre decline of
5% for NP and 4% for BPA degradation, as depicted in Figure 12a,b, respectively, which
could be attributed to catalyst loss and agglomeration of the particles. These recycling
investigations indicate that the catalyst possesses excellent processibility with very slight
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discernable drop in efficacy. According to the catalytic regeneration investigation, the
photocatalysts may be processed quite conveniently without any noticeable performance
compromise. To confirm the catalyst’s photostability, the XRD investigation and FT-IR
spectral measurement of the CLMO photocatalyst retrieved after four successive cycles are
conducted and as illustrated in Figure 13a,b. The oxide did not break down which affirmed
with FT-IR data and preserved the consistency of its structure over the photocatalytic
procedure, according to the XRD pattern’s exceptional pristine phases and crystallite
preservation. A comparison of efficiency and reaction time of nonylphenol and bisphenol A
using Ce0.1La0.9MnO3 with previously reported TiO2-based nanocatalysts in the literature
in Table S3.
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3. Materials and Methods
3.1. Chemical Reagents

All the chemicals and reagents were of analytical grade and utilized as purchased
without any purification steps, except otherwise specified. Ammonium cerium (IV) ni-
trate [(NH4)2Ce(NO3)6, CAS-16774-21-3, 98.5%], manganese (II) nitrate tetrahydrate and
[Mn(NO3)2·4H2O, CAS-20694-39-7, 97%], were procured from Sigma-Aldrich, Trichy,
India. Lanthanum nitrate hexahydrate [La(NO3)3·6H2O, CAS-10277-43-7, 99.9%,], 4-n-
Nonylphenol (NP) [C15H24O, CAS-104-40-5, 98%], bisphenol A (BPA) [C15H16O2, CAS-80-
05-7, 97%], sodium hydroxide [NaOH, CAS-1310-73-2, 98%] were obtained from Alfa Aesar,
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Trichy, India. De-ionized (D.I.) water was utilized to prepare aqueous solutions throughout
the study.

3.2. Synthesis of Perovskite-Type Ce0.1La0.9MnO3 (CLMO) Nanostructures

The Ce0.1La0.9MnO3 (CLMO) perovskite material was synthesized by a facile hy-
drothermal method at ambient conditions followed by annealing to obtain the nanostruc-
tures. To 40 mL of deionized water was added 0.045 M of La(NO3)2.6H2O, 0.005 M of
(NH4)2Ce(NO3), and 0.05 M of Mn(NO3)2·4H2O, and the diluted mixture was sonicated
in an ultrasound bath for 10 min. With continuous stirring, the pH of the solution was
regulated to 12 by dropwise addition of aq. NaOH solution. The resulting mixture was then
placed in a stainless-steel autoclave (ca. 80 cm3) insulated with Teflon and held at 180 ◦C for
18 h under autogenous pressures for a hydrothermal procedure. The autoclave was then
allowed to cool to room temperature, and the precursors were recovered via centrifugation,
rinsed well with deionized water followed by acetone and finally dried at 90 ◦C in a vac-
uum oven. Eventually, the dehydrated powdered material was annealed for 6 h at 800 ◦C
with a heating rate of 5 ◦C/min in a tubular furnace to obtain the CLMO nanostructures.
The reactions (S1)–(S5) in the Supporting Materials illustrate a feasible chemical mechanism
for the formation of CLMO nanotexture by a simple hydrothermal treatment.

3.3. Characterization Details

A Rigaku D/max-500 X-ray diffractometer (XRD, Tokyo, Japan) employing 1.5406 Å
Cu-Kα radiation at a current of 200 mA and a voltage of 40 kV was used to determine the
crystallographic structures and phase composition of the acquired CLMO sample. Fourier
transform infrared (FT-IR) spectrum was recorded with an infrared spectrometer (Nicolet
iS50 spectrometer, Waltham, MA, USA) on a KBr pellet in the range from 500 to 4000 cm−1.
The surface properties and microstructures of the CLMO perovskite sample was evaluated
with FE-SEM using GEMIN-300 SEM (Carl Zeiss, Jena, Germany) at 30 kV acceleration
voltage and HR-TEM and SAED analyses (Model FEI Tecnai G2-F20 microscope (Portland,
OR, USA) operated at approximately 200 kV) and OCTANE-T-PLUS EDX model used for
EDX analysis. The nitrogen gas adsorption–desorption measurements were performed
with Micromeritics ASAP2010 (Norcross, GA, USA) at liquid nitrogen temperature (77K)
and surface area was calculated using Brunauer-Emmett-Teller (BET) equation. The pre-
pared sample’s chemical constitution was confirmed employing energy-dispersive X-ray
spectroscopy (EDX). The optical absorbance parameters were evaluated with a Specord
600S (Jena, Germany) diffused reflectance UV-vis spectrophotometer within a range of
200–800 nm adopting BaSO4 as an internal reference.

3.4. Photocatalytic Activity Experimental Setup

The photocatalytic activity experiments of the prepared Ce0.1La0.9MnO3 (CLMO) sam-
ple for the visible light aided degradation of NP and BPA aqueous solutions was performed
by taking an aqueous solution of the pollutant with a predetermined initial concentration
in a reactor vessel and introducing a certain amount of CLMO sample with proper stirring.
The reactor was initially maintained in darkness for 30 min before turning on the light
source to achieve adsorption–desorption equilibria of the contaminants over the CLMO
surface. The reaction vessel was then placed in a photocatalytic chamber with a visible-
light supply (Osram halogen lamp, Munich, Germany, 400 nm; Nominal luminous flux
5000 lm, 24 Volts/150 Watts, radiation intensity 80,600 lx) to determine the photocatalytic
competency of CLMO for NP and BPA degradation. During the irradiation, 4 mL of the
reaction mixture was extracted at periodic intervals, and the catalyst particles were filtered
through a 0.45 µm pore size PVDF syringe filter. Using a UV-Vis spectrophotometer the ab-
sorption spectra of the extracted solution was examined, and the concentration of pollutant
degraded was determined.
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3.5. Kinetics of Degradation

The results of the kinetics for the degradation reaction by CLMO catalyst were calcu-
lated using the Langmuir-Hinshelwood (L-H) model, as shown in Equation (13):

ln C/Co = kappt (13)

where, C and Co express the concentration of NP or BPA at t and zero time, respectively,
kapp is the apparent decomposition rate constant, and t is the illumination time (min).
Moreover, the following Equation (14) can be applied to evaluate the pollutant removal
efficacy [η, Eff. %]:

η, Eff. % = [C0 − Ct/C0] × 100% (14)

4. Conclusions

In conclusion, adopting a simple hydrothermal approach, we effectively produced
and characterized Ce3+-ion-substituted lanthanum magnetite (CLMO) perovskites material,
which was then employed to photodegrade NP and BPA contaminants. The as-synthesized
substances’ elemental composition and phase uniformity were confirmed by XRD, EDX,
SEM, HR-TEM, SAED, and FTIR investigation. The CLMO photocatalyst was designed to
aid the photocatalytic destruction of NP and BPA compounds that disturb the endocrine
system. During the advanced photocatalyst-assisted redox reaction, the NP and BPA
solutions degraded to 92 and 94 percent, respectively, over 120 and 240 min, respectively.
Such excellent photocatalytic activity can be attributed to superior photon harvesting,
effective charge separation, and a substantial majority of active surfaces for the generation
of reactive species (O2

•− and OH•) for the detoxification of NP and BPA contaminants. It is
really remarkable to perceive that the improved CLMO catalyst’s NP and BPA degradation
efficiency holds steady for approximately four consecutive cycles, demonstrating the
catalyst’s persistence. Ultimately, CLMO catalysts possess enhanced NP and BPA pollutant
degradation potentials, suggesting that CLMO may be an appropriate substrate for the
convenient and rapid removal of EDCs from effluent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101258/s1, Reactions (S1)–(S5): The reaction pathway for
the construction of Ce0.1La0.9MnO3 (CLMO) by facile hydrothermal approach; Figure S1: (a,b) FE-
SEM image of as-prepared Ce0.1La0.9MnO3 (CLMO) nanostructures; Figure S2: UV-Visible absorption
spectrum of 4-n-nonylphenol (NP). The inset of the figure provided the molecular structure of NP;
Figure S3: UV-Visible absorption spectrum of Bisphenol-A. The inset of the figure provided the molec-
ular structure of BPA; Figure S4: Time dependence UV-Vis absorption spectra of (a) NP (4 × 10−4 M)
and (b) BPA (2 × 10−4 M), respectively, in the absence of catalyst under visible light illumination at
pH-7; Figure S5: Time dependence UV-Vis absorption spectra of (a) NP (4 × 10−4 M) and (b) BPA
(2 × 10−4 M), respectively, adsorption over CLMO surface; 20 mg/100 mL catalyst dose at pH-7;
Figure S6: The Pseudo-first-order rate kinetics plots of (a) NP and (b) BPA pollutants with various
quantities of CLMO catalyst loading at pH-7 under the visible photons illumination; Figure S7: The
Pseudo-first-order rate kinetics plots of (a) NP and (b) BPA pollutants with a different initial concentra-
tion of pollutants over CLMO surface at pH-7 under the visible photons illumination; Figure S8: The
Pseudo-first-order rate kinetics plots of (a) NP and (b) BPA pollutants over CLMO surface by varying
the pH of the reaction medium under the visible photons illumination; Table S1: Fourier-transform
infrared spectroscopy (FTIR) analysis of NP pollutant before and after photodegradation with CLMO
catalyst; Table S2: Fourier-transform infrared spectroscopy (FTIR) measurement of BPA pollutant
before and after photodegradation with CLMO catalyst; Table S3: Comparison of efficiency and
reaction time of Nonylphenol and Bisphenol A using Ce0.1La0.9MnO3 with previously reported in
the literatures [7,69–73].
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