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Abstract: Herein we describe the development and optimization of a two-step procedure for the
synthesis of N-protected 1-aminomethylphosphonium salts from imides, amides, carbamates, or
lactams. Our “step-by-step” methodology involves the transformation of amide-type substrates to
the corresponding hydroxymethyl derivatives, followed by the substitution of the hydroxyl group
with a phosphonium moiety. The first step of the described synthesis was conducted based on
well-known protocols for hydroxymethylation with formaldehyde or paraformaldehyde. In turn, the
second (substitution) stage required optimization studies. In general, reactions of amide, carbamate,
and lactam derivatives occurred at a temperature of 70 ◦C in a relatively short time (1 h). On the other
hand, N-hydroxymethylimides reacted with triarylphosphonium salts at a much higher temperature
(135 ◦C) and over longer reaction times (as much as 30 h). However, the proposed strategy is very
efficient, especially when NaBr is used as a catalyst. Moreover, a simple work-up procedure involving
only crystallization afforded good to excellent yields (up to 99%).

Keywords: imides; amides; phosphonium salts; α-amidoalkylation; α-amidoalkylating agents

1. Introduction

α-Amidoalkylation reactions have recently gained more importance in organic syn-
thesis as a convenient method for new C-C and C-X(heteroatom) bond formation [1–18].
The crucial step in such reactions is the generation of the proper α-amidoalkylating agents
(N-acylimines 3 or N-acyliminium cations 4) from the relevant precursors 1. Usually, for
this purpose, it is necessary to use catalysts, either bases (for the generation of N-acylimines
3) or much more often acids (Lewis or protic acids, for the generation of N-acyliminium
cations 4, see Scheme 1) [19–28].

Interesting exceptions are N-protected 1-aminoalkylphosphonium salts 2. This partic-
ular structure, especially the presence of a positively charged triarylphosphonium group
(which easily departs as a triarylphosphine) in the direct vicinity of the N-acylamino group,
facilitates the formation of N-acyliminium-type cations [16,29]. Besides, the reactivity
of compounds 2 can be increased by structural modifications within the phosphonium
moiety, e.g., by the introduction of electron-withdrawing substituents, which reduce the
Cα-P+ bond strength and makes it even easier to break [30–32]. This procedure makes it
possible to conduct α-amidoalkylations under mild conditions without the need for any
catalyst [30–33].

Applications of N-protected 1-aminoalkylphosphonium salts 2 as α-amidoalkylating
agents are widely reported in the literature, e.g., in the synthesis of phosphorus analogs of
amino acids [34–36] or β-amino carbonyl compounds [33] (extremely valuable because of
high and multidirectional biological activity). However, the possibilities for their synthetic
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utility are not limited only to the α-amidoalkylations. There are known Wittig reactions in
which phosphonium salts 2 are used as ylide precursors [37,38]. It is also worth noting that
some phosphonium salts 2 (e.g., phthalimidomethyltriphenylphosphonium bromide or
chloride) exhibit biological activities, e.g., antitumor or nematocidal properties [39].
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Scheme 1. Generation of N-acylimines and N-acyliminium cations in α-amidoalkylations.

In the last few years, we have described some general and very efficient protocols
for the synthesis of N-protected 1-aminoalkylphosphonium salts (Scheme 2, pathways
A [29] and E [40]). However, they have some limitations in the preparation of N-protected
aminomethylphosphonium salts, especially imidomethylphosphonium salts (see results
and discussion).
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In the literature, there are also several methods dedicated almost exclusively to the
synthesis of N-protected aminomethylphosphonium salts, but in most cases, they have
a quite narrow range of applicability and allow for the formation of only one class of
phosphonium salts, e.g., N-imidomethylphosphonium salts (Scheme 2, pathway B, if R1,
R2 = -C6H4CO-) [39,41], N-alkoxycarbonylaminomethylphosphonium salts (Scheme 2,
pathway C) [42,43], ureidomethylphosphonium salts (Scheme 2, pathway D) [44], or N-
acylaminomethylphosphonium salts (Scheme 2, pathways F [45] and G [46,47]). Moreover,
they are often time-consuming and labor-intensive or require the use of toxic or troublesome
reagents (not readily available or inconvenient to use) [16].

In this context, we would like to present our research on the two-step preparation
of N-protected 1-aminomethylphosphonium salts from amides, carbamates, lactams, or
imides. It can be considered as an interesting complement to previously described methods,
especially for the synthesis of imidoalkylphosphonium salts.

2. Results and Discussion

In 2017, we reported the synthesis of 1-imidoalkylphosphonium salts and their ap-
plication as α-imidoalkylating agents [32]. During the implementation of this work, we
stumbled upon a problem with obtaining imidomethylphosphonium derivatives. At that
time, the generally proposed method for synthesizing 1-imidoalkylphosphonium salts
was inefficient for imidomethylphosphonium salts (three steps, including electrochemical
alkoxylation, and total yields below 10%).

Recently, we described a one-pot methodology for the synthesis of N-protected 1-
aminoalkylphosphonium salts based on the three-component coupling of aldehydes and
either amides, carbamates, lactams, or imides in the presence of triarylphosphonium
salts [40]. However, in this case, the preparation of imidomethylphosphonium salts also
proved to be problematic. Condensations with imides required very high temperatures
(150–170 ◦C) and often resulted in only trace amounts of products [40]. The low nucle-
ophilicity of the nitrogen in imides seems to hinder the crucial stage of this synthesis,
i.e., the reaction of imides with 1-hydroxymethylphosphonium salts 8 (which are rapidly
formed in situ from aldehyde 6 and triarylphosphonium salts 7, Scheme 3, pathway I).
Therefore, we decided to reverse the ongoing transformations and, in the first step, cre-
ate N-hydroxymethylimides 9 from imides and aldehyde 6, and then treat them with
triarylphosphonium salts 7 (Scheme 3, pathway II).
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Procedures for the preparation of hydroxymethyl derivatives 9 have been known
for years [48–54], so we focused on tuning the conditions for the second step, where the
hydroxyl group is substituted by the phosphonium moiety.

Preliminary studies indicated that the reaction required a relatively high temperature
(135 ◦C), so this transformation was tested by fusing N-hydroxymethylimides 9 (phthalim-
ide derivative 9a: R1, R2 = -C6H4CO- and succinimide derivative 9b: R1, R2 = -CH2CH2CO-,
see Table 1) with triphenylphosphonium tetrafluoroborate (Ph3P·HBF4, 7a) at an elevated
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temperature (135 ◦C) and under reduced pressure (2000–2500 Pa). Moreover, there was a
positive effect of NaBr addition (a bromide anion catalyst) on the reaction time and yield
(compare entries 1 and 5 with 2–4 and 6, Table 1). The best results were obtained at 135 ◦C
using 10 mol% NaBr as a catalyst.

Table 1. Synthesis of N-protected aminomethyltriarylphosphonium salts 2–optimization studies.
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Next, we examined how the type of N-protecting group affects the course of the
reaction. N-hydroxymethylbenzamide (9c: R1 = Ph, R2 = H, Table 1; commercially available)
was reacted with triphenylphosphonium tetrafluoroborate 7a under the aforementioned
conditions, yielding good results (Table 1, entry 7). Further investigations revealed that the
reaction occurred at temperatures as low as 70 ◦C and that the addition of NaBr was not
essential (Table 1, see entries 8 and 9), although it facilitated the reaction and led to higher
yields (as much as 20% higher).

Based on the data obtained from the optimization process, we performed the reactions
on a preparative scale and isolated the products using only crystallization (no chromatog-
raphy was necessary). The results confirmed all our previous observations (see Table 2). To
evaluate the scope of the developed methodology, we synthesized a number of hydrox-
ymethyl derivatives of imides, amides, carbamates, or lactams 9, and reacted them with
various types of triarylphosphonium salts 7 (Ar3P·HX).

Generally, to obtain imidomethylphosphonium tetrafluoroborates with good yields,
it was necessary to conduct the reaction at a relatively high temperature (135 ◦C, 3 h) in
the presence of 10 mol% NaBr as catalyst (Table 2, compare entries 1–4). On the other
hand, N-hydroxymethylamides, -carbamates, and -lactams reacted smoothly with triph-
enylphosphonium tetrafluoroborate 7a at 70 ◦C with good to very good yields (see Table 2,
e.g., entries 12, 20, and 23).

The possibility of using other tetrafluoroborates was also explored. We showed that
phosphonium salts substituted with both electron-withdrawing ((3-ClC6H4)3P·HBF4, 7b),
and electron-donating substituents ((4-MeOC6H4)3P·HBF4, 7c) could be successfully used
in the reaction. However, to obtain sufficiently high yields, a longer reaction time was
required (Table 2, e.g., entries 7, 9, or 15). In turn, the use of triphenylphosphonium
bromide (Ph3P·HBr, 7d) instead of tetrafluoroborate (Table 2, e.g., entries 8 or 14) made the
reaction more efficient even without a catalyst (the addition of NaBr was unnecessary).
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Table 2. Synthesis of N-protected aminomethyltriarylphosphonium salts 2-scope of application.
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notice any difficulties and we were able to obtain the expected product with a yield of 80%.
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3. Materials and Methods
3.1. General Information

The structures of all compounds obtained were confirmed by spectroscopic methods
(NMR, IR). 1H, 13C{1H} (the proton decoupled 13C NMR) and 31P{1H} NMR (the proton
decoupled 31P NMR) spectra were measured on Agilent NMR Magnet 400 at frequencies
of 400, 100, and 161.9 MHz, respectively (Supplementary Materials). Tetramethylsilane
(TMS) was used as the resonance shift standard (1H and 13C NMR). FT-IR spectra (ATR
method) were recorded on an FT-IR spectrophotometer Nicolet 6700. High-resolution mass
spectra (electrospray ionization) were recorded for unknown compounds on a Waters Xevo
G2 quadrupole time-of-flight (Q-TOF) mass spectrometer. Melting points were determined
(in capillaries) for crystalline substances and were uncorrected. Solvents (ACS grade)
were stored over molecular sieves before use. All commercially available reagents, includ-
ing compounds 5, 6, triphenylphosphonium bromide 7d, N-hydoxymethylbenzamide 9c,
and N-hydroxymethylacetamide 9d were purchased and then used as received, without
purification or modifications.

3.2. Syntheses
3.2.1. Substrate Synthesis

Triarylphosphonium tetrafluoroborates 7a–c were synthesized based on our previ-
ously described procedure [40]. N-hydroxymethylphthalimide 9a [48], N-hydroxymethylsu-
ccinimide 9b [50], benzyl N-hydroxymethylcarbamate 9e [51], tert-butyl N-hydroxymethyl-
carbamate 9f [52], and N-hydroxymethyl-2-pyrrolidone 9g [53] were synthesized according
to known procedures.

N-hydroxymethylphthalimide (9a) [48]. Colorless crystals (1.524 g, 86% yield), mp
143.0–145.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 7.92-7.81 (m, 4H, aromatic), 6.36 (t,
J = 7.0 Hz, 1H, OH), 4.96 (d, J = 6.4 Hz, 2H, CH2) ppm; 13C{1H} NMR (100 MHz, DMSO-d6)
δ 167.4 (C=O), aromatic carbons: 134.7, 131.5, 123.3, 60.1 (CH2OH) ppm; IR (ATR) 3484,
1770, 1698, 1352, 1328, 1051 cm−1.

N-hydroxymethylsuccinimide (9b) [50]. Colorless crystals (0.904 g, 70% yield), mp
69.0–71.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 6.25 (t, J = 7.2 Hz, 1H, OH), 4.72 (d, J = 7.2 Hz,
2H, NCH2), 2.62 (s, 4H, CH2-CH2) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ 177.3 (C=O),
60.4 (CH2OH), 28.0 (CH2) ppm; IR (ATR) 3387, 1683, 1364, 1191, 1066 cm−1.

benzyl N-hydroxymethylcarbamate (9e) [51]. Colorless crystals (2.66g, 74% yield),
mp 81.0–82.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 7.90 (t, J = 6.3 Hz, 1H, NH), 7.44–7.25
(m, 5H, Ph), 5.63 (t, J = 6.5 Hz, 1H, OH), 5.04 (s, 2H, CH2O), 4.47 (dd~t, J = 6.5, 6,5 Hz, 2H,
NCH2) ppm; 13C{1H} NMR (100 MHz, DMSO-d6) δ 156.0 (C=O), aromatic carbons: 136.9,
128.3, 127.8, 127.7, 65.2 (CH2O), 64.4 (CH2O) ppm; IR (ATR) 3345, 1695, 1519, 1250, 1232,
1026, 970 cm−1.

tert-butyl N-hydroxymethylcarbamate (9f) [52]. Colorless crystals (1.06 g, 36% yield),
mp 63.0–65.0 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 7.32 (t, J = 6.2 Hz, 1H, NH), 5.46 (t,
J = 6.5 Hz, 1H, OH), 4.38 (dd~t, J = 6.5, 6.5 Hz, 2H, CH2), 1.39 (s, 9H, t-Bu) ppm; 13C{1H}
NMR (100 MHz, DMSO-d6) δ 155.6 (C=O), 78.2 (C-O), 64.2 (CH2OH), 28.4 (CH3) ppm; IR
(ATR) 3362, 1687, 1519, 1293, 1250, 1000, 943 cm−1.

N-hydroxymethyl-2-pyrrolidone (9g) [53,54]. Colorless crystals (0.507 g, 73% yield),
mp 75.0–77.0 ◦C. 1H NMR (400 MHz, CDCl3) δ 4.79 (d, J = 7.4 Hz, 2H, CH2), 4.45 (t,
J = 7.5 Hz, 1H, OH), 3.62–3.55 (m, 2H, NCH2), 2.45–2.35 (m, 2H, CH2) 2.10–1.99 (m, 2H,
CH2) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 176.2 (C=O), 66.4 (CH2OH), 46.1 (CH2N),
31.3 (CH2), 17.8 (CH2) ppm; IR (ATR) 3260, 1649, 1463, 1261, 1197, 1036, 1024 cm−1.

3.2.2. Synthesis of N-Protected Aminomethylphosphonium Salts 2

The N-(hydroxymethyl)imide, -amide, -carbamate or -lactam (1 mmol), triarylphos-
phonium bromide or tetrafluoroborate (Ar3P·HX, 1 mmol), and CHCl3 (2.5 mL) were
added to a 25 mL round-bottom flask. When necessary, the NaBr catalyst (which was
previously heated at 60 ◦C under reduced pressure for a minimum of 1 h) was added to the
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mixture at a level of 5–20 mol% (see Tables 1 and 2). The solvent was then evaporated from
the resulting mixture using a rotary evaporator. The residue was fused at 135 ◦C or 70 ◦C
under reduced pressure for the time noted in Tables 1 and 2. The crude reaction product
was dissolved in CH3CN or CH2Cl2 and then, after removal of NaBr (by decantation), was
precipitated with Et2O. If necessary, the crystallization was repeated.

3.2.3. 5g-Scale Synthesis of (N-phthalimido)methyltriphenylphosphonium
Tetrafluoroborate (2a)

N-(hydroxymethyl)phthalimide (2.30 g, 13 mmol), triphenylphosphonium tetraflu-
oroborate (4.55 g, 13 mmol), and CHCl3 (25 mL) were added to a 100 mL round bottom
flask. The NaBr (0.1338 g, 1.3 mmol, 10 mol%), which was previously heated at 60 ◦C under
reduced pressure for a minimum of 1 h, was added to the mixture. The solvent was then
evaporated from the resulting mixture using a rotary evaporator. The residue was fused
at 135 ◦C under reduced pressure for 3h. The crude reaction product was dissolved in
CH3CN and then, after removal of NaBr by decantation, was precipitated with Et2O to
obtain 5.3 g of pure product 2a with a yield of 80%.

(N-phthalimido)methyltriphenylphosphonium tetrafluoroborate (2a) [32]. Color-
less crystals (397.2 mg, 78% yield), mp 243.5–245.5 ◦C. 1H NMR (400 MHz, CD3CN) δ
7.94–7.84 (m, 3H, aromatic), 7.83–7.73 (m, 10H, aromatic), 7.72–7.66 (m, 6H, aromatic), 5.44
(d, J = 4.2 Hz, 2H, CH2P) ppm; 13C{1H} NMR (100 MHz, CD3CN) δ 167.8 (C=O), aromatic
carbons: 136.8 (d, J = 3.1 Hz), 136.1, 135.5 (d, J = 10.3 Hz), 132.3, 131.3 (d, J = 12.8 Hz), 124.7,
117.0 (d, J = 85.3 Hz), 35.6 (d, J = 60.3 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CD3CN)
δ 19.5 ppm; IR (ATR) 3300, 2971, 1740, 1685, 1632, 1321, 1266, 1222, 1139, 993, 975, 851 cm−1.

(N-succinimido)methyltriphenylphosphonium tetrafluoroborate (2b) [32]. Color-
less crystals (327.5 mg, 71% yield), mp 224.5–226.5 ◦C. 1H NMR (400 MHz, CD3CN)
7.96–7.86 (m, 3H, aromatic), 7.82–7.69 (m, 12H, aromatic), 5.20 (d, J = 5.2 Hz, 2H, CH2P),
2.53 (d, J = 1.1 Hz, 4H, CH2CH2) ppm; 13C{1H} NMR (100 MHz, CD3CN) δ 177.4 (C=O),
aromatic carbons: 136.8 (d, J = 3.2 Hz), 135.4 (d, J = 10.3 Hz), 131.3 (d, J = 12.9 Hz), 117.1
(d, J = 86.0 Hz), 35.6 (d, J = 60.1 Hz, CH2P), 28.8 (CH2) ppm; 31P{1H} NMR (161.9 MHz,
CD3CN) δ 20.0 ppm; IR (ATR) 3069, 1712, 1436, 1395, 1315, 1148, 1112, 1047, 996 cm−1.

(N-phthalimido)methyltriphenylphosphonium bromide (2c). Colorless crystals (316.4 mg,
63% yield), mp 264.5–266.0 ◦C. 1H NMR (400 MHz, CD3CN) δ 7.90–7.84 (m, 3H, aromatic),
7.83–7.72 (m, 10H, aromatic), 7.71–7.64 (m, 6H, aromatic), 5.50 (d, J = 4.3 Hz, 2H, CH2P) ppm;
13C{1H} NMR (100 MHz, CD3CN) δ 167.7 (C=O), aromatic carbons: 136.7 (d, J = 3.1 Hz),
136.1, 135.5 (d, J = 10.1 Hz), 132.2, 131.3 (d, J = 12.9 Hz), 124.7, 117.0 (d, J = 85.7 Hz), 35.7 (d,
J = 60.3 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CD3CN) δ 19.5 ppm; IR (ATR) 3044,
1711, 1441, 1390, 1305, 1291, 1110, 1067, 895 cm−1. HRMS (TOF-ESI) calcd for C27H21NO2P
[M+] 422.1310, found 422.1310.

(N-phthalimido)methyltris(3-chlorophenyl)phosphonium tetrafluoroborate (2d). Col-
orless crystals (459.5 mg, 75% yield), mp 203.0–205.0 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.89–7.80 (m, 3H, aromatic), 7.80–7.73 (m, 7H, aromatic), 7.73–7.65 (m, 3H, aromatic),
7.62–7.55 (m, 3H, aromatic), 5.74 (d, J = 3.4 Hz, 2H, CH2P) ppm; 13C{1H} NMR (100 MHz,
CDCl3) δ 166.3 (C=O), aromatic carbons: 137.0 (d, J = 16.9 Hz), 136.4 (d, J = 3.0 Hz), 135.3,
133.2 (d, J = 11.3 Hz), 132.8 (d, J = 10.0 Hz), 132.3 (d, J = 14.3 Hz), 130.7, 124.1, 117.3 (d,
J = 84.4 Hz), 34.7 (d, J = 56.6 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 21.9 ppm;
IR (ATR) 3086, 3071, 2964, 2929, 1774, 1725, 1563, 1468, 1408, 1396, 1384, 1300, 1134, 1046,
995, 894 cm−1. HRMS (TOF-ESI) calcd for C27H18Cl3NO2P [M+] 524.0141, found 524.0140.

(N-phthalimido)methyltris(4-methoxyphenyl)phosphonium tetrafluoroborate (2e).
Colorless crystals (389.5 mg, 65% yield), mp 196.0–198.0 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.77–7.69 (m, 4H, aromatic), 7.67–7.58 (m, 6H, aromatic), 7.14–7.07 (m, 6H, aromatic), 5.42
(d, J = 4.2 Hz, 2H, CH2P), 3.88 (s, 9H, OCH3) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 166.5
(C=O), aromatic carbons: 165.2 (d, J = 3.0 Hz), 136.0 (d, J = 11.8 Hz), 134.9, 131.0, 123.9,
116.2 (d, J = 14.0 Hz), 106.6 (d, J = 93.9 Hz), 55.9 (OCH3), 35.1 (d, J = 60.9 Hz, CH2P) ppm;
31P{1H} NMR (161.9 MHz, CDCl3) δ 19.1 ppm; IR (ATR) 2943, 2848, 1719, 1593, 1505, 1395,
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1304, 1267, 1185, 1112, 1033, 1022, 900 cm−1. HRMS (TOF-ESI) calcd for C30H27NO5P [M+]
512.1627, found 512.1627.

(N-succinimido)methyltriphenylphosphonium bromide (2f). Colorless crystals (427.0 mg,
94% yield), mp 237.0–238.5 ◦C. 1H NMR (400 MHz, CDCl3) 7.91–7.81 (m, 9H, aromatic),
7.80–7.69 (m, 6H, aromatic), 5.79 (d, J = 4.9 Hz, 2H, CH2P), 2.57 (s, 4H, CH2CH2) ppm;
13C{1H} NMR (100 MHz, CDCl3) δ 176.0 (C=O), aromatic carbons: 135.8 (d, J = 3.1 Hz),
134.3 (d, J = 10.3 Hz), 130.6(d, J = 12.9 Hz), 116.6 (d, J = 85.5 Hz), 36.3 (d, J = 56.7 Hz,
CH2P), 28.4 (CH2) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 20.8 ppm; IR (ATR) 3586,
3387, 1704, 1392, 1144, 1110 cm−1. HRMS (TOF-ESI) calcd for C23H21NO2P [M+] 374.1310,
found 374.1313.

(N-succinimido)methyltris(3-chlorophenyl)phosphonium tetrafluoroborate (2g). Col-
orless resin (389.5 mg, 69% yield). 1H NMR (400 MHz, CDCl3) δ 7.87-7.81 (m, 3H, aromatic),
7.79–7.72 (m, 6H, aromatic), 7.60–7.53 (m, 3H, aromatic), 5.39 (d, J = 4.6 Hz, 2H, CH2P), 2.60
(s, 4H, CH2CH2) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 176.3 (C=O), aromatic carbons:
136.9 (d, J = 17.1 Hz), 136.5 (d, J = 3.0 Hz), 133.1 (d, J = 11.6 Hz), 132.7 (d, J = 9.9 Hz), 132.5
(d, J = 14.3 Hz), 117.6 (d, J = 85.2 Hz), 34.9 (d, J = 58.2 Hz, CH2P), 28.1 (CH2) ppm; 31P{1H}
NMR (161.9 MHz, CDCl3) δ 21.3 ppm; IR (ATR) 3072, 2977, 1709, 1564, 1469, 1397, 1307,
1131, 1050, 993 cm−1. HRMS (TOF-ESI) calcd for C23H18Cl3NO2P [M+] 476.0141, found
476.0141.

(N-benzoylamino)methyltriphenylphosphonium tetrafluoroborate (2i) [45]. Color-
less crystals (439.8 mg, 91% yield), mp 194.0–195.5 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.42
(br t, J = 6.1 Hz, 1H, NH), 7.83–7.73 (m, 9H, aromatic), 7.70–7.60 (m, 8H, aromatic), 7.50–7.40
(m, 1H, aromatic), 7.38–7.30 (m, 2H, aromatic), 5.32 (dd, J = 6.1, 3.1 Hz, 2H, CH2P) ppm;
13C{1H} NMR (100 MHz, CDCl3) δ 168.6 (d, J = 1.0 Hz, C=O), aromatic carbons: 135.3 (d,
J = 3.1 Hz), 134.4 (d, J = 9.7 Hz), 132.4, 131.8, 130.3 (d, J = 12.6 Hz), 128.7, 127.5, 117.5 (d,
J = 83.9 Hz), 38.2 (d, J = 57.0 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 21.1
ppm; IR (ATR) 3348, 1655, 1533, 1438, 1112, 1055, 1026, 997 cm−1.

(N-benzoylamino)methyltriphenylphosphonium bromide (2j) [45]. Colorless crys-
tals (447.7 mg, 94% yield), mp 233.5–235.5 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.04 (br t,
J = 6.0 Hz, 1H, NH), 7.93–7.86 (m, 8H, aromatic), 7.80–7.73 (m, 3H, aromatic), 7.69–7.59 (m,
6H, aromatic), 7.47–7.41 (m, 1H, aromatic), 7.39–7.32 (m, 2H, aromatic), 5.41 (dd, J = 6.1,
2.6 Hz, 2H, CH2P) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 168.5 (d, J = 0.7 Hz, C=O), aro-
matic carbons: 135.2 (d, J = 3.1 Hz), 134.7 (d, J = 9.7 Hz), 132.3, 131.9, 130.2 (d, J = 12.6 Hz),
128.6, 128.0, 117.9 (d, J = 83.8 Hz), 38.6 (d, J = 55.1 Hz, CH2P) ppm; 31P{1H} NMR (161.9
MHz, CDCl3) δ 21.1 ppm; IR (ATR) 3153, 3052, 1644, 1529, 1486, 1435, 1314, 1271, 1111 cm−1.

(N-benzoylamino)methyltris(3-chlorophenyl)phosphonium tetrafluoroborate (2k).
Colorless crystals (404.7 mg, 69% yield), mp 172.5–174.5 ◦C. 1H NMR (400 MHz, CDCl3)
δ 8.58 (br t, J = 5.7 Hz, 1H, NH), 7.88–7.81 (m, 3H, aromatic), 7.78–7.74 (m, 3H, aromatic),
7.72–7.56 (m, 8H, aromatic), 7.52–7.45 (m, 1H, aromatic), 7.40–7.34 (m, 2H, aromatic), 5.32
(dd, J = 6.0, 2.4 Hz, 2H, CH2P) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 168.8 (d, J = 0.7 Hz,
C=O), aromatic carbons: 137.1 (d, J = 16.4 Hz), 136.0 (d, J = 3.0 Hz), 133.7 (d, J = 11.0 Hz),
132.8, 132.7 (d, J = 9.5 Hz), 132.0 (d, J = 14.0 Hz), 131.2, 128.9, 127.5, 119,0 (d, J = 83.2 Hz),
39.0 (d, J = 54.0 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 16.4 ppm; IR (ATR)
3341, 1668, 1520, 1471, 1400, 1280, 1132, 1076, 1051, 995 cm−1. HRMS (TOF-ESI) calcd for
C26H20Cl3NOP+ [M+] 498.0348, found 498.0348.

(N-acetylamino)methyltriphenylphosphonium tetrafluoroborate (2l) [45]. Color-
less crystals (366.4 mg, 87% yield), mp 191.0–192.5 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.89–7.77 (m, 4H, aromatic + NH), 7.78–7.66 (m, 12H, aromatic), 5.05 (dd, J = 6.3, 3.2 Hz,
2H, CH2P), 1.83 (d, J = 1.3 Hz, 3H, CH3) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 172.1
(d, J = 1.2 Hz, C=O), aromatic carbons: 135.4 (d, J = 3.1 Hz), 134.2 (d, J = 9.7 Hz), 130.4 (d,
J = 12.6 Hz), 117.2 (d, J = 84.0 Hz), 37.4 (d, J = 57.9 Hz, CH2P), 22.1 (CH3) ppm; 31P{1H}
NMR (161.9 MHz, CDCl3) δ 20.8 ppm; IR (ATR) 3382, 1684, 1519, 1438, 1112, 1086, 1056,
1012, 996 cm−1.
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(N-acetylamino)methyltriphenylphosphonium bromide (2m) [45]. Colorless crys-
tals (410.2 mg, 99% yield), mp 249.5–251.5 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.66 (br t,
J = 6.2 Hz, 1H, NH), 7.85–7.76 (m, 9H, aromatic), 7.71–7.62 (m, 6H, aromatic), 5.13 (dd,
J = 6.3, 2.9 Hz, 2H, CH2P), 1.89 (d, J = 1.4 Hz, 3H, CH3) ppm; 13C{1H} NMR (100 MHz,
CDCl3) δ 172.2 (d, J = 1.4 Hz, C=O), aromatic carbons: 135.3 (d, J = 3.1 Hz), 134.4 (d,
J = 9.8 Hz), 130.3 (d, J = 12.6 Hz), 117.4 (d, J = 84.0 Hz), 37.6 (d, J = 56.8 Hz, CH2P), 22.6 (d,
J = 0.5 Hz, CH3) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 20.7 ppm; IR (ATR) 3164, 3006,
1675, 1526, 1436, 1267, 1110 cm−1.

(N-acetylamino)methyltris(3-chlorophenyl)phosphonium tetrafluoroborate (2n). Col-
orless crystals (398.6 mg, 76% yield), mp 178.0–180.0 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.99 (br t, J = 6.0 Hz, 1H, NH), 7.85–7.74 (m, 6H, aromatic), 7.74–7.68 (m, 3H, aromatic),
7.58–7.52 (m, 3H, aromatic), 5.09 (dd, J = 6.1, 2.5 Hz, 2H, CH2P), 1.84 (d, J = 1.4 Hz, 3H,
CH3) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 172.4 (d, J = 1.2 Hz, C=O), aromatic carbons:
137.2 (d, J = 16.7 Hz), 136.2 (d, J = 3.0 Hz), 133.6 (d, J = 11.0 Hz), 132.6 (d, J = 9.5 Hz), 132.2
(d, J = 13.9 Hz), 118.8 (d, J = 83.3 Hz), 38.1 (d, J = 55.5 Hz, CH2P), 22.0 (CH3) ppm; 31P{1H}
NMR (161.9 MHz, CDCl3) δ 20.6 ppm; IR (ATR) 3373, 1683, 1518, 1463, 1403, 1129, 1070,
1046, 1028, 994 cm−1. HRMS (TOF-ESI) calcd for C21H18Cl3NOP+ [M+] 436.0192, found
436.0193.

(N-benzyloxycarbonylamino)methyltriphenylphosphonium tetrafluoroborate (2o).
Resin (338.8 mg, 66% yield). 1H NMR (400 MHz, CDCl3) δ 7.84–7.73 (m, 3H, aromatic),
7.72–7.59 (m, 12H, aromatic), 7.42–7.28 (m, 3H, aromatic), 7.22–7.13 (m, 2H, aromatic), 6.65
(br t, J = 6.02 Hz, 1H, NH), 5.11 (dd, J = 6.5, 2.1 Hz, 2H, CH2P), 4.90 (s, 2H, CH2O) ppm;
13C{1H} NMR (100 MHz, CDCl3) δ 156.8 (C=O), aromatic carbons: 135.3 (d, J = 3.0 Hz),
134.1 (d, J = 9.7 Hz), 133.8, 130.3 (d, J = 12.5 Hz), 128.4, 128.1, 127.9, 116.6 (d, J = 84.4 Hz),
67.4 (CH2O), 38.7 (d, J = 59.5 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 19.6 ppm;
IR (ATR) 3360, 1714, 1521, 1439, 1236, 1111, 1051, 996 cm−1. HRMS (TOF-ESI) calcd for
C27H25NO2P+ [M+] 426.1623, found 426.1621.

(N-benzyloxycarbonylamino)methyltriphenylphosphonium bromide (2p). Color-
less crystals (450.6 mg, 89% yield), mp 167.0–168.0 ◦C. 8.00 (br t, J = 6.3 Hz, 1H, NH),
7.86–7.74 (m, 9H, aromatic), 7.67–7.59 (m, 6H, aromatic), 7.32–7.27 (m, 3H, aromatic), 7.22–
7.16 (m, 2H, aromatic), 5.36 (t, J = 6.3 Hz, 2H, CH2P), 4.90 (s, 2H, CH2O) ppm; 13C{1H}
NMR (100 MHz, CDCl3) δ 156.9 (C=O), aromatic carbons: 135.9, 135.1 (d, J = 3.0 Hz), 134.3
(d, J = 9.7 Hz), 130.2 (d, J = 12.5 Hz), 128.3, 127.9, 117.1 (d, J = 83.6 Hz), 67.2 (CH2O), 39.2
(d, J = 58.5 Hz, CH2P) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 19.6 ppm; IR (ATR) 3164,
1697, 1517, 1497, 1403, 1268, 1228, 1113 cm−1. HRMS (TOF-ESI) calcd for C27H25NO2P+

[M+] 426.1623, found 426.1622.
(N-tert-butoxycarbonylamino)methylphosphonium bromide (2q). Colorless crys-

tals (335.4 mg, 71% yield), mp 163.0–165.0 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.90–7.75
(m, 9H, aromatic), 7.73–7.63 (m, 6H, aromatic), 7.36 (br t, J = 6.2 Hz, 1H, NH), 5.37 (br d,
J = 6.3 Hz, 2H, CH2P), 1.21 (s, 9H, t-Bu) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 155.9
(C=O), aromatic carbons: 134.9 (d, J = 3.0 Hz), 134.4 (d, J = 9.6 Hz), 130.1 (d, J = 12.4 Hz),
117.5 (d, J = 83.3 Hz), 80.6 (C-O), 39.0 (d, J = 57.3 Hz, CH2P), 27.9 (CH3)ppm; 31P{1H}
NMR (161.9 MHz, CDCl3) δ 19.6 ppm; IR (ATR) 3138, 2979, 1696, 1158, 1112 cm−1. HRMS
(TOF-ESI) calcd for C24H27NO2P+ [M+] 392.1779, found 392.1790.

(2-oxopyrrolidin-1-yl)methyltriphenylphosphonium tetrafluoroborate (2r). Color-
less crystals (380.1 mg, 85% yield), mp 167.0–169.0 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.89–7.67 (m, 15H, aromatic), 5.32 (d, J = 3.7 Hz, 2H, CH2P), 3.37–3.25 (m, 2H, NCH2),
2.23–2.13 (m, 2H, CH2), 1.93–1.81 (m, 2H, CH2) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ
176.6 (d, J = 1.7 Hz, C=O), aromatic carbons: 135.6 (d, J = 3.1 Hz), 133.9 (d, J = 10.0 Hz),
130.5 (d, J = 12.6 Hz), 116.7 (d, J = 83.8 Hz), 48.7 (NCH2), 39.4 (d, J = 58.9 Hz, CH2P), 29.4
(CH2), 18.2 (CH2) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ 17.9 ppm; IR (ATR) 2968, 1671,
1439, 1425, 1271, 1112, 1032, 997 cm−1. HRMS (ESI-TOF) m/z: calcd for C23H23NOP+ [M+]
360.1517; Found 360.1518.
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(2-oxopyrrolidin-1-yl)methyltris(4-methoxyphenyl)phosphonium tetrafluoroborate
(2s). White resin (531.9 mg, 99% yield). 1H NMR (400 MHz, CDCl3) δ 7.72–7.56 (m, 6H,
aromatic), 7.24–7.13 (m, 6H, aromatic), 5.13 (d, J = 3.9 Hz, 2H, CH2P), 3.28 (br t, J = 6.9 Hz,
2H, NCH2), 2.26–2.18 (m, 2H, CH2), 1.94–1.83 (m, 2H, CH2) ppm; 13C{1H} NMR (100 MHz,
CDCl3) δ 176.5 (d, J = 1.8 Hz, C=O), aromatic carbons: 165.0 (d, J = 3.0 Hz), 135.8 (d,
J = 11.6 Hz), 116.1 (d, J = 13.7 Hz), 107.2 (d, J = 92.3 Hz), 55.8 (OMe), 48.7 (NCH2), 39.9
(d, J = 62.2 Hz, CH2P), 29.6 (CH2), 18.2 (CH2) ppm; 31P{1H} NMR (161.9 MHz, CDCl3) δ
15.8 ppm; IR (ATR) 2950, 1690, 1591, 1567, 1504, 1299, 1185, 1111, 1050, 1015 cm−1. HRMS
(ESI-TOF) m/z: calcd for C26H29NO4P+ [M+] 450.1834; Found 450.1834.

4. Conclusions

In this article, we describe the preparation of N-protected aminomethyltriarylphospho-
nium salts by a two-step synthesis from imides, amides, carbamates, or lactams. The first
step of the synthesis, i.e., the hydroxymethylation of the substrates with formaldehyde (in
the form of formalin or paraformaldehyde), is known and widely described in the literature.
The second, crucial step-substitution of the hydroxyl group with a triarylphosphonium
group-required some optimization. N-hydroxymethyl derivatives of amides, carbamates,
and lactams reacted with triarylphosphonium salts under relatively mild conditions and in
a short reaction time (70 ◦C, 1 h) to give the corresponding N-protected aminomethylphos-
phonium salts with good to very good yields (up to 99%). For N-hydroxymethylimides,
more severe conditions were required (a higher temperature and longer reaction times: 135
◦C, 3–30 h), but the products could also be effectively obtained (in up to 94% yield). In
all cases, the use of NaBr as a catalyst had a positive effect on the course of the reaction.
It is worth noting that the method also allows the synthesis of phosphonium salts with a
modified structure of the triarylphosphonium moiety, not only triphenylphosphonium, but
also tris(3-chlorophenyl)phosphonium or tris(4-methoxyphenyl)phosphonium salts. All
these advantages make the developed protocol a good complementary alternative to the
previously described literature methods for the synthesis of N-protected aminomethylphos-
phonium salts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11050552/s1, Apparatus for the synthesis of N-protected aminomethylphosphonium
salts 2. 1H, 13C{1H}, 31P{1H} NMR, and IR spectra of N-protected aminomethylphosphonium salts 2.
Supplementary data associated with this article can be found in the online version.
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