Supplementary Materials

Optical management of CQD/AgNP@SiNW arrays with highly efficient capability of dye degradation

Po-Hsuan Hsiao¹, Sasimontra Timjan¹, Kuan-Yi Kuo¹, Joon Ching Juan², and Chia-Yun Chen^{1,3}*

¹Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan

²Nanotechnology & Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

³Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

S1 Measurement of time-dependent current-voltage (I-V) curves of various SiNW-based samples

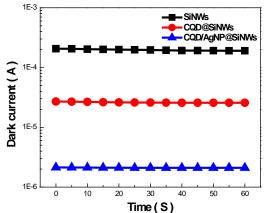


Fig. S1 Time-dependent I-V curves of sole SiNW, CQD@SiNW and CQD/AgNP@SiNW arrays. The results indicate that no obvious hysteresis in the I-V characteristics can be found.

S2 Light-absorption spectra of MB dyes changed with time in the presence of CQD/AgNP@SiNW arrays

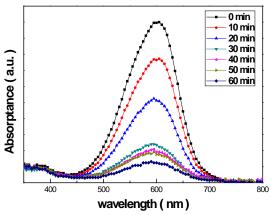


Fig. S2 Light-absorption spectra of MB dyes in the presence of CQD/AgNP@SiNW arrays after experiencing light illuminations.