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Abstract: In this paper, titanium–dioxide (TiO2) nanotubes (TNTs) are formed by anodic oxidation
with a fluorinated glycerol–water (85% and 15%, respectively) electrolyte to examine the effect of
fluoride ion concentration, time, and applied voltage on TNT morphologies and dimensions. For
fluoride ion concentration, the surface etching increases when the amount of ammonium fluoride
added to the electrolyte solution increases, forming nanotube arrays with a clear pore structure. At
a constant voltage of 20 V, TNTs with an average length of ~2 µm are obtained after anodization
for 180 min. A prolonged anodization time only results in a marginal length increment. The TNT
diameter is voltage dependent and increases from approximately 30 nm at 10 V to 310 nm at 60 V. At
80 V, the structure is destroyed. TNTs formed at 20 V for 180 min are annealed to induce the TiO2

anatase phase in either air or nitrogen. When ethylenediaminetetraacetic acid is added as a hole
scavenger, 100% hexavalent chromium removal is obtained after 120 min of sunlight exposure for
nitrogen-annealed TNTs.

Keywords: TiO2; anodization; nanotubes; glycerol; Cr(VI) reduction; photocatalysis; nitrogen

1. Introduction

In recent years, the application of TiO2 as a photocatalyst to reduce heavy metals such
as hexavalent chromium [Cr(VI)] has gained academic attention. Cr(VI) is used in sev-
eral industrial processes, including chrome plating, stainless steel manufacturing, chrome
pigment formation, and leather tanning. Among these, chrome plating is responsible for
producing large amounts of wastewater containing Cr(VI) ions. Fortunately, Cr(VI) com-
pounds can be eliminated from industrial wastewater by chemical precipitation, flotation,
adsorption, ion exchange, and electrochemical deposition [1].

The reduction of Cr(VI) to chromium [Cr(III)] is also conducted to treat Cr(VI)-laden
wastewater by photocatalysis [2]. This process is beneficial because, whereas Cr(VI) is
mobile, corrosive, and toxic to humans, Cr(III) is non-toxic and an essential dietary element.
Industrial activities such as metal finishing and chrome plating produce wastewater with
large amounts of Cr(VI), which can contaminate water bodies and soil. The uptake of Cr(VI)
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in plants from Cr(VI)-contaminated soil was reviewed by Shahid et al. in 2017 [3], and
the existence of Cr(VI) in rice was reported by Rudzi et al. in 2018 [4]. Preventing Cr(VI)
from contaminating the environment can be achieved by properly removing the ions from
their discharge point. As mentioned, Cr(VI) can be reduced to Cr(III) by photocatalysis
process. This process requires a photocatalyst, such as titanium dioxide (TiO2), which is
very effective due to the negative position of the conduction-band electrons that can reduce
Cr(VI) to Cr(III).

TiO2 nanotubes (TNTs) can be synthesized by template-assisted deposition [5,6],
hydrothermal treatment [7,8], atomic layer deposition [3,9], sol–gel treatment [10,11], and
titanium (Ti) anodization [12–22]. Of these methods, anodization is preferred because of its
feasibility, cost-effectiveness, and robustness. More importantly, anodization also enables
the formation of self-aligned TNT arrays [23]. In the anodization process, the electrolyte is
an essential parameter with respect to controlling the morphological features of the anodic
film. For nanotubular formation, a presence of fluoride ions has been identified as the most
important parameter.

Zwilling and co-workers [13] fabricated highly ordered porous anodic TiO2 films
in chromic acid containing hydrofluoric acid. This so-called first-generation electrolyte
resulted in short TNTs (~500 nm) due to excessive etching. This was followed by the
development of a second-generation electrolyte, i.e., a buffered solution containing sodium
fluoride or ammonium fluoride (NH4F), which produces TNTs longer than 5 µm [24]. Even
longer TNTs (>10 µm) have been formed using third-generation organic fluoride elec-
trolytes, such as ethylene glycol, glycerol, and formamide. However, organic electrolytes
require oxygen species for stable oxide growth [25–31]; water is commonly added as the
oxygen provider. Recent research has reported the use of alkaline species for electrolytes
to obtain even longer TNT formation, such as potassium hydroxide, lithium hydroxide,
and sodium hydroxide [32–38]. The use of hydrogen peroxide has also been explored, and
TNTs with a grassy surface structure have been reported [39].

In this work, TNTs are produced by Ti anodization in glycerol–water electrolyte.
Anodic film grew in glycerol–water electrolyte was examined, including the success of
self-aligned TNTs formation, by varying NH4F content, time, and anodization voltage. To
the best of our knowledge, research on TNTs formation with the electrolyte in question is
lacking, especially with respect to using photocatalysts for Cr(VI) reduction in synthetic
wastewater. In fact, there is a complete lack of work reporting on the use of highly serrated
TNTs for Cr(VI) reduction under sunlight. The formation TNTs with serrated walls, could
increase the surface area for more catalytic sites that can enhance reactions. Long TNTs
with a clear surface opening are also preferred for the catalytic process to take advantage
of both the interior and the exterior of the nanotubes.

TiO2 is a wide-bandgap semiconductor, and, therefore, electron–hole pair generation
is only possible under ultraviolet (UV) radiation. However, sunlight activation can be
achieved by the mid-gap states induced by the defects created when TNTs are heat-treated
in a reduced atmosphere or in a nitrogen-containing environment. In this paper, the formed
TNTs are annealed in nitrogen, and their ability to reduce Cr(VI) via photoreduction to
Cr(III) is reported. Moreover, to ensure an effective reduction process, ethylenediaminete-
traacetic acid (EDTA) was used as a hole scavenger. This is necessary, as a hole scavenger
can suppress the recombination of electron–hole pairs, hence the increased in the number
of free electrons available for Cr(VI) reduction.

2. Results and Discussion
2.1. Anodic Oxide Features on Titanium Anodized in Water–Glycerol Electrolyte
2.1.1. Effect of NH4F Concentration

Figure 1 shows the cross-section FESEM morphologies of anodized Ti in the water–
glycerol electrolyte with various amounts of NH4F; insets are the surface images of the
corresponding samples. Anodization was conducted at 20 V for 90 min. From the micro-
graphs, it is evident that the amount of NH4F added to the electrolyte influences the length
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and diameter of the TNTs. Figure 2 summarizes the findings, from which it is evident that,
apart from the 0.1 wt.% NH4F sample, a nanotubular structure was successfully formed
with the length and diameter affected by the amount of fluoride ions. The TNT length in-
creased from 1.6 to 2.0 µm when anodized with the electrolyte containing 0.3 and 0.5 wt.%
NH4F, respectively. However, higher concentrations of NH4F (>0.7 wt.%) reduced the
length, which can be attributed to severe chemical dissolution at the TNTs surface due
to the increased number of fluoride ions. Moreover, the TNT diameter increased, albeit
marginally, with an increase in NH4F content.
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Figure 1. FESEM of anodized TiO2 at 20 V for 90 min in the glycerol–water electrolyte with different NH4F concentrations:
(a) 0.1, (b) 0.3, (c) 0. 5, (d) 0.7, (e) 0.9, and (f) 1.0 wt.%.
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The formation of TiO2 by anodic oxidation is described by Equation (1). At the initial
stage of the anodization process, a barrier layer comprising defective TiO2 was formed.
Pores then developed because of the chemical dissolution of the barrier layer (Equation (2))
and for discrete nanotubes formation, the pores must be separated.

Ti4+ + 2H2O→ TiO2 + 4H+ + 4e− (1)

TiO2 + 6F− + 4H+ → [TiF6]
2− + 2H2O (2)

During the anodization process, ion migration across the anodic film is essential to
increase the oxide thickness. The migration of fluoride ions is believed to be faster than any
other inward-migrating ions, and, thus, a fluoride-rich layer (FRL) will form at the oxide–Ti
interface [40]. The bottom part of the nanotubes, as seen in the cross-sectional images, is
scallop-shaped, indicating a flow mechanism in the oxide pore formation. According to this
mechanism, FRL will eventually be displaced as inter pore materials. Pores are separated
when the FRL is dissolved by water, resulting in discrete nanotubes. At larger amounts of
NH4F, a thicker FRL is thought to form around the pores, and, as the electrolyte is excess
with water, the dissolution of this FRL will result in TNTs with very thin walls. As seen
from the FESEM images, the sample prepared in the electrolyte with 1.0 wt.% NH4F had
walls thinner than 10 nm, and the severe dissolution resulted in an inhomogeneous surface
structure. From here, 0.5 wt.% NH4F was chosen as the optimum amount of fluoride ion in
the electrolyte, as it is adequate for surface etching, and the nanotubes formed also had
considerable length, as shown in Figure 2.

2.1.2. Effect of Anodization Voltage

Apart from NH4F content, anodization voltage is also known to play an essential
role in tuning TNT dimensions [20]: a higher anodization voltage results in a higher
oxidation rate, resulting in the formation of more H+ ions in the electrolyte (Equation (1)).
If the number of H+ ions in the electrolyte increases, chemical dissolution increases,
resulting in larger and longer TNTs. Nevertheless, there is a limit to the voltage applied,
as a high voltage may induce an overly rapid electric field dissolution, destroying the
nanotubular structure. As reported by Lockman et al., depending on the electrolyte used,
there is a threshold voltage at which the TNT structure is formed; TNTs are formed above
the threshold voltage, while a lower voltage would result in insufficient electric field
dissolution, generating compact anodic film or film with small pores [20]. Figure 3 shows
the FESEM morphologies, whereas Figure 4 summarizes the anodic film features as a
function of applied voltage. Ti anodized at 1 V has a rather compact surface oxide without
any noticeable microstructure, as shown by Figure 3a. Small pits with 5–8 nm diameters
can be observed in Figure 3b for the sample anodized at 3 V. Increasing the anodization
voltage to 5 V results in larger pits (diameter ~10 nm) with an increased distribution, as
shown in Figure 3c.

The corresponding cross-sectional FESEM image shows that the thickness of the
anodic layer is approximately 80 nm. TNTs formed on the foil with an average diameter of
30 nm (Figure 3d) for the 10 V sample and 50 nm (Figure 3e) for the 15 V sample. The length
of the nanotubes ranged from approximately 200 to 500 nm. The 20 V anodized sample
resulted in TNTs with a length of ~1.5 µm and an outer diameter of 80 nm (Figure 3f).

As the anodization voltage was increased to 30 V, the diameter increased to 150 nm
(Figure 3g); at 40 V, it increased to 250 nm (Figure 3h); however, the nanotubes length for
both samples did not differ by much (~2.5 µm). Anodization at 60 V resulted in TNTs with
a diameter and length of 310 nm and 2.6 µm, respectively (Figure 3i); for this electrolyte, it
appears that voltage affects TNT diameter but not length. At 80 V, the nanotubular structure
was destroyed (Figure 3j) due to the overaccelerated electric field dissolution causing severe
polarization and weakening of the Ti-O bond, which led to the formation of an irregular
porous oxide structure. Figure 3k shows the TEM image of the 20 V sample taken from the
bottom part of the TNTs, demonstrating TNTs with scallop-shaped barrier layer of ∼20 nm
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thickness. If compared with anodic TNTs formed in ethylene glycol [32–38], the thickness
of the barrier layer for the abovementioned sample is rather large, perhaps because of the
excess water in the glycerol, which increases oxidation. In Figure 3l, a single nanotube is
shown with serrated walls.
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anodization was performed in glycerol-water electrolyte added to it 0.5 wt.% NH4F electrolyte for 90 min.
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2.1.3. Effect of Variation Reaction Time

Foils were then anodized at 20 V but at varying times from 1 to 720 min; 20 V was
selected, as it produced TNTs with a diameter smaller than 100 nm. A time variation
experiment was performed to investigate the influence of anodization duration over TNT
dimensions. The FESEM images in Figure 5 show the morphologies of the anodic film,
and Figure 6 summarizes the anodic film features formed at different anodization times.
As seen in Figure 5a, anodization for 1 min resulted in anodic films with a thickness of
~10 nm and randomly distributed pits on the surface. The pit diameter increased to ~50 nm
after anodization for 15 min (Figure 5b). From the cross-sectional morphology, it is evident
that a self-aligned nanotubular structure formed beneath this pitted region, indicating
inadequate surface etching. A more obvious nanotube structure was obtained for the
sample anodized for 30 min (Figure 5c). The TNT opening was also very clear, suggesting
that surface etching is time dependent. Moreover, TNTs length was longer for this sample
than for the 15 min sample.

The length increased further with an increase in anodization time; at 60 min, the TNT
length increased to 700 nm; at 90 min, it increased to 1.5 µm; and, at 120 min, it increased
to 1.8 µm, as shown in Figure 5d–f, respectively. However, the length remained constant at
~2 µm for samples anodized for 180–720 min (Figure 5g–i). The TNT diameter was ~80 nm
for all samples, indicating that the diameter is independent of anodization time. Similar
findings have been reported [18].

2.1.4. Effect of Annealing Environment.

Samples prepared by anodization at 20 V were annealed either in air or nitrogen
at 450 ◦C for 3 h. The XRD pattern in Figure 7a shows that the as-anodized TNTs are
amorphous, and, after annealing, anatase TiO2 (ICSD: 98-010-7874) can be identified
from peaks at 25.4◦ , 48.1◦, and 54.7◦, corresponding to the (011), (020), and (121) planes,
respectively. Minimal differences can be observed for samples annealed in air and nitrogen,
apart from a slight shift in the (011) peak, as shown in Figure 7b. This shift is attributed
to lattice distortion [41], perhaps induce by the substitution of nitrogen within the crystal
lattice, which results in strain [42–44]. Since the ionic radius of nitrogen (r2+

N = 1.46 Å)
is larger than that of oxygen (r2+

O = 1.38 Å), the substitution of nitrogen in the O-site of
the crystal structure may result in the TiO2 crystal lattice expanding because of tensile
strain [42].
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(f) 120, (g) 180, (h) 360, and (i) 720 min. All anodization was performed at 20 V in glycerol-water added to it 0.5 wt.% NH4F.
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Figure 7. (a) XRD patterns for (i) as-anodized TNTs (20 V) and TNTs anodized in (ii) air and
(iii) nitrogen. (b) Enlarged XRD patterns for anatase (011) peak. Annealing was conducted at 450 ◦C
for 3 h.

Anatase crystallite size for air- and nitrogen-annealed TNTs was calculated using
the Debye–Scherrer equation at the (011) anatase peak according to the full width at the
half maximum of the diffraction pattern. The crystallite sizes were 26.29 and 36.79 nm for
nitrogen- and air-annealed TNTs, respectively. The smaller crystallite size for the nitrogen-
annealed TNTs can be attributed to growth suppression during annealing in the nitrogen
environment [45].

To further study the changes in phase structure after annealing in air and nitrogen
environment, Raman spectroscopy on the TNTs was carried out, and the results are shown
in Figure 8. When the TNTs were annealed at 450 ◦C, both samples exhibited three typical
modes corresponding to A1g (515 cm−1), B1g (398 and 515 cm−1), and Eg (144, 197, and
640 cm−1), respectively, in the Raman spectrum [39]. The peaks in these modes demonstrate
the presence of anatase phase as the predominant crystal structure. The anatase peaks
of TNT are labelled with A (Figure 8a). The intensity of the dominant anatase peak at
144 cm−1 was higher for the TNTs annealed in nitrogen compared to air. Moreover, from the
enlarged image of the dominant peak in Figure 8b, it can be observed that the bandwidth
increased for the nitrogen-annealed sample. These results indicate that the crystallinity
of the anatase phase was enhanced and the crystallite size decreased after annealing in
nitrogen, which is consistent with the results of the XRD measurement.
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The optical properties of the annealed TNT films were determined using diffuse
reflectance UV–Vis spectroscopy, the results of which are shown in Figure 9. The energy
bandgap Eg of the samples was calculated using the Kubelka–Munk equation [46]:

F(R) =
(1− R)2

2R
(3)

where R is the diffuse reflectance of the sample. Using the Tauc relation, the following
equation was obtained:

F(R)hυ = A
(
hυ− Eg

)n (4)

where A is the proportionality constant, F(R) is the K–M function, and hυ is photon en-
ergy [47,48]. The F(R) function can be multiplied by hυ using a corresponding coefficient (n).
The n values of 0.5 and 2 were used to estimate the direct and indirect bandgap oxide,
respectively. Then, the extrapolation of (F(R)× hυ)2 or (F(R)× hυ)0.5 = 0 was conducted
to obtain the direct and indirect Eg values, respectively.
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Figure 9. Experimental bandgap estimated using Kubelka–Munk diffuse reflectance solid state
UV–Vis equation for TNTs annealed in nitrogen and air.

Figure 9 plots (F(R)hυ)0.5 vs. hυ. Here, the indirect bandgap energy can be evalu-
ated by extrapolating a straight line for (F(R)hυ)0.5 to intercept the photon energy axis
(Figure 9) [49]. The estimated bandgaps obtained for the TNTs annealed in air and nitrogen
are 3.05 and 2.99 eV, respectively. The smaller bandgap for nitrogen-annealed TNTs can be
attributed to the presence of defect states within the bandgap [50].

2.2. Photoreduction of Hexavalent Chromium Ions on Titanium-Dioxide Nanotubes

Cr(VI) photoreduction experiments were conducted by exposing 10 ppm Cr(VI) so-
lution to natural sunlight on a sunny day. Cr(VI) photoreduction was very slow without
EDTA addition, as shown in Figure 10; less than 10% Cr(VI) removal was recorded. The
percentage of removal increased when EDTA was added to the Cr(VI) solution: 50% and
63% for air- and nitrogen-annealed TNTs, respectively, after 60 min of sunlight exposure.
The total reduction of Cr(VI) was achieved for nitrogen-annealed TNTs after 120 min of
sunlight exposure, possibly because of the narrow energy bandgap for this sample [46].
Air-annealed TNTs only achieved a 70% reduction after 120 min of sunlight irradiation.



Catalysts 2021, 11, 376 10 of 17

Catalysts 2021, 11, 376 11 of 19 
 

 

 
Figure 10. Cr(VI) removal efficiency of the TNTs annealed in nitrogen and air under natural sun-
light irradiation (Cr(VI) concentration = 10 ppm, pH = 1, sample = 2 cm2). 

 
Figure 11. Proposed mechanism of Cr(VI) photoreduction of TNTs under sunlight irradiation. 

The reduction potential of HCrO4−/Cr3+ under the standard condition is E0 = +1.35 V 
vs. normal hydrogen electrode (NHE) at pH = 0, whereas the CB potential for TiO2 is +0.05 
eV vs. NHE at pH = 0 [52]. Since the reduction potential of HCrO4−/Cr3+ is more positive 
than the CB, electron reduction is possible: 𝑇𝑖𝑂ଶ + ℎ𝑣 → 𝑒஼஻ି + ℎ௏஻ା  (5) 

The reduction of Cr(VI) under acidic conditions (pH ≤ 2) can be described in Equation 
(6) [53]: 𝐻𝐶𝑟𝑂ସି + 7𝐻ା + 3𝑒ି → 𝐶𝑟ଷା + 4𝐻ଶ𝑂 (6) 
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Figure 10. Cr(VI) removal efficiency of the TNTs annealed in nitrogen and air under natural sunlight
irradiation (Cr(VI) concentration = 10 ppm, pH = 1, sample = 2 cm2).

Nitrogen insertion is possible within the TiO2 lattice, as observed from the anatase
peak shift in the XRD. Substituting nitrogen in the lattice resulted in the formation of N-2p
states above the valence band (VB) of TiO2 [51], which reduced the TiO2 bandgap and thus
enabled the adsorption of visible light for electron excitation (Equation (5)) from the CB, as
depicted in Figure 11.
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Figure 11. Proposed mechanism of Cr(VI) photoreduction of TNTs under sunlight irradiation.

The reduction potential of HCrO4
−/Cr3+ under the standard condition is E0 = +1.35 V

vs. normal hydrogen electrode (NHE) at pH = 0, whereas the CB potential for TiO2 is +0.05 eV
vs. NHE at pH = 0 [52]. Since the reduction potential of HCrO4

−/Cr3+ is more positive
than the CB, electron reduction is possible:

TiO2 + hv→ e−CB + h+VB (5)

The reduction of Cr(VI) under acidic conditions (pH≤ 2) can be described in Equation (6) [53]:

HCrO−4 + 7H+ + 3e− → Cr3+ + 4H2O (6)
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The band edge positions of the CB and VB for the TNTs was calculated by applying
the concept of electronegativity using Equations (7) and (8):

EVB = X− Ee + 0.5 Eg (7)

ECB = EVB − Eg (8)

where EVB is the VB edge potential at the point of zero charge, ECB is the CB edge potential,
and X is the absolute electronegativity of the semiconductor (the X value for TiO2 is
5.81 eV) [54], which is defined as the geometric average of the absolute electronegativity
of the constituent atoms, and Ee is the energy of free electrons at the hydrogen scale
(approximately 4.5 eV). Table 1 shows the calculated ECB, EVB, and Eg values for TNTs
formed in glycerol-water electrolyte and after annealing.

Table 1. Calculated ECB, EVB and Eg of TNTs annealed in nitrogen and air compared with anatase
TiO2 from [55].

Sample Eg (eV) EVB (eV) ECB (eV)

Anatase TiO2 3.20 2.91 −0.29
TNTs-Air 3.05 2.84 −0.22
TNTs-N2 2.99 2.81 −0.19

2.2.1. Effect of EDTA as Hole Scavenger

As shown in Figure 10, Cr(VI) reduction was sluggish without EDTA added to the
solution. This could be due to several reasons, such as the fast recombination process [56]
or the reoxidation of Cr(III) to Cr(VI) [57] by •OH. •OH radicals are well known as a strong
oxidizing agent and are produced when holes react with H2O, which can be expressed by
Equation (9) [58]:

H2O + h+ → •OH + H+ (9)
•OH concentration can be suppressed by ensuring they react with EDTA, as this

results in their degradation to CO2 and H2O, which can be expressed by Equation (10):

•OH + scavenger→ . . .→ CO2 + H2O (10)

Holes are also known to be oxidizing, and EDTA can be used to capture holes; captur-
ing holes can also reduce the recombination of electron–hole pairs. This can be expressed
by Equation (11):

h+ + scavenger→ . . .→ CO2 + H2O (11)

2.2.2. The Effect of Initial Hexavalent Chromium Concentration

A reduction experiment using Cr(VI) of varying concentration was performed using a
Cr(VI) solution of 5, 10, 15, and 20 ppm. The experiment (Figure 12) showed a very fast
reduction of 5 ppm Cr(VI) solution with 100% reduction after 90 min of sunlight exposure.
As shown previously, 100% removal of Cr(VI) was observed after 120 min for 10 ppm
solution. At higher ppm level of Cr(VI) reduction times, 80% removal was seen for 15 ppm
solution and 75% for 20 ppm solution.

2.2.3. Reaction Kinetics Modeling

The pseudo-first-order Langmuir–Hinshelwood model [59] was used to understand
the reaction kinetics:

R = −dC
dt

= kt (12)
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The resulting integrals of Equation (12) can be expressed as a pseudo-first-order
equation when the adsorption is relatively weak/or the reactant concentration is low:

− ln
C
Co

= kt (13)

where R denotes the photocatalytic reaction rate; k is the apparent photocatalytic pseudo-
first-order reaction rate constant; Co and C denote the initial Cr(VI) concentration and the
Cr(VI) concentration at a given time t, respectively. The model validity is determined by
the correlation coefficient of determination (R2): a value close to 1 suggests that the model
is ideal for explaining Cr(VI) kinetics. Figure 13 plots − ln C

Co
vs. time; the k value is the

slope of the line fitted on the plot of − ln C
Co

vs. t.
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3. Materials and Methods 
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with and without EDTA. (b) Graph of –ln(C/Co) for reduction of Cr(VI) in various initial concentrations. Both experiments
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The inset of Figure 13a provides the k and R2 values for Cr(VI) metal ions. The pseudo-
first-order Cr(VI) removal rate increases when EDTA is introduced. Based on the k value,
the photocatalytic activity of nitrogen-annealed TNTs with EDTA as a hole scavenger is
roughly seven times larger (k = 0.0249 min−1) than that for nitrogen-annealed TNTs without
EDTA (k = 0.0039 min−1). Similar results were obtained for the k value of air-annealed
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TNTs with EDTA (k = 0.0101 min−1): photocatalytic activity was roughly five times greater
than it was in the absence of EDTA as a hole scavenger (k = 0.0022 min−1).

For Cr(VI) solutions with different concentrations, Cr(VI) reduction appears to follow
the Langmuir–Hinshelwood model and can be described by pseudo-first-order kinetics,
as confirmed by the obtained straight line and R2 value of ∼=1 (Figure 13b). A similar
observation was reported for Cr(VI) photoreduction by Shaban et al. [60]. The reaction
rate constant for Cr(VI) reduction was 0.0303, 0.0243, 0.0145, and 0.0093 min−1 for the 5,
10, 15, and 20 ppm solutions, indicating a fast reduction in diluted solutions after sunlight
irradiation for 120 min.

Table 2 compares the Cr(VI) reduction efficiency obtained in the present paper with
the existing literature, from which it is evident that the photocatalytic reduction of nitrogen-
annealed TNTs is comparable with fluorine- and carbon-doped TNTs under UV–Vis light
irradiation [45,61–65]. Furthermore, by adding a small amount of EDTA (1 mM), a higher
efficiency of Cr(VI) photoreduction was obtained compared to the addition of other scav-
engers, such as phenol (10 mM) and tartaric acid (6 mM), at higher amounts under UV–Vis
light irradiation. [60,66,67].

Table 2. Comparison of obtained Cr(VI) reduction efficiency with recent studies under UV–Vis light irradiation
(RGO = reduced graphene oxide; C = carbon; N2 = nitrogen).

Photocatalyst Method Sample
Size Scavenger pH Cr(VI) Conc.

(ppm)
Source of

Light
Removal

Efficiency (%)
Time
(h) Ref.

TNTs-N2 Anodization 1 cm2 – 2 5 Natural
sunlight 80 5 [45]

TNTs-Air Anodization 1 cm2 – 2 10 Natural
sunlight 10 3 [61]

TNTs-N2 Anodization 2 cm2 – 1 10 Natural
sunlight 37 2 Current

work

TNTs-
Fluorine Sol–gel – – 2.5 8 Fluorescent

lamp 90 2 [62]

TiO2-
5%RGO Hydrothermal – – 2 10 Solar 98 3 [63]

TiO2/RGO Sol–gel – – 2.6 12 Mercury
lamp 86.5 4 [64]

0.30wt.%Fe-
N-C-TiO2

Hydrothermal – – 2 20 Xenon
lamp 100 4 [65]

C-Modified
n-TiO2

Sol–gel – Phenol
(10 mM) 5 5 Natural

sunlight 100 0.33 [60]

TiO2NW-
RGO Anodization 4 cm2 EDTA

(1 mM) 1 10 Xenon
lamp 100 1 [66]

P25
Degussa – – Tartaric acid

(6 mM) 2.2 20 Natural
sunlight 100 2 [67]

TNTs-N2 Anodization 2 cm2 EDTA
(1 mM) 1 10 Natural

sunlight 100 2 Current
work

3. Materials and Methods

Ti foils (99.96% pure; thickness: 0.13 mm; Stream Chemical, Newburyport, USA)
were cut into square sections (10 × 10 mm) for the experiment. Before anodization, the
foils were degreased in an ultrasonic bath of acetone (J.T. Baker—9254, Center Valley, PA,
United States) and then ethanol (95.7% pure; Samchen, Shah Alam, Selangor, Malaysia) for
15 min each. The foils were then rinsed with deionized water and dried. The cleaned foils
were then placed in an electrochemical cell with a restricted area of 5 × 10 mm exposed
to the electrolyte. The anodization experiment was conducted using a two-electrode
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electrochemical cell at room temperature with a platinum cathode (diameter of 2 mm;
75 mm in length; Metrohm, Herisau, Switzerland) and Ti foil as the anode using a DC
power source (Agilent E3647A, Santa Clara, CA, USA). The distance between the anode
and cathode was 30 mm. The electrolyte was a glycerol–water (85% and 15%, respectively)
solution (Merck, Darmstadt, Germany). Ammonium fluoride (NH4F, Merck, Darmstadt,
Germany)) was added to the electrolyte in different amounts: 0.1, 0.3, 0.5, 0.7, 0.9, and
1.0 wt.%. To examine the anodization time effect, a 0.5 wt.% NH4F electrolyte bath was
used. The anodization time varied from 1 to 720 min at a constant voltage of 20 V. The
effect of the anodization voltage was examined by varying the voltage from 1 to 80 V for 90
min in the same electrolyte bath (fixed sweep rate of 0.1 V/s).

The anodized Ti foil was removed from the electrolyte and rinsed with deionized
water and dried in air naturally. The anodized Ti was then annealed using a horizontal tube
furnace (Lenton 1200, Derbyshire, United Kingdom) at 450 ◦C for 3 h in air or nitrogen. The
morphologies of the anodized foils were observed by field emission scanning electron mi-
croscopy (FESEM; Variable Pressure Zeiss Supra 35, Oberkochen, Germany). Transmission
electron microscopy (TEM; JEOL, JEM-2100F, Tokyo, Japan), at an acceleration voltage of
200 kV, was used to provide detailed observations of nanotube structure. X-ray diffraction
(XRD; Bruker D8, Bruker GmBH, Karlsruhe, Germany) and Raman spectrometer (REN-
ISHAW inVia 9P1567, Charfield, United Kingdom) were conducted to determine the TNT
phase and crystal analysis. UV–visible (UV–Vis) spectrophotometers were used to attain
the diffuse reflectance spectra (Cary 5000, UV-Vis-NIR, Agilent, Santa Clara, United States)
and conduct the Cr(VI) photoreduction (Varian Cary 50, budd lake, NJ, United States).

For the Cr(VI) removal evaluation, 100 ppm Cr(VI) was prepared by dissolving
0.0283 g of potassium dichromate salt (K2Cr2O7, A.R. grade, Merck, Germany) in 100 mL
of deionized water. Then, the Cr(VI) stock solution was diluted to obtain the 5–20 ppm
Cr(VI) solution. The pH of the solution was lowered using hydrogen chloride (Merck,
Germany). For the hole scavenger, 1 mM of Ethylenediaminetetraacetic acid (EDTA; AJAX
Chemicals, Sydney, Australia) was added to the Cr(VI) solution. During the test, four
anodized foils with a surface area of 1 × 0.5 cm2 were immersed in the Cr(VI) solution.
Before light irradiation, the solution was left in the dark for 30 min to achieve adsorption–
desorption equilibrium. The solution was then exposed to sunlight with an average light
intensity of ~1000 Wm−2, which was measured with a solar power meter (TM-207, Tenmars,
Taiwan, China). During light irradiation, 2 mL of the aliquot sample was withdrawn every
15 min. The reduction of Cr(VI) was determined using 1,5-diphenylcarbazide (Merck,
Germany), and, based on the UV–Vis results, the Cr(VI) concentration in the solution was
calculated using Equation (14) at λmax = 540 nm:

Cr(VI)removal efficiency =
C
Co

(14)

where C denotes the concentration of Cr(VI) at a given time (at λmax = 540 nm), and Co is
the initial concentration (before sunlight irradiation).

4. Conclusions

In this study, photoreduction of Cr(VI) using anodized TNTs under natural sunlight
irradiation was demonstrated. The TNTs were formed by the anodic oxidation of Ti foil in a
fluorinated glycerol–water electrolyte. The effects of NH4F concentration in the electrolyte,
anodization voltage, anodization duration, and annealing atmosphere (air or nitrogen) on
the nanotubes were systematically described. The minimum voltage for TNTs formation
was identifiezd as 5 V. To obtain TNT arrays with a clear, open top structure exhibiting a
considerable length, anodization must be conducted using an electrolyte with an NH4F
concentration of >0.5 wt.% for more than 30 min. A higher NH4F content led to rigorous
etching forming irregular TNTs. The diameter of the TNT formed increased with voltage
in the range of 10 to 60 V, while anodization at 80 V resulted in the collapse of the tubular
structure. TNTs with an average length of ~2 µm were obtained after anodization for
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180 min using an applied voltage of 20 V. From the XRD results of the annealed sample in
air and nitrogen, the anatase crystallite size obtained was 36.79 and 26.29 nm, respectively.
The smaller crystallite size of nitrogen-annealed TNTs is consistent with the obtained
Raman results. The bandgaps of both annealed samples were determined using UV–Vis
DRS, indicating a smaller bandgap for the nitrogen-annealed TNTs compared to the air-
annealed ones. This enabled an enhanced Cr(VI) photoreduction efficiency in the visible
light region, especially under natural sunlight irradiation. This was further demonstrated
by the reduction of 10 ppm Cr(VI) solution that achieved a complete (100%) removal after
120 min of exposure to natural sunlight with the addition of EDTA as a hole scavenger.
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