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In recent years, there has been a great demand for the rational design and development
of novel catalytic materials at the nanoscale (1–100 nm), with a view to more accurately and
efficiently control reaction pathways due to their high surface area and intrinsic properties.
The development of next-generation nanostructured catalytic materials (NCM) relies on
novel synthetic approaches, which can be suitable to produce stable surface-active sites
through controlling the size, shape, and chemical composition and surface characterization
techniques that can determine catalytic activities.

The advances in NCM in recent years envisage a new vision for nanoscience-inspired
design, synthesis, and formulation with high activities for energetically challenging reac-
tions, high selectivity to valuable products, extended lifetimes, and recyclability, leading to
the production of industrially important catalytic materials. Success has been achieved to
a great extent, but the exploration of developing new NCM through the precise control
of the composition and structure of the materials (metals, metal oxides, polymers, alloys,
composites, hybrids, etc.) of choice is continuing [1]. Tremendous efforts are being made to
design innovative catalysts that can be utilized in a multitude of applications [2]. The im-
plications of further progress in the development of emerging advanced nanostructures
and their applications in the areas of energy, sensing, and the environment are profound.

In this Special Issue, we have captured some of the latest progress and newest scientific
advancements in emerging NCM (1 review [3] and 11 original articles) to understand the
ongoing issues and challenges focusing on various aspects of catalytic materials. Three
articles have been flagged as a “Feature Paper” by the Editorial Board, following recom-
mendations from the reviewers [4–6]. The important contributions are summarized here.

E. Kowsari et al. reported an efficient hybrid composite based on polyionic liquid
PIL@TiO2/m-GO and evaluated the photocatalytic degradation of gaseous benzene and
toluene [4]. Similarly, a group of researchers led by H. Deng et al. developed a visible
light assisted photocatalyst utilizing a reduced graphene oxide/ZnIn2S (rGO/ZIS) through
a facile one-pot hydrothermal method and studied the photocatalytic efficacy for the
degradation of naproxen under visible light irradiation [7]. Different from the other reports,
H. Zhang et al. investigated photocatalytic activities of polyethylene terephthalate (PET)
filaments deposited with N-doped Titanium dioxide (TiO2) nanoparticles sensitized with
water-insoluble disperse blue SE–2R dye and compared the activity of a model compound,
methylene blue [8]. Y. Lu et al. utilized controllable morphological metal-based catalytic
materials through the facile synthesis of porous hexapod Ag@AgCl bi-functional catalysts
for in-situ surface-enhanced Raman spectroscopy (SERS) to monitor the reduction of 4-
Nitrothiophenol [9].

In a particular work conducted by Pere L. Cabot et al., bimetallic electrocatalysts
(PtNi) were sequentially synthesized through electroless deposition on nickel, and their
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bifunctional attributes for carbon monoxide and methanol oxidation reaction (MOR) in
low-temperature fuel cells were evaluated. Similarly, a new kind of Pt supported amor-
phous barium aluminum oxide/conductive carbon (Vulcan XC-72) catalyst was prepared
(polyol thermal method) and analyzed the electrocatalytic activity for MOR. Among the in-
vestigated samples, Pt-Ba0.5AlOx/C with 20% loadings of Pt exhibited a maximum current
density of 3.89 mA/cm2 and enhanced electrochemical surface area of 49.83 m2/g due to
the combined effects of individual active components [10].

In another work, the photodegradation of gas-phase benzene through SnO2 nanopar-
ticles (a humidity-tolerant photocatalyst) by a direct hole oxidation mechanism has been
studied in humid air, dry air, and N2 by using a tubular photoreactor [11]. The mecha-
nisms have been analyzed based on the experimental findings. An efficient photocatalytic
hydrogen peroxide production (H2O2) over TiO2 passivated by SnO2 was developed by
V.A.L.Roy et al. through the inclusion of a gold co-catalyst to further boost the production
of H2O2 [12]. In another work, the facile fabrication of metal oxide dispersed catalytic
electrodes by AC plasma deposition and electrochemical detection of H2O2 [1]. The as-
prepared catalytic electrode (CuO NPs) exhibited superior analytical characteristics (low
detection limit, good sensitivity/selectivity, and rapid response) for H2O2 sensing.

Finally, we would like to express our sincere thanks to all the authors for their extraor-
dinary contributions to this Special Issue. Guest editors would like to acknowledge all
the reviewers for their constructive suggestions and prompt responses, which enhanced
the quality and impact of the publication. We wish to express our gratitude to all the
authors who contributed to this thematic issue, exemplifying that a novel design and the
development of an emerging NCM can be pursued in a wide range of disciplines. Special
thanks go to Associate Editor, Caroline Zhan, and the editorial team of Catalysts for their
continuous and efficient support in making this Special Issue a great success.
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