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Abstract: TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen
and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors
are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia.
The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of
zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of
these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and
co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases,
with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25
photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the
TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra
of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible
light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead
of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic
activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure
TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and
energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials
under visible light.

Keywords: ambient crystallization; photocatalysis; Zr/N doping; titania; aqueous sol-gel process;
p-nitrophenol degradation

1. Introduction

Industrial development is the main cause of the increase of pollution in water [1].
Although these polluted effluents undergo various physical, chemical, and biological treat-
ments [2], some pollutants are not degraded and unfortunately return to the ecosystem [3].

Advanced oxidation processes (AOPs) are among the most efficient processes for the
total mineralization of organic compounds [4–6]. The interest of AOPs lies in their ability to
degrade almost all organic molecules, e.g., by reacting with the double bonds (-C=C-) and
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attacking the aromatic rings, major constituents of refractory pollutants. Photocatalysis is a
promising advanced oxidation process in view of its ability to degrade a great number of
organic molecules, low cost, and versatile application in the field of pollution control [5,7].

Indeed, the principle of photocatalysis for pollution abatement is to oxidize target
molecules, leading to CO2 and H2O only in case of total degradation. Semiconductors
are typically used as photocatalysts due to their physico-chemical characteristics in the
presence of light. Indeed, photons with sufficient photon energy can promote an electron
from the semiconductor’s valence band to its conduction band. These photogenerated
species migrate at the surface of the photocatalysts and can do redox reactions with the
surrounding medium. In water, this leads to the production of hydroxyl radicals ·OH,
the most powerful oxidizing species, and the formation of the superoxide radical O2−·.
This process is persistent as long as light is available [3,5,8].

Several successful semiconductors for this application are described in literature, in-
cluding ZnO, WO3, ZnS, CdS, Fe2O3, and TiO2 [3]. Titanium dioxide is the ninth most
abundant component on earth and is used in various fields of applications such as food
packaging (UV protection of food), in sunscreens, in orthopedic implants, but also in pho-
tocatalysis for the production of various self-cleaning coatings, the removal of impurities,
and the depollution of water and air [9,10].

Anatase TiO2, its most photoactive phase, activation requires photons with an energy
greater or equal to the 3.2 eV band gap of TiO2. This energy is equivalent to the energy
of a photon with a wavelength of 388 nm, corresponding to the ultraviolet range [11].
TiO2 presents some advantages over other semiconductors. Besides its non-toxic and
chemical stability aspect, it has good corrosion resistance, and is also relatively inexpen-
sive. TiO2 has a high photocatalytic activity and chemical stability under ultraviolet light
(<388 nm). On the other hand, titania’s large band gap only allows to harvest UV light,
representing only about 5% of the solar spectrum [12]. Another disadvantage of TiO2 is the
strong recombination rate of the photo-generated electron–hole (e−/h+) species.

The development of photocatalysts with a high and stable activity under visible light
(>400 nm) should allow to use a larger part of the solar spectrum, even under low-intensity
indoor lighting [8,13]. To reach these goals, modifications of TiO2 were envisaged with the
incorporation of metallic or non-metallic atoms. The list of doping elements in literature is
long and includes transition metal ions such as Zr [14], Cu [15], Co [16], Ni [17], Cr [18],
Mn [19], Mo [20], Nb [21], V [22], Fe [23], Ru [24], Au [25], Ag [26], and Pt [11], or non-
metallic ions such as N [27], S [28], C [29], B [30], P [31], I [32], and F [33]. The combination
with other semiconductors, having a lower band gap energy, was also studied [34], as well
as the sensitization of TiO2 with organic or organometallic dyes [35].

The production of TiO2 materials can be carried out by several methods such as
mechanochemical techniques, precipitation, aerosol powder coating, hydrothermal meth-
ods, crystallization, and sol–gel methods [36]. The sol–gel process has several advantages,
as it offers simplicity of implementation, cost effectiveness, high purity, and careful control
of the chemical composition [36–38].

The first work on the doping of TiO2 with a non-metallic element, and more precisely
nitrogen, was carried out in 1986 by Sato et al. [39], who obtained N-doped powders with
better oxidation of carbon monoxide and ethane compared to the commercial Evonik P25.
Then, in 2001, Morikawa et al. [40] reported that nitrogen doping reduced the band gap
of TiO2 and improved the absorption of visible light, due to a modification of the band
structure by substitution of the 2p states of N in the TiO2 lattice mixed with the O 2p states.
Indeed, nitrogen can be easily introduced into the TiO2 structure due to its atomic size
comparable to that of oxygen, its low ionization energy, and its high stability [27].

Transition metal modification can also extend the spectral response of TiO2 in the
visible light region by inducing electronic transitions between the d-electrons of the tran-
sition metal ions and the conduction band of TiO2 [11]. This activity is also related to
the formation of a new energy level produced in the TiO2 band gap by dispersing metal
nanoparticles in the TiO2 lattice. This modification also improves the photoactivity due



Catalysts 2021, 11, 235 3 of 21

to electron trapping on delocalized metallic dopant, reducing e−/h+ recombination rate
during irradiation [11]. TiO2 N-doping proved to be a promising method to increase
its photoactivity, but the photocatalytic efficiency of N-doped TiO2 was limited due to
the strongly localized N 2p states at the top of the valence band, which can act as traps,
and rapid recombination for the excited electrons [12,40]. Therefore, the simultaneous
use of a metal and non-metal as co-doping elements may be an effective alternative for
improving photocatalytic activity [12].

Co-doping of TiO2 with zirconium and nitrogen simultaneously has been reported in
only a limited number of papers compared to other doping elements [12,41–44]. This work
is a contribution to complement the development of co-doped TiO2 powders, more active
in the visible range but also more efficient in the UV range.

In this study, TiO2 powders were doped with two nitrogen precursors (urea and
triethylamine) and with a zirconium source. The photocatalysts were prepared by an
aqueous sol–gel method, combining and optimizing two methods developed previously
in Mahy et al. [14,27]. Emphasis was placed on the development of a green process by
using water as solvent and no calcination step to crystallize the titania. The conditions
were optimized by fixing the N/Ti ratio for both urea and triethylamine to the best ra-
tio in terms of photoactivity, and by varying the zirconium source fractions (0.7, 1.4, 2,
or 2.8 mol%). Subsequently, the samples were characterized by X-ray diffraction (XRD), ni-
trogen adsorption–desorption measurements, diffuse reflectance UV–Visible spectroscopy
(DR-UV-Vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy
(TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG),
Photoluminescence (PL), and by inductively coupled plasma–atomic emission spectroscopy
(ICP–AES).

The last part of this study is devoted to testing the photocatalytic activity of those
doped samples for the degradation of a model solution of p-nitrophenol (PNP, C6H5NO3)
under UV–visible and visible light. The aims are to show the influence of N/Zr co-doping
on the photocatalytic activity and to identify the best doping ratios. The commercial Evonik
P25 photocatalyst will be used as reference for benchmarking the obtained performances.

2. Results

Concerning the notation of samples used in this study, samples doped with urea
are designated TiO2/Ux, where x is the molar ratio between titanium dioxide and urea.
In this work, x is chosen equal to 4, following Mahy et al. [27]. Samples doped with
triethylamine are designated TiO2/Ny, where y is the molar ratio between titanium dioxide
and triethylamine. In this work, y is chosen equal to 42, following Mahy et al. [27].
For samples doped with zirconium (IV) tertbutoxide, they are denoted by TiO2/Zrz,
where z is the molar percentage of Zr and is equal to 0.7, 1.4, 2, and 2.8 mol%. The samples
co-doped with urea and zirconium are denoted TiO2/U4/Zrz and those co-doped with
triethylamine and zirconium are denoted TiO2/N42/Zrz.

2.1. Crystallographic Properties of Samples

Figure 1 shows the XRD patterns of pure TiO2 and selected N/Zr-doped and co-doped
TiO2 samples; reference patterns for the anatase and brookite TiO2 phases are also presented.

These powders, prepared by precipitation-peptization, are similar in crystallographic
structure with the identified presence of the anatase, brookite, and amorphous phases.
The other samples (not shown) have similar patterns. The crystallographic fractions shown
in Table 1 were obtained by Rietveld refinement of the scale factors with the TOPAS
software using a CaF2 internal standard.
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TiO2/U4/Zr1.4 35 30 35 - 1.40 1.50 
TiO2/U4/Zr2 40 25 35 - 2.00 2.32 

TiO2/U4/Zr2.8 40 25 35 - 2.80 2.97 
TiO2/N42 35 20 45 - -1 -1 
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TiO2/N42/Zr2.8 35 20 45 - 2.80 3.38 
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The highest content of the anatase phase (around 40%, Table 1) is observed for the 
TiO2 samples co-doped with urea and zirconium tert-butoxide and for the 

Figure 1. X-ray diffraction (XRD) patterns: (�) pure TiO2, (�) TiO2/Zr2.8, (N) TiO2/U4, (•)
TiO2/U4/Zr2.8, (×) TiO2/N42, (*) TiO2/N42/Zr2.8. (A) Reference pattern of anatase and (B)
reference pattern of brookite.

Table 1. Quantitative analysis of samples’ crystallinity and dopant content by XRD.

Sample

Anatase
Content

(%)
±5

Brookite
Content

(%)
±5

Amorphous
Content

(%)
±5

Rutile Content
(%)
±5

Theoretical Zr
Content
(mol.%)

Actual Zr
Content
(mol.%)

P25 80 - - 20 -1 -1

Pure TiO2 30 25 45 - -1 -1

TiO2/Zr0.7 30 20 50 - 0.70 0.70

TiO2/Zr1.4 30 20 50 - 1.40 1.53

TiO2/Zr2 25 20 55 - 2.00 1.64

TiO2/Zr2.8 25 15 60 - 2.80 2.68

TiO2/U4 35 10 55 - -1 -1

TiO2/U4/Zr0.7 40 30 30 - 0.70 0.89

TiO2/U4/Zr1.4 35 30 35 - 1.40 1.50

TiO2/U4/Zr2 40 25 35 - 2.00 2.32

TiO2/U4/Zr2.8 40 25 35 - 2.80 2.97

TiO2/N42 35 20 45 - -1 -1

TiO2/N42/Zr0.7 40 30 30 - 0.70 1.36

TiO2/N42/Zr1.4 35 20 45 - 1.40 1.69

TiO2/N42/Zr2 35 20 45 - 2.00 2.09

TiO2/N42/Zr2.8 35 20 45 - 2.80 3.38

-1 Not measured.

The highest content of the anatase phase (around 40%, Table 1) is observed for the
TiO2 samples co-doped with urea and zirconium tert-butoxide and for the TiO2/N42/Zr0.7
sample. The brookite phase is more present (around 30%, Table 1) in urea/Zr co-doped
powders compared to other samples. The amorphous fraction of TiO2 ranges between 30%
and 60%. Zirconium doping seems to increase the amorphous fraction of TiO2, both in
doped Zr/TiO2 samples and in co-doped N/Zr/TiO2 samples. Thus, the crystallization
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of amorphous TiO2 into anatase and brookite structures is less favored with a higher
zirconium loading, as reported by other authors [41]. It is also observed in Table 2 that
the TiO2 crystallite sizes, dXRD, slowly increase from 4 to 6 nm with increasing zirconium
content, as already observed by Mahy et al. [14].

Table 2. Textural and optical properties of TiO2-based photocatalysts.

Sample
SBET

(m2g −1)
±5

Vp

(cm3g−1)
±0.01

VDR
(cm3g−1)
±0.01

dBET
(nm)
±1

dXRD
(nm)
±1

dTEM
(nm)
±1

Eg.direct
(eV)
±0.01

Eg.indirect
(eV)
±0.01

P25 50 -1 0.03 31 18 2–8 3 -1 3.45 3.05
TiO2 pure 195 0.10 0.1 8 5 5 3.35 2.98

TiO2/Zr0.7 205 0.11 0.11 8 4 6 3.36 3.03
TiO2/Zr1.4 205 0.11 0.11 8 6 6 3.29 2.98
TiO2/Zr2 210 0.12 0.11 7 6 5 3.26 2.90

TiO2/Zr2.8 195 0.12 0.11 8 6 6 3.32 2.97
TiO2/U4 270 0.24 0.16 6 6 6 3.34 3.05

TiO2/U4/Zr0.7 260 0.28 0.15 6 7 6 3.35 3.07
TiO2/U4/Zr1.4 280 0.27 0.17 5 4 5 3.26 2.98
TiO2/U4/Zr2 280 0.34 0.17 5 6 6 3.32 3.04

TiO2/U4/Zr2.8 200 0.28 0.12 8 6 7 3.32 3.07
TiO2/N42 240 0.24 0.15 6 6 6 3.25 3.00

TiO2/N42/Zr0.7 185 0.23 0.12 8 6 6 3.26 2.97
TiO2/N42/Zr1.4 230 0.26 0.14 7 6 6 3.27 2.99
TiO2/N42/Zr2 200 0.26 0.12 8 6 5 3.31 3.03
TiO2/N42/Zr2.8 220 0.26 0.13 7 6 6 3.31 2.99

-1 Not measured; 2 value from anatase peak; 3 value from rutile peak; SBET: specific surface area estimated by the Brunauer–Emmett–Teller
(BET) theory; Vp: specific liquid volume adsorbed at saturation pressure of nitrogen; VDR: microporous volume calculated thanks to
the Dubinin–Raduskevitch theory; dBET: mean diameter of TiO2 nanoparticles obtained from SBET values; dXRD: mean diameter of TiO2
crystallites calculated using the Scherrer equation; dTEM: elementary TiO2 particle diameter measured by TEM; Eg,direct: direct optical
band gap value estimated with the transformed Kubelka–Munk function; Eg,indirect: indirect optical band gap values estimated with the
transformed Kubelka–Munk function.

2.2. Composition of Samples

The Fourier transform infrared (FTIR) spectra of sample P25, pure TiO2, TiO2/U4,
TiO2/N42, TiO2/U4/Zr2.8, and TiO2/N42/Zr2.8 are shown in Figure 2. Generally, the spec-
tra of aqueous samples are similar between each other, and few peaks are also similar to
the commercial P25.

The strong broadband at 3200 cm−1 as well as small peak at 1631 cm−1 are due to
vibrations of the –OH groups from the water adsorbed in the samples, as well as Ti-OH
and Zr-OH groups in the Zr-doped samples. No additional peaks were observed for the Zr
doping peaks, promoting efficient dispersion of zirconium [45].

The peak intensity in TiO2/U4/Zr2.8 and TiO2/N42/Zr2.8 powders relating to –OH
groups are higher than those of pure TiO2, indicating that nitrogen and zirconium doping
increases the surface hydroxyl groups thus enhancing the photocatalytic activity.

The spectra undoubtedly reveal the presence of synthetic residues in addition to TiO2.
For pure TiO2 and TiO2/Zr2.8 samples, the doublet peaks located at 1553 cm−1 and

1315 cm−1 would seem to be attributed to nitrates [46–48], as well as the peak located at
1049 cm−1 which returns to the free NO3

− ions [49,50]. In fact, pure and single Zr-doped
samples (prepared in the presence of HNO3 during the synthesis) often contain residues of
NO3

- species [49], which is explained because these powders are not rinsed at the end of
the synthesis, unlike the powders doped with nitrogen. It is observed that the intensity
of these two peaks at 1553 cm−1 and 1315 cm−1 decreases with the doping in nitrogen
source, explained by the washing of the powders when doped with urea or triethylamine
as explained in the Section 3.5, as well as the disappearance of the peak at 1049 cm−1.

The other doped samples have similar spectra.
The thermogravimetric analysis for the pure TiO2, TiO2/U4, TiO2/N42, TiO2/U4/Zr2.8,

and TiO2/N42/Zr2.8 samples is shown in Figure 3. The weight loss is comprised between
4 and 18%; the highest is reached with the pure TiO2 sample. Indeed, this sample was
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not washed after synthesis. The losses occur between 100 ◦C and 400 ◦C. After 400 ◦C,
no weight loss is observed.
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2.3. Textural Properties of Samples

Figure 4 shows the nitrogen adsorption-desorption isotherms for N/Zr doped and
co-doped TiO2 powders, with the corresponding pure TiO2 sample as a reference.
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Figure 4. Nitrogen adsorption–desorption isotherms of samples: (�) pure TiO2, (�) TiO2/Zr2.8, (N) TiO2/U4, (•)
TiO2/U4/Zr2.8, (×) TiO2/N42, and (*) TiO2/N42/Zr2.8.

For the pure TiO2 sample and all samples only doped with Zr (TiO2/Zr0.7, TiO2/Zr1.4,
TiO2/Zr2 and TiO2/Zr2.8), the isotherms are similar: a strong increase in adsorbed volume
at low pressure, followed by a plateau, corresponding to a microporous solid (type I
isotherm from the BDDT classification) [14,51]. The values of the specific surface area,
SBET, and microporous volume, VDR, are similar for all samples, between 195 and 210 m2

g−1 for SBET and equal to 0.11 cm3 g−1 for VDR (Table 2). Furthermore, the VDR and Vp
(specific liquid volume adsorbed at saturation pressure of nitrogen) values are similar,
a specific characteristic of microporous materials [51]. These textural properties are typical
of TiO2 samples doped with zirconium and prepared with the peptization-precipitation
method [14]. This is due to the spherical shape of the nanoparticles in between which small
voids (<2 nm) lie [14]. It is possible to see on TEM micrographs (see next section, Figure 5C)
these small TiO2 nanoparticles.

When nitrogen is incorporated inside the framework of TiO2 (samples TiO2/U4,
TiO2/U4/Zr2.8, TiO2/N42, and TiO2/N42/Zr2.8), the nitrogen adsorption–desorption
isotherms evolve towards a mixture of the Type I to the Type IV [51]: (i) at low relative pres-
sure, a sharp increase of the adsorbed volume is followed by a plateau which corresponds
to type I isotherm, which is characteristic of microporous adsorbents; (ii) for relative pres-
sure p/p0 comprised between 0.4 and 0.8, a triangular hysteresis appears and is followed
by a plateau, which is characteristic of mesoporous adsorbents. Furthermore, this type of
hysteresis is characteristic of samples consisting of agglomerates (a few tens of nm), these
agglomerates being themselves composed of elementary spherical TiO2 particles. Finally,
for samples doped with nitrogen and co-doped with nitrogen and zirconium, Vp values
are higher than VDR values (Table 2), meaning that these samples have a microporous
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volume and a mesoporous volume. In Figure 5A–D (TEM micrographs, see next section),
it is possible to see that higher aggregates of TiO2, nonexistent in Figure 5C.

From the specific surface area, SBET, it is possible to estimate the elementary TiO2
particle size, dBET, with Equation (2) (see Section 3.7) by assuming elementary spherical
and non-porous TiO2 nanoparticles. The order of magnitude of dBET is close to dXRD values
and dTEM values (Table 2).
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2.4. Morphology of Samples

The morphology of the N/Zr doped and co-doped TiO2 samples was visualized with
a transmission electron microscope and is shown for four samples in Figure 5. The sample
TiO2/Zr2.8 (Figure 5C) presents a spherical shape and uniform distribution of the elemen-
tary TiO2 nanoparticles. For the other samples (Figure 5A–D), higher aggregates (a few
tens of nm) of TiO2 particles are observed, these agglomerates being themselves composed
of elementary spherical TiO2 particles.

The size of elementary TiO2 nanoparticles have been evaluated from TEM images
on a series of fifty titania particles (Table 2). For all samples, the particle size range is
similar to those found by XRD, dXRD, and from nitrogen adsorption–desorption isotherms,
dBET (Table 2) [27].
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2.5. Optical Properties of Samples

The normalized Kubelka–Munk function is shown in Figure 6 for pure TiO2, TiO2/Zr2.8,
TiO2/U4/Zr2.8, and TiO2/N42/Zr2.8 samples.
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The pure TiO2 spectrum presents absorption around 365 nm. TiO2/N42 sample
presents a shift towards visible region compared to pure TiO2, which can be explained by
the insertion of N as already observed by Mahy et al. [27] using this synthesis method.

The other samples show absorption spectra close to the pure TiO2. Nevertheless,
the obtained spectra were all very slightly shifted to the visible range (Figure 6) and show
slightly lower band gap values than pure TiO2 (Table 2), especially if it is compared to
commercial Evonik P25 photocatalyst. Indeed, N-doping occurred with aqueous sol–gel
synthesis using HNO3 as peptizing agent [14,27] even for pure TiO2 (see Section 3.5),
with as a consequence a positive effect on visible light activation.

2.6. XPS Analysis

Ti 2p, O 1s, N 1s, and Zr 3d XPS spectra are shown in Figure 7 for pure TiO2 and
TiO2/N42/Zr2.8 samples shown as examples. Indeed, all the samples present similar
XPS spectra.

On the Ti 2p spectra (Figure 7a), for both samples, the Ti 2p1/2 and Ti 2p3/2 peaks are
observed at 464.2 eV and 458.5 eV, respectively. They correspond to Ti4+ species [27,52,53]
and therefore the expected TiO2 [14]. In Figure 7b, the peak at 530.1 eV is linked to Ti-O
bonds and is present for both samples [14,54]. In the same figure, a shoulder is present
above 530 eV, but this information is hard to exploit because of the presence of foreign
oxygen from carbonaceous contamination [14].
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For the N 1s spectra (Figure 7c), two peaks are observed for both samples, at 400 eV
and at 406.8 eV. The N 1s peak at 400.1 eV is linked to interstitial Ti-O-N bonds [55,56].
These bonds help absorption of visible light [14]. This is coherent with the diffuse re-
flectance measurements (Figure 6) where the spectra of the samples are shifted towards
visible compared to the Evonik P25. The other peak (406.8 eV) is probably due to nitrates
originating from residual HNO3 from the synthesis as explained in [14,27].

For the Zr 3d spectrum of TiO2/N42/Zr2.8 sample (Figure 7d), peaks are visible at
182.0 eV and 184.6 eV that correspond to Zr 3d3/2 and Zr 3d5/2 electronic states [14,53,57,58].
They confirm the presence of ZrO2. Hybrid TiO2-ZrO2 nanoparticles could be present,
as shown in [14,53,54,59]. Indeed, TEM images do not highlight different morphologies
between pure and Zr-(co)-doped TiO2 samples, increasing the likeliness of a TiO2-ZrO2
mixed structure [14].

The atomic ratios N/Ti and Zr/Ti estimated from XPS measurements for some samples
are presented in Table 3. The variation of the N/Ti ratio is low across the tested samples,
so that similar amounts of nitrogen are present, at least at the surface. This corroborates
the absorption spectra shown in Table 2 and Figure 6, in which the similarity between
the samples is obvious. Nevertheless, the photoactivity of the samples with N doping
(Figures 8 and 9) increases with the doping, showing that the samples are different. It may
be possible that the repartition of nitrogen is not homogeneous along the samples and,
as previously observed [60,61], that some nitrogen signals are not detected by XPS as it is a
surface analysis.

Table 3. Dopant molar ratios in TiO2-based samples.

Sample N/TiXPS Zr/TiXPS Zr/TiICP

TiO2/N42/Zr1.4 0.043 0.028 0.017
TiO2/N42/Zr2 0.034 0.035 0.021

TiO2/N42/Zr2.8 0.037 0.051 0.034
TiO2/U4/Zr2.8 0.044 0.048 0.029

N/TiXPS: atomic ratio of nitrogen over titanium calculated from XPS measurements; Zr/TiXPS: atomic ratio of
zirconium over titanium calculated from XPS measurements; Zr/TiICP: molar ratio of zirconium over titanium
calculated from ICP measurements.
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The Zr/Ti ratio increases with the Zr doping percentage, as expected. This ratio
was also obtained from ICP-AES results (Table 1). The values match each other relatively
well, despite slightly lower values for the ICP results. Indeed, it seems that less ZrO2 is
present in the bulk of the samples, as previously observed with this type of synthesis [14].
It may be assumed that the titanium (IV) tetraisopropoxide (TTIP-TiO2 precursor) is more
reactive than the zirconium tert-butoxide (ZrO2 precursor) in the conditions of the synthesis,
leading to higher proportions of ZrO2 on the surface.

2.7. Photocatalytic Activity
2.7.1. Experiments under UV–Visible Light

For all samples, Figure 8 shows the photocatalytic degradation of PNP under UV/visible
light after 8 h of illumination. In the dark, no adsorption of PNP on the samples occurred,
as observed in previous studies [14,27,61]. All doped and co-doped samples showed a
higher degradation efficiency than pure TiO2 sample. The degradation efficiency of PNP
increases with increasing Zr content in the sample: from 68% for the TiO2/Zr0.7 sample,
to 84% for the TiO2/Zr2.8 sample. PNP degradation percentage also increases with increas-
ing Zr content in the TiO2/U4/Zr series, starting from 90% for TiO2/U4/Zr0.7 sample to
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96% for the highest doping (TiO2/U4/ Zr2.8 sample). For the TiO2/N42/Zr series, the yield
also increases from 90% for TiO2/N42/Zr0.7 sample to 96% for TiO2/N42/Zr2.8 sample.

The increase in performance under UV–visible light with Zr/N co-doping can be
linked to the modification in crystallinity between pure, doped, and co-doped samples
(Table 1) due to the introduction of dopants. Indeed, the distribution between anatase,
brookite, and amorphous phase changes with the introduction of dopant. This difference
in phase distribution can lead to compositions where a synergetic effect can enhance the
photoactivity as for Evonik P25 commercial catalyst [27]. Moreover, it was also shown that
the formation of a mixed oxide TiO2-ZrO2 could increase the lifetime of “e−h+” pairs [14].
In this study, the XPS spectra show the formation of ZrO2 at the surface of the TiO2 lattice
(Figure 7d). When the Zr-doped TiO2 photocatalysts are illuminated with UV/visible light,
some photogenerated charges (“e−h+” pairs) can be delocalized on the ZrO2, increasing
the lifetime of the pair [14].

As the photocatalysts are illuminated by UV light, the N doping has a slight influence
on the PNP degradation activity. However, the co-doped N/Zr TiO2 photocatalysts present
higher values for PNP degradation (80–98%) than the commercial Evonik P25 (70%).

2.7.2. Experiments under Visible Light

Figure 9 shows the photocatalytic activity of the samples after 24 h of illumination
under visible light (>400 nm). The commercial Evonik P25 photocatalysts shows only
10% of PNP degradation against 25% for pure TiO2 sample. TiO2 samples doped with
urea (TiO2/U4 sample) and triethylamine (TiO2/N42 sample) present a PNP degradation
of 56% and 52%, respectively. As all aqueous sol–gel samples are doped with nitrogen
(Figure 7), this doping leads to an increased visible light absorption compared to Evonik
P25 sample (Figure 6), and so a higher photoactivity under illumination by visible light.
Similarly, the degradation for Zr single doping increases from 44% for TiO2/Zr0.7 sample
to 54% for TiO2/Zr2.8 samples. Indeed, as for UV/visible experiments, the Zr-doping can
modifiy the crystallinity of the samples to produce synergetic compositions with higher
photoefficiencies, and the formation of TiO2-ZrO2 mixed oxide can enhance the charge
separation and so, the photoefficiency.

The best photocatalytic activities for PNP degradation are obtained with the co-
doped samples. Indeed, TiO2/U4/Zr0.7 sample gives a PNP degradation of 52%, while it
increases up to 64% for TiO2/U4/Zr2.8 sample. Similarly, TiO2/N42/Zr0.7 sample presents
a photocatalytic activity of 64%, and this activity reaches 68% for TiO2/N42/Zr2 sample.

Therefore, the doping of TiO2 with Zr and N atoms could be used to increase the
photocatalytic activity of TiO2 in the visible range [41]. Indeed, the sensitivity to visible light
of N/Zr/TiO2 powders is caused by (i) N-doping from urea and triethylamine precursors
by forming an intermediate energy level, and by (ii) Zr-doping, which increases the lifetime
of “e−h+” pairs.

Concerning N-doping, when the interstitial nitrogen doping model is assumed, the ni-
trogen atoms are bonded to one or more oxygen atoms and are thus in any of the oxidation
states corresponding to either NO−, NO2

−, or NO3
−. The uncoupled electrons are dis-

tributed around the N and O atoms in these moieties. As a result, the incorporation of
nitrogen into the TiO2 lattice leads to the formation of a new energy state, i.e., the N 2p
band above the O 2p valence band, which shifts the optical absorption of TiO2 to the
visible light region [43]. Furthermore, in this work, in addition to the N-doping from
urea and triethylamine precursor, the activity under visible light for pure TiO2 is prob-
ably due to the N-doping with the use of nitric acid for synthesis as shown in [14,27].
A ligand to metal charge transfer complex between the organic moieties and Ti(IV) ions
cannot be excluded and could account for the improvement of photocatalytic properties of
TiO2/U4 samples [62].

In this study, Zr-doping is useful to improve the lifetime of electrons and holes
produced by photoactivation [43]. Indeed, Zr4+ sites trap electrons more efficiently than
Ti4+ sites, and the presence of vacant oxygen sites facilitates the transport of charge carriers
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to the reactive surface sites [41]. In addition, the valence band of TiO2 is more stabilized
with a Zr4+ doping because Zr4+ is more electropositive than Ti4+ [43].

The three precursors used in this work (urea, triethylamine, and zirconium tert-
butoxide) show that the photocatalysts obtained at low temperatures, appear to be efficient
photocatalysts under visible light and may offer promising prospects for the clean-up of
water pollution and the degradation of organic pollutants.

2.7.3. Recyclability under Visible Light

The recyclability under visible light was evaluated for six samples: pure TiO2, TiO2/Zr2.8,
TiO2/U4, TiO2/U4/Zr2.8, TiO2/N42, and TiO2/N42/Zr2. The samples with the best
photoactivity from each series were chosen. The mean activity after 3 recycling cycles (96 h
of illumination) is represented on Figure 10. The stability of the activity is maintained for
all samples as already observed previously with titania made by aqueous sol–gel process.
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2.8. Photoluminescence Study

Photoluminescence (PL) spectra are represented on Figure 11 for the six samples
representative of this study and for the commercial Evonik P25. The spectra were obtained
after an excitation at 325 nm and 410 nm.

At 410 nm (Figure 11a), the excitation of 3.02 eV is mostly below TiO2’s band gap.
The peaks at 610 nm and 570 nm correspond to relaxation of trapped electrons to the
valence band [63]. The oxygen vacancies are responsible for this trapping process [64].
Comparing the pure and Zr-doped sample shows that a lot of those vacancies are created
by the dopant.

When the sample is excited at 325 nm (Figure 11b), the energy is sufficient to clear the
band gap. The numerous peaks between 450 and 500 nm should correspond to relaxation
of electrons in shallow states [63]. Finally, the shoulder at around 440 nm is present only
for N-doped samples, indicating that a different localized energy state exists. The energy
corresponding to 440 nm, i.e., 2.82 eV, indicates that this state is a few tenths of eV above
the valence band. Figure 11c represents the different possible electronic transitions in
TiO2 samples

The role of Zr in the increase of photocatalytic activity could be to trap the electrons,
thus increasing the lifetime of holes. The same phenomenon explains why the peaks
between 450 nm and 490 nm decrease in height when doped with Zr: the e− traps decrease
the number of electrons available in the shallow states between the conduction band,
responsible for these peaks. On the other hand, doping with nitrogen decreases the band
gap. The number of vacancies is reduced by the use of urea, but is unchanged in TiO2/N42
samples compared to pure TiO2. This could explain why the TiO2/N42 samples perform
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slightly better than the TiO2/U4 ones. However, the difference is too small to draw a
definitive conclusion of the difference between those mechanisms.
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3. Materials and Methods
3.1. Pure TiO2 Synthesis

The TiO2 powder is prepared by the sol–gel method, in which 250 mL of deionized
water acidified with nitric acid (HNO3, 65%, Merck, Darmstadt, Germany) at pH of 1 is
introduced into a flask stirred at 700 rpm in a bath thermostatically controlled at 80 ◦C.
36.08 mL of titanium (IV) tetraisopropoxide (TTIP, >97%, Sigma-Aldrich, St. Louis, MO,
USA), is added to 15.1 mL of isopropanol (IsoP, 99.5%, Acros, Hull, Belgium) at 25 ◦C and
stirred for 30 min, then the TTIP-IsoP mixture is added dropwise to the thermostatically
controlled flask, and left under stirring for 24 h in the closed flask. After this reaction time,
the obtained sol is dried in ambient air; the obtained powder is crushed and used as such
for further processing.

3.2. Urea-TiO2 Powder Synthesis

The urea-doped powder is prepared using the same method as pure TiO2 synthesis
except that a mass (proportional to the desired molar concentration) of urea (NH2-C(O)-
NH2 98%, Sigma-Aldrich, St. Louis, MO, USA) is also included in the 250 mL of deionized
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water under stirring before acidifying to pH of 1. The molar ratio between TTIP and urea is
equal to 4. It corresponds to the TiO2/U4 sample described by Mahy et al. in [27].

3.3. Triethylamine-TiO2 Doped Powder Synthesis

The powder doped with triethylamine is prepared with the same method as pure TiO2
synthesis except that, once the sol is obtained after 24 h of stirring, 699 mL of triethylamine
is added (in excess) to the pure TiO2 suspension. The whole mixture is then left under
magnetic stirring for 24 h. The samples containing triethylamine are denoted with “N42”,
corresponding to the molar ratio between triethylamine and TTIP [27].

3.4. Zr-TiO2 Powder Syntheses

The powders doped with the zirconium precursor are prepared using also the same
method as pure TiO2 synthesis except that a mass (proportional to the desired molar
concentration) of zirconium tert-butoxide (98%, Sigma Aldrich, St. Louis, MO, USA) is
also added in the TTIP-isopropanol mixture. After 24 h of stirring in the thermostatically
controlled flask, the samples are dried in the same way as the pure TiO2 powder. Four Zr-
doping molar percentages are studied: 0.7, 1.4, 2, and 2.8 mol%. The samples are designated
as TiO2/ZrX, where X is the amount of dopant.

3.5. Urea/Zr/TiO2 Co-Doped Powder Synthesis

The co-doping of TiO2 with urea and the zirconium precursor is done by a combination
of the two doping methods applied by Mahy et al. [14,27]. Urea (28.4 g) is introduced
into 250 mL of distilled water then acidified with HNO3 to a pH of 1. At the same
time, the calculated quantity of zirconium tert-butoxide (98%, Sigma Aldrich, St. Louis,
MO, USA) is added to the TTiP-Isop mixture and left under stirring for 30 min until
homogeneous mixing. At the end, the solution containing Isop-TTIP-Zr is added to the
deionized urea water, followed by 24 h of stirring at 80 ◦C and 700 rpm. A white sol
is obtained and dried in ambient air until a white powder is recovered. This powder is
crushed then dried for 1 h under vacuum at 100 mbar, then rinsed with distilled water and
centrifuged for 15 min. This rinsing is repeated 3 times and the obtained pellets are finally
dried under vacuum at 100 ◦C and 100 mbar. The molar ratio between TTIP and urea is
equal to 4 [27], and the zirconium precursor molar percentages are varied between 0.7, 1.4,
2, and 2.8 mol%.

3.6. Triethylamine/Zr/TiO2 Co-Doped Powder Synthesis

The co-doping of TiO2 with triethylamine and the zirconium precursor is done by
a combination of the two doping methods applied by Mahy et al. [14,27]. Like the urea
co-doping, the triethylamine co-doping is adapted by saturating each sol of the zirconium
precursor (0.7, 1.4, 2, and 2.8 mol%) with triethylamine as described above. The molar ratio
between triethylamine and TTIP is equal to 42 [27]. The rinsing and drying is done in the
same way as the urea/Zr/TiO2 powder.

3.7. Material Characterization

The sample composition is determined by inductively coupled plasma-atomic emis-
sion spectroscopy (ICP-AES), equipped with an ICAP 6500 THERMO Scientific device
(Waltham, MA, USA).). The analysis protocol is fully detailed in [14].

The crystallographic properties are studied through X-ray diffraction (XRD) patterns
from 10◦ to 70◦ with a Bruker D8 Twin-Twin powder diffractometer using Cu-Kα radiation
(Bruker, Billerica, MA, USA). The Scherrer formula (Equation (1)) is used to determine the
size of TiO2 crystallites, dXRD:

dXRD = 0.9
λ

β Cos(θ)
(1)
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where dXRD is the crystallite size (nm), B is the total width of the peak at half its maxi-
mum value after correction for instrumental broadening (rad), λ is the X-ray wavelength
(0.154 nm), and θ is the Bragg angle (rad).

The TOPAS software [65] was used to fit the diffractograms in order to estimate the per-
centages of crystalline phases. The structure parameters for the anatase and brookite phases
were taken from the PDF 04-007-0701 and 04-007-0758 references (ICCD PDF4+ database),
and the fundamental parameters approach [65] was used to model the instrumental contri-
bution to the reflection profiles. The amount of amorphous TiO2 was estimated through
the same procedure using an internal standard of CaF2 (calcium fluoride, Sigma-Aldrich,
anhydrous powder, 99.99% trace metals).

The textural properties of the samples are characterized by nitrogen adsorption–
desorption isotherms in an ASAP 2420 multi-sampler device from Micromeritics. From these
isotherms, the microporous volume is calculated using Dubinin–Radushkevich theory
(VDR) [51]. The specific surface area is evaluated using the theory of Brunauer, Emmett,
and Teller (SBET) [51]. The mean particle size, dBET, can be estimated from the SBET values
by assuming spherical and non-porous nanoparticles of anatase TiO2 using the follow-
ing formula [66]:

dBET
6

=

1
ρanatase

SBET
(2)

where ρanatase is the apparent density of anatase TiO2 estimated as 3.89 g cm−3.
X-ray photoelectron spectra are obtained with a SSI-X-probe (SSX-100/206) spec-

trometer equipped with a monochromatized microfocused Al X-ray source (1486.6 eV),
operating at 10 kV and 20 mA. Samples are placed in the analysis chamber where the
residual pressure was about 10−8 Pa. The following sequence of spectra is recorded: sur-
vey spectrum, C 1s, O 1s, N 1s, Ti 2p, Zr 3d, and again C 1s to check the stability of charge
compensation with time and absence of degradation of the samples [14].

The C- (C, H) component of the carbon C 1s peak is fixed at 284.8 eV to calibrate
the scale in binding energy. Three other components of the carbon peak (C-(O, N), C=O
or O-C-O, and O-C=O) have been resolved, notably to determine the amount of oxygen
involved in the carbon contamination [14]. Data processing is carried out with the CasaXPS
program (Casa Software Ltd., Teignmouth, UK). The spectra are decomposed using the
Gaussian and Lorentzian function product model (least squares fitting) after subtraction of
a nonlinear Shirley baseline [14,67].

The optical properties of the sample are evaluated using diffuse reflection spectroscopy
measurements in the 250–600 nm region with a Perkin Elmer Lambda 1050 S UV/VIS/NIR
spectrophotometer, equipped with a spectralon coated integrating sphere (150 mm InGaAs
Int. Sphere from PerkinElmer. Waltham, MA, USA) and using Al2O3 as reference. UV–Vis
spectra, recorded in diffuse reflectance mode (R sample), are transformed using Kubelka–
Munk function [27,68,69] to produce a signal, normalized for comparison between samples,
and thus to calculate the band gap (direct and indirect ones). The details of this processing
method are described in more details in [27,66].

Transmission electron microscopy (TEM) images were obtained with a FEI TEM-
LaB6 TECNAI G2 microscope with a tungsten filament electron gun operating at 200 kV.
The powders are dispersed in deionized water and sonicated for 15 min. Then, a drop
of the dispersion is placed on a copper grid (Formvar/Carbon 200 Mesh Cu from Agar
Scientific, Essex, UK) for observation.

The photoluminescence measurements were performed at room temperature using
Shimadzu RF-6000 fluorimeter equipped with xenon excitation source. All emission spectra
are obtained with a good spectral resolution of the detector.

Fourier Transform Infrared Spectroscopy (FTIR) was carried out using a 630 Cary
infrared spectrometer (400 to 4000 cm−1, Agilent, Santa Clara, CA, USA) in order to
characterize the surface functional groups of the powders.

Thermogravimetric analyses were performed on a thermal analyzer SETARAM Lab-
SysEvo1600 (KEP Technologies, Mougins, France) until 700 ◦C under air.
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3.8. Photocatalytic Experiments

The photocatalytic activity of powders is evaluated by following the degradation of
p-nitrophenol (PNP) after 8 h under UV–visible light and after 24 h under visible light,
in triplicate, in an aqueous medium. For each test, the degradation percentage of PNP,
(DPNPi), is given by Equation (3) [27]:

DPNPi (%) =

(
1 − [PNP]i

[PNP]0

)
× 100% (3)

where [PNP]i represents the residual concentration of PNP at time t = i h and [PNP]0
represents the initial concentration of PNP at time t = 0 h [14].

The experimental set-up is described in a previous study [14,27]. The DPNP8 is evalu-
ated after 8 h under UV/visible light, thanks to a halogen lamp with a continuous spec-
trum from 300 to 800 nm (300 W, 220 V) measured with a Mini-Spectrometer TMUV/Vis
C10082MD from Hamamatsu [14]. The PNP degradation (DPNP24) under visible light is
evaluated after 24 h with the same halogen lamp covered by an UV filter that removes
wavelengths shorter than 390 nm [14]. The residual concentration of PNP is measured
by UV/Vis spectroscopy (GENESYS 10S UV–Vis from Thermo Scientific, Waltham, MA,
USA) at 318 nm [14]. For each tested catalyst, three flasks containing the catalytic powder
are exposed to light to calculate the PNP degradation, and one is kept in the dark to
evaluate PNP adsorption on the sample. In each flask, the initial concentrations of catalyst
(if present) and PNP are equal to 1 g/L and 10−4 M, respectively [14]. The volume of each
flask is equal to 10 mL, and the flasks are agitated by a magnetic stirrer. Experiments are
conducted in test tubes closed with a sealing cap. These tubes are placed in a cylindrical
glass reactor with the halogen lamp in the center. The reactor is maintained at constant
temperature (20 ◦C) by a cooling system with recirculating water. The lamp is also cooled
by a similar system. Aluminum foil covers the outer wall of the reactor to prevent any
interaction with the room lighting [11,14].

To test the stability and recyclability of the photoactivity of samples, photocatalytic
recycling tests under visible light are made on six samples: pure TiO2, TiO2/Zr2.8, TiO2/U4,
TiO2/U4/Zr2.8, TiO2/N42, and TiO2/N42/Zr2. The same protocol as explained in the
above paragraph is performed on these catalysts [11]. After this, the samples are recovered
by centrifugation (10,000 rpm for 1 h) followed by drying at 120 ◦C for 24 h [11]. A second
and third cycle of photocatalytic tests as described above are applied to the reused catalysts.
So, each tested catalyst undergoes four catalytic tests, and a mean PNP degradation on the
three recycling tests is then calculated [11].

4. Conclusions

In this work, an aqueous sol–gel process was successfully applied to produce Zr/N
single doped and co-doped TiO2 photocatalysts at low temperature without any calcination
step. The N/Ti molar ratio was set at 4 for urea and 42 for triethylamine. Different molar
ratios were tested for Zr (0.7, 1.4, 2 and 2.8 mol%). Pure TiO2 was also synthesized by the
same aqueous sol–gel process for comparison. The photocatalyst Evonik P25 was also used
as a reference commercial material.

Physico-chemical characterizations confirmed that in all the synthesized powders,
anatase-brookite TiO2 nanoparticles were present. The TiO2 particle diameters estimated
by three different techniques (XRD, BET, and TEM) were consistent and in the same range
(~4–6 nm). From TEM micrographs, all TiO2-based samples were composed of spheroidal
nanoparticles arranged in agglomerates. Furthermore, all the samples synthesized by
peptization were micro-mesoporous, with specific surface area values reaching 280 m2/g.

The results of the XPS and ICP analyses showed that TiO2 was successfully doped
with nitrogen and zirconia. Indeed, the incorporation of nitrogen in TiO2 materials with the
presence of Ti-O-N bonds was observed, which allowed the absorption of light in the visible
range and the enhancement of photoactivity in this wavelength range. The photocatalytic
activity of TiO2 was also improved by Zr-doping through the formation of TiO2-ZrO2 mixed
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oxide materials, which increased the lifetime of the photogenerated charges. In this way,
all the samples of this work showed a higher photocatalytic efficiency for p-nitrophenol
degradation compared to pure TiO2 and commercial Evonik P25.

The highest PNP degradation percentages were obtained with co-doped samples: un-
der UV/visible light, the best sample (TiO2/N42/Zr2.8) reached 96% of PNP degradation
after 8 h of irradiation, and under visible light, 68% of PNP degradation was reached with
the best sample (TiO2/N42/Zr2) after 24 h of illumination. These results confirmed the
positive influence of the N and Zr dopants on the shift of TiO2 photoactivity towards the
visible region. Finally, it should be noted that these N/Zr single doped and co-doped TiO2
samples were prepared with an environmentally friendly synthesis. Indeed, water was
used as solvent, the synthesis of photocatalysts was done at ambient temperature and pres-
sure, and no calcination step was required to obtain the crystallization of TiO2. This study
proposes very efficient photocatalysts under visible light offering promising prospects for
the clean-up of water pollution and the degradation of organic pollutants.
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