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Abstract: This work reviews the application of various standard isotherms to evaluate the micropore
volume in a range of microporous materials. The selected materials have quite different surface
chemistry, and are relevant due to their properties for adsorption and catalysis: zeolites, activated
carbons, clay-based materials and MOFs. Some cases were analysed before and after being used as
supports in the heterogenization of homogeneous catalysts. The discussion is centred, but not limited,
to the three standard isotherms that are mostly employed in the literature (t-curve, non-porous
carbon and non-porous hydroxylated silica) for the assessment of the micropore volume. For a given
material the values of the micropore volumes from the different standard isotherms were compared,
particularly against the values from the largely used t-curve. The cases where major discrepancies
were found could normally be ascribed to samples that have a broad micropore size distribution.

Keywords: nitrogen-adsorption; standard-isotherm; microporosity

1. Introduction

As is well known, nitrogen adsorption at 77 K is the standard technique for the char-
acterization of microporosity in nanoporous materials. This has been well established over
the decades in fundamental text books [1–3] and IUPAC reports [4–6], although other gases
were also proposed, for instance, argon [6] or carbon dioxide [7]. Even when a material
also has meso and macropores (as defined by IUPAC [4]) alongside micropores, microp-
orosity can strongly conditionate important properties. Examples of these properties are
the adsorption/separation of gases and the catalytic activity [8] or the storage/release of
small molecules for therapeutic applications [9]. Additionally, the precise determination
of microporous volumes is critical in the experimental development of computationally
predicted structures of new types of materials such as metal and covalent organic frame-
works (MOFs and COFs) or porous polymer networks PPNs [10]. In this sense, is quite
noteworthy that a relatively simple methodology for the evaluation of microporous vol-
umes such as t-plots and as-plots which are, in their nature, empirical methods to analyse
adsorption isotherms [2], remain widely used and continue to provide reliable results
traversing decades of increasing computational and modelling development.

The basis of t-plots and as-plots is detailed in the literature [1–3] and their validity
in various situations was discussed by several authors [11–13]. Briefly, to apply these
methodologies the adsorption isotherm is replotted, keeping the adsorbed amounts (or
volumes) on the material under study in ordinate and the abscissa is now a normalized
unit [1] (t or as). The t or as values are obtained from the amount adsorbed in a given
non-porous reference material (for the same relative pressure values) where a standard
adsorption isotherm was obtained. The normalized unit t is the thickness of the adsorbed
layers on the reference non-porous material, t = (n/nm)·σ, where n is the amount adsorbed
(at a given relative pressure), nm the amount adsorbed in the monolayer of the reference
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material, and σ is the thickness of a single molecular layer, that is, the thickness of a
monomolecular layer of, in the case of the present study, adsorbed nitrogen [1–3]. The
t-plots are almost exclusively used when the standard isotherm corresponds to the t-
curve for nitrogen adsorption, also sometimes referred to as “universal t-curve” [1,14–16]
(Supplementary Materials). In the case of as-plots the normalized unit as is obtained by
dividing the amount adsorbed n by n0.4, that is, the amount adsorbed at the relative
pressure of 0.4, −as = (n/n0.4). Several standard isotherms that can be used to construct
as-plots, on various types of non-porous reference materials such as silicas or carbons, but
also for other adsorptives besides nitrogen, were published elsewhere [13,17–21].

The focus of the present work is on the evaluation of microporous volumes, although
additional information could be obtained from t-plots and as-plots [1,2], namely the surface
areas. Normally, for a material that has micro and mesopores these plots have the general
shape illustrated in Figure 1. It is important to point out the different sections in these
plots: section A reflects the adsorption in micropores, which is followed by a linear region
in the plot (section B) and an upward deviation (section C) [1]. The latter can be absent if
the material is exclusively microporous [1]. The microporous volume is obtained by the
back extrapolation of the linear section in Figure 1 [2,6].
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For the accurate determination of the microporous volume, the correct choice of the
standard isotherm is, therefore, important. In fact, the indication is that the appropriate
standard isotherm must be determined on a non-porous solid having a surface chemistry
of the same type as that of the studied adsorbent [2]. As mentioned, there are in the
literature various standard isotherms for the adsorption of nitrogen at 77 K in several
non-porous materials such as carbons, zeolites or clay-based materials. However, presently
the variability of surfaces (and hence of surface chemistry) of adsorbents and catalysts
is tremendous. In fact, if one thinks for instance of MOFs and related materials, the
composition variability of these solids would render the attempt of using specific standard
reference isotherms a formidable and virtually impossible task. Additionally, the case of
the functionalization of the surface of porous materials with organic molecules, particularly
regarding the heterogenization of homogeneous catalysts [22,23], producing new types of
surfaces, is also relevant. In the present work, we critically review and discuss the effect of
using various types of standard isotherms in the determination of the microporous volumes
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from nitrogen adsorption data at 77 K in materials selected for their rather different surface
chemistry, such as zeolites, activated carbons, clay-based materials and MOFs, some of
them before and after being used as supports in the heterogenization of homogeneous
catalysts.

2. Results and Discussion

The standard nitrogen isotherms at 77 K (all obtained in non-porous materials) consid-
ered in this work were: (i) the universal t-curve [24]; (ii) a carbon [25], (iii) a hydroxylated
silica [1] and (iv) a char. The standard isotherms (i) to (iii) have been widely used in the
literature. The use in this work of a char as standard reference material is because the
microporous carbons studied here were prepared using this (non-porous) char as starting
material, as discussed below.

Figure 2a presents the nitrogen adsorption isotherms at 77 K for the activated carbons
C1, C2 and C3 (hereafter mentioned as carbons or carbon materials) prepared as described
in Supplementary Materials, where the pore size distribution is also given. As per Figure 2a
the isotherms for C1 and C2 are highly rectangular (Type I [6]), although for the latter
some mesoporosity is also noticed, as indicated by the hysteresis cycle in C2. For the
C3 sample, this rectangular character is much less pronounced as a consequence of a
broader range of micropore sizes that may include small mesopores [6]. This is shown in
the pore size distribution of C3 presented in Supplementary Materials. The t-plots and
as-plots for samples C1 and C2 (Figure 3) show that for these samples, the microporous
volumes (back-extrapolation of the straight lines) are almost independent of the standard
isotherm that is used. In fact, (see Table 1) the microporous volumes vary at most by
2.7%. Furthermore, if we consider the difference between the values obtained by using the
carbon, the hydroxylated silica and the char by one hand and the value obtained from the
universal t-curve by the other hand (the ∆max for t in Table 1), the value is even smaller.

In the case of the C3 sample, that is, the material with the broader distribution of
pore sizes, the situation is much different since a strong effect of the nature of the standard
isotherm is observed (Figure 3). In this case, the values of the micropore volume can vary
up to 26.2% (Table 1) depending on the standard isotherm used, with the values from
the t-curve and from the carbon standard material being the closer ones. The general
observation for the studied carbon materials is that for the samples with highly rectangular
isotherms, the influence of the standard isotherm is small, but this is not the case for the
sample with a broad micropore distribution, that is, the less rectangular isotherm.

Catalysts 2021, 11, x 3 of 14 
 

 

isotherms a formidable and virtually impossible task. Additionally, the case of the func-
tionalization of the surface of porous materials with organic molecules, particularly re-
garding the heterogenization of homogeneous catalysts [22,23], producing new types of 
surfaces, is also relevant. In the present work, we critically review and discuss the effect 
of using various types of standard isotherms in the determination of the microporous vol-
umes from nitrogen adsorption data at 77 K in materials selected for their rather different 
surface chemistry, such as zeolites, activated carbons, clay-based materials and MOFs, 
some of them before and after being used as supports in the heterogenization of homoge-
neous catalysts. 

2. Results and Discussion 
The standard nitrogen isotherms at 77 K (all obtained in non-porous materials) con-

sidered in this work were: (i) the universal t-curve [24]; (ii) a carbon [25], (iii) a hydrox-
ylated silica [1] and (iv) a char. The standard isotherms (i) to (iii) have been widely used 
in the literature. The use in this work of a char as standard reference material is because 
the microporous carbons studied here were prepared using this (non-porous) char as 
starting material, as discussed below. 

Figure 2a presents the nitrogen adsorption isotherms at 77 K for the activated carbons 
C1, C2 and C3 (hereafter mentioned as carbons or carbon materials) prepared as described 
in Supplementary Materials, where the pore size distribution is also given. As per Figure 
2a the isotherms for C1 and C2 are highly rectangular (Type I [6]), although for the latter 
some mesoporosity is also noticed, as indicated by the hysteresis cycle in C2. For the C3 
sample, this rectangular character is much less pronounced as a consequence of a broader 
range of micropore sizes that may include small mesopores [6]. This is shown in the pore 
size distribution of C3 presented in Supplementary Materials. The t-plots and as -plots for 
samples C1 and C2 (Figure 3) show that for these samples, the microporous volumes 
(back-extrapolation of the straight lines) are almost independent of the standard isotherm 
that is used. In fact, (see Table 1) the microporous volumes vary at most by 2.7%. Further-
more, if we consider the difference between the values obtained by using the carbon, the 
hydroxylated silica and the char by one hand and the value obtained from the universal 
t-curve by the other hand (the ∆max for t in Table 1), the value is even smaller. 

  
Figure 2. Cont.



Catalysts 2021, 11, 1544 4 of 13Catalysts 2021, 11, x 4 of 14 
 

 

  
Figure 2. Nitrogen adsorption isotherms at 77 K (closed points for desorption) in the various types of materials studied in 
this work: (a) activated carbons; (b) clay-based materials; (c) zeolites and (d) MOFs. Data from [26–31]. 

In the case of the C3 sample, that is, the material with the broader distribution of pore 
sizes, the situation is much different since a strong effect of the nature of the standard 
isotherm is observed (Figure 3). In this case, the values of the micropore volume can vary 
up to 26.2% (Table 1) depending on the standard isotherm used, with the values from the 
t-curve and from the carbon standard material being the closer ones. The general obser-
vation for the studied carbon materials is that for the samples with highly rectangular 
isotherms, the influence of the standard isotherm is small, but this is not the case for the 
sample with a broad micropore distribution, that is, the less rectangular isotherm. 

 

 

 
 

Figure 2. Nitrogen adsorption isotherms at 77 K (closed points for desorption) in the various types of materials studied in
this work: (a) activated carbons; (b) clay-based materials; (c) zeolites and (d) MOFs. Data from [26–31].

Catalysts 2021, 11, x 4 of 14 
 

 

  
Figure 2. Nitrogen adsorption isotherms at 77 K (closed points for desorption) in the various types of materials studied in 
this work: (a) activated carbons; (b) clay-based materials; (c) zeolites and (d) MOFs. Data from [26–31]. 

In the case of the C3 sample, that is, the material with the broader distribution of pore 
sizes, the situation is much different since a strong effect of the nature of the standard 
isotherm is observed (Figure 3). In this case, the values of the micropore volume can vary 
up to 26.2% (Table 1) depending on the standard isotherm used, with the values from the 
t-curve and from the carbon standard material being the closer ones. The general obser-
vation for the studied carbon materials is that for the samples with highly rectangular 
isotherms, the influence of the standard isotherm is small, but this is not the case for the 
sample with a broad micropore distribution, that is, the less rectangular isotherm. 

 

 

 
 

Catalysts 2021, 11, x 5 of 14 
 

 

 

 

Figure 3. t and as-plots for the indicated materials using various standard isotherms. 

Although the standard isotherm obtained in the char and, to a certain extent also for 
the standard carbon material, might not have an a priori relation with the surfaces of some 
of the examples of the materials mentioned in Figure 2, we keep these two standard iso-
therms for the sake of the discussion below. 

The isotherms for the clay-based materials are given in Figure 2b. In this figure, the 
parent natural clay [26] was the starting material to prepare a pillared clay [32] with alu-
minium oxide pillars (PILC) [26] and a porous clay heterostructure (PCH) [33]. As ex-
pected, the natural clay has no relevant microporosity and the back extrapolations of all 
straight lines in Figure 3 for this material approach zero. In the case of the PILC and PCH 
(Figure 3), and according to the values of Table 1, if the char is included, the differences 
amongst the values can reach 35.1%. Nevertheless, the microporous volumes of the PILC 
and PCH samples obtained from the t-curve and the hydroxylated silica are very close (cf. 
Table 1). 

The nitrogen adsorption isotherms in Figure 2c relate to four zeolites. One is the sodic 
form of Y zeolite (NaY) that has a cage structure with openings of 7.3 Å [34]. The “Self-
Steamed” sample is a dealuminated form prepared from Y zeolite by a self-steaming pro-
cess as described and characterized elsewhere [28]. As is well known, the dealumination 
of zeolites can improve their acid properties and thermal stability, hence improving the 
catalytic performance of the zeolite [35]. Besides, the steep initial section of the nitrogen 
isotherm, this sample also presents hysteresis because of the mesoporosity developed dur-
ing the dealumination process [28] (mesopore size distribution in Supplementary Materi-
als). 

Two additional zeolites are included in Figure 2c, one is the Mordenite, which con-
sists of a framework with channels that have openings of 6.7 Å [36], and the other is a 
titanosilicate (ETS-10) that has pores with openings of 6 × 8 Å and 6 Å [29]. Since all the 
isotherms in Figure 2c are very steep in the low-pressure region, as expected for materials 
with narrow distribution of small micropores, the t-plots and as-plots for the zeolites (Fig-
ure 4) gave microporous volumes that are rather independent of the standard isotherm 
used (see Table 1 also). This is even observed using the standard isotherm of the char. An 
exception is the titanosilicate ETS-10 where the maximum discrepancy (Table 1) can reach 
15%, when using the standard isotherm for the hydroxylated silica. 

  

Figure 3. t and as-plots for the indicated materials using various standard isotherms.



Catalysts 2021, 11, 1544 5 of 13

Although the standard isotherm obtained in the char and, to a certain extent also
for the standard carbon material, might not have an a priori relation with the surfaces of
some of the examples of the materials mentioned in Figure 2, we keep these two standard
isotherms for the sake of the discussion below.

The isotherms for the clay-based materials are given in Figure 2b. In this figure,
the parent natural clay [26] was the starting material to prepare a pillared clay [32] with
aluminium oxide pillars (PILC) [26] and a porous clay heterostructure (PCH) [33]. As
expected, the natural clay has no relevant microporosity and the back extrapolations of all
straight lines in Figure 3 for this material approach zero. In the case of the PILC and PCH
(Figure 3), and according to the values of Table 1, if the char is included, the differences
amongst the values can reach 35.1%. Nevertheless, the microporous volumes of the PILC
and PCH samples obtained from the t-curve and the hydroxylated silica are very close (cf.
Table 1).

The nitrogen adsorption isotherms in Figure 2c relate to four zeolites. One is the sodic
form of Y zeolite (NaY) that has a cage structure with openings of 7.3 Å [34]. The “Self-
Steamed” sample is a dealuminated form prepared from Y zeolite by a self-steaming process
as described and characterized elsewhere [28]. As is well known, the dealumination of zeo-
lites can improve their acid properties and thermal stability, hence improving the catalytic
performance of the zeolite [35]. Besides, the steep initial section of the nitrogen isotherm,
this sample also presents hysteresis because of the mesoporosity developed during the
dealumination process [28] (mesopore size distribution in Supplementary Materials).

Two additional zeolites are included in Figure 2c, one is the Mordenite, which consists
of a framework with channels that have openings of 6.7 Å [36], and the other is a titanosili-
cate (ETS-10) that has pores with openings of 6 × 8 Å and 6 Å [29]. Since all the isotherms
in Figure 2c are very steep in the low-pressure region, as expected for materials with
narrow distribution of small micropores, the t-plots and as-plots for the zeolites (Figure 4)
gave microporous volumes that are rather independent of the standard isotherm used (see
Table 1 also). This is even observed using the standard isotherm of the char. An exception
is the titanosilicate ETS-10 where the maximum discrepancy (Table 1) can reach 15%, when
using the standard isotherm for the hydroxylated silica.

Table 1. Microporous volumes determined from the nitrogen adsorption isotherm at 77 K using various standard isotherms
in non-porous reference materials (Universal t-curve [24], Carbon [25], Hydroxylated silica [1] and a Char).

Standard
Material

→
Microporous Volume (cm3 g−1)

∆max (%) (a) ∆max for t (%) (b)Universal
t-Curve Carbon Hydroxylated

Silica Char

Carbon
materials

C1 0.615 0.615 0.630 0.613 2.7 0.3
C2 0.559 0.554 0.538 0.547 1.7 2.1
C3 0.455 0.466 0.574 0.558 22.6 26.2

Clay
materials

PCH 0.292 0.281 0.293 0.235 19.8 19.5
PILC 0.074 0.07 0.077 0.05 35.1 32.4
Clay 0.007 0.006 0.004 - - -

Zeolites

NaY 0.345 0.346 0.347 0.348 0.9 0.9
Mordenite 0.213 0.211 0.216 0.206 4.6 3.3

ETS-10 0.141 0.138 0.153 0.130 15.0 7.8
Self-Steamed 0.163 0.159 0.155 0.161 4.9 4.9

MOFs

Cu-BTC 0.734 0.733 0.736 0.734 0.1 0.1
UiO-66 0.505 0.505 0.503 0.504 0.4 0.4

MIL-53(Al) 0.252 0.245 0.267 0.169 36.7 32.9
MIL-101 1.212 1.220 1.248 1.23 2.9 −3.0

(a) Maximum difference between the microporous volumes irrespective of the standard isotherm. (b) Maximum difference for the
microporous volume obtained using the universal t-curve.
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For the MOF materials, the nitrogen adsorption isotherms at 77 K are presented in
Figure 2d, namely: MIL-101 [30], UiO-66 [31] and Cu-BTC and MIL-53(Al) (the latter
two isotherms were determined in this work). The MIL-101 used is a chromium(III)
terephthalate MOF with a structure in cages of internal free diameters of 29 and 34 Å (that
is, in the range of mesopores) accessible by openings of 12 Å and 14.5 × 16 Å [37]. UiO-66
is a zirconium MOF where 1,4-benzene-dicarboxylate is used as the organic linker [38]. The
access to the internal tetrahedral and octahedral cages of UiO-66 is made by windows of
6 Å [38]. Cu-BTC is a copper-based MOF where the Cu(II) metal units are linked by benzene-
1,3,5-tricarboxylate (BTC) linkers [39]. The main pores of Cu-BTC are of ca. 9 Å in diameter
with side pockets with openings of 3.5 Å [40]. Concerning MIL-53(Al), its structure is
formed by AlO4(OH)2 octahedra linked by 1,4-benzenedicarboxylate ligands [41]. The
internal opening of the pores of MIL-53(Al) is 8.5 Å, but this material also has the particular
feature that the pore openings can vary upon the adsorption-desorption of molecules in its
structure, a feature that some authors classify as the “breathing” effect [41,42]. As can be
seen from the t-plots and as-plots (Figure 5), the microporous volumes of the MOFs studied
here (Table 1) are almost independent (within each MOF) of the standard isotherm used,
inclusively, and somewhat unexpectedly, when the char is used as standard. The exception
is for the MIL-53(Al) sample (Figure 5 and Table 1) for which the discrepancies can achieve
36.7%, although they decrease to 8% if the char is ruled out as standard material. If for
Cu-BTC and UiO-66 this relative invariance of the micropore volumes with the type of
standard isotherm could be anticipated, in light of the above results that showed that
this is relatively common for high rectangular isotherms, the case of MIL-101 would be
less predictable. In fact, for this material, the nitrogen isotherm is the least rectangular of
those presented by the MOF materials (Figure 2d) but the structural regularity, that is, the
uniformity of the pore dimensions, also appears to be key. In fact, MIL-101 clear presents a
plateau above p/p0 = 0.4 (Figure 2b) that corresponds to the saturation of the pores, which



Catalysts 2021, 11, 1544 7 of 13

will afterwards also produce a consistent plateau in the t-plot and as-plot leading to the
same value of porous volume.
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In the case of the more regular materials (Zeolites and MOFs), an exercise can be
made comparing the values in Table 1 with the values for the network-accessible geometric
volume. These values can be estimated, for instance, through PoreBlazer [43] and are
presented in Supplementary Materials. For the zeolites, the values agree for NaY and
ETS-10, although for Mordenite the geometric values are higher, most probably due to
limitations of the access of the nitrogen molecule to the small side pockets lateral to the
main Mordenite channels in the real structure of this zeolite and/or other possible position
of the cations not considered in the calculations. In the case of the MOFs materials, the
values in Table 1 agree for Cu-BTC but some discrepancies were noticed for the other
materials. In fact, the values for MIL-53(Al) are quite different, which can be related to
the expandable nature of this MOF (i.e., the breathing effect between large and narrow
pore configuration [41]) and the corresponding difficulty in having the most appropriate
parameters that describe the structure of the material. The network-accessible geometric
volume obtained for MIL-101 is higher than that reported in Table 1, pointing out that in
the case of this MOF, where the pore openings are within the micropore dimensions but
the internal dimensions of the cages are already in the range of the mesopores, the results
obtained by t-plots and as-plots can provide values below the expected ones.

In the following part of the text, the effect of using different standard isotherms to
evaluate microporous volumes is discussed for supported and/or heterogenized cata-
lysts [23]. In fact, the heterogeneization of homogeneous catalysts is an important strategy
to obtain supported catalysts that keep the homogeneous catalytic sites with the benefits of
easy separation and, most important, recycling [22,23]. While homogeneous catalysis, in
theory, has advantages over heterogeneous catalysis due to, for instance, less diffusional
constraints of the reactants and products, in heterogeneous catalysis the catalyst can be
easily recovered using filtration or extraction techniques [22]. Upon heterogenization, often
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preceded by a step of surface functionalization to anchor the homogeneous catalyst, usually
a metal complex [22,23], the porosity and the nature of the surface of the supporting mate-
rial is changed. The nitrogen adsorption isotherms at 77 K in examples of heterogenized
materials, using various types of supports, are given in Figure 6a–c.
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clays heterostructures. Data from [26–28,44,45].

In the case of Figure 6a, the inclusion of the complex Comp1 (structure in Supplemen-
tary Materials) in the NaY zeolite, decreases the adsorption capacity but maintains the
Type I [6] character of the adsorption isotherm. In this way, and although the surface of the
parent NaY zeolite was modified by the presence of the complex Comp1, the microporous
volumes determined using the carbon or the hydroxylated silica (Figure 7 and Table 2) only
differ, at the maximum, by 3.6% from the values determined using the t-curve.

In the case of the MCM-22 zeolite (Figure 6a), the example included a copper complex
Comp2 (structure in Supplementary Materials) which is active for instance in cyclopropa-
nation of styrene [40]. The MCM-22 zeolite has a structure with two independent internal
micropore systems. One is composed of cylindrical cages (7.1 Å × 18.2 Å) interconnected
by 10 membered-ring windows (4.0 × 5.5 Å) [41]. A second pore system is constituted by
sinusoidal channels (4.1 × 5.1 Å). A particularity of this zeolite is that the external surface
of the crystals is covered by half cavities (7.1 × 7 Å) [41]. Upon the immobilization of
Comp2, the MCM-22 zeolite has the microporosity completely blocked, as illustrated in
Figure 7 (and Table 2). Nevertheless, due to its particular structure, namely the mentioned
cavities in the external surface, the material still has catalytic activity for the reaction of
cyclopropanation of styrene with ethyldiazoacetate [40].
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Table 2. Microporous volumes determined from the nitrogen adsorption isotherm at 77 K using various standard isotherms
in non-porous reference materials (Universal t-curve [24], Carbon [25] and Hydroxylated silica [1]).

Standard
Material

→
Microporous Volume (cm3 g−1)

∆ for t (%)
(Carbon) (a)

∆ for t (%)
(Hyd. Silica) (b)Universal

t-Curve Carbon Hydroxylated
Silica

Zeolites

NaY 0.345 0.346 0.347 0.3 0.6
Comp1@NaY 0.224 0.218 0.216 2.7 3.6

MCM-22 0.188 0.178 0.173 5.3 8.0
Comp2@MCM-22 0 0 0 0 0

PILCs
PILC 0.074 0.07 0.077 5.4 4.1

Comp3a@PILC 0.034 0.032 0.032 5.9 5.9
Comp3b@PILC 0.016 0.015 0.014 6.3 12.5

PCHs
PCH 0.292 0.281 0.293 3.8 0.3

APTES@PCH 0.027 0.026 0.024 3.7 11.1
Comp4@PCH 0.028 0.028 0.026 0.0 10.7

(a) Difference between the value using the universal t-curve and using the non-porous carbon as standard. (b) Difference between the value
using the universal t-curve and using the non-porous hydroxylated silica as standard.
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Figure 6b exemplifies a case where a natural clay was used to immobilize a manganese(III)-
salen complex (Comp3)—structure in Supplementary Materials S4—by two different
methodologies [26], hence the samples Comp3a@PILC and Comp3b@PILC. As usually
occurs upon the heterogenization by the immobilization of bulky metal complexes, the
adsorption capacity is reduced, and the effect of the standard isotherm increases as the
microporous volume decreases (Table 2).

The oxovanadium(IV) acetylacetonate—Comp4—(structure in Supplementary Materials
S4) is an efficient homogeneous catalyst for the epoxidation reaction of allylic alcohols,
presenting high activity, stereo- and regioselectivity [46]. This oxovanadium complex
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was immobilized in various solid supports including in a porous clay heterostructure
(PCH), as described elsewhere [27]. To ensure the efficient anchoring of the complex, the
covalent immobilization was done through the first step of functionalisation of the surface
of the material with 3-aminopropyltriethoxysilane (APTES). The nitrogen adsorption
isotherms [27] in Figure 6c show an accentuated decrease in the adsorption capacity
upon the functionalisation step with APTES. The microporous volumes from the various
standard isotherms (Figure 8) are much similar for the parent PCH material than for the
modified samples. Additionally, in the latter, the difference between the values from the
t-curve and the carbon reference material are lower than those between the t-curve and the
hydroxylated silica.

Catalysts 2021, 11, x 11 of 14 
 

 

  

  

 

 

Figure 8. t and as-plots for the indicated materials using various standard isotherms. 

3. Materials and Methods 
The preparation of the char, and the activated carbons C1 and C2 obtained from this 

char, are described in Supplementary Materials. The standard isotherms (ii) to (iv) were 
used in the form of as-plots and the mathematical expressions for all the standard iso-
therms used are given in Supplementary Materials. The N2 adsorption isotherms at 77 K 
in the char and in the activated carbons C1, C2 and C3 were obtained in automatic equip-
ment (Quantachrome mod. NOVA 2200e, Boynton. Beach, FL, USA). Before experiments, 
the samples (~100 mg) were outgassed overnight at 120 °C under a vacuum better than 
10−2 Pa. The N2 isotherm for the zeolite Mordenite was obtained in a similar way, but the 
outgassing was for 3 hours at 300 °C. In the t or as-plots, the amounts adsorbed are ex-
pressed in terms of liquid volume, by using the value of 0.809 g∙cm−3 for the density of 
nitrogen at 77 K [2] to convert the units from mmog−1. In the case of the MOFs Cu-BTC 
and MIL-53(Al), these were from Aldrich, Lisboa, Portugal and the samples were 

Figure 8. t and as-plots for the indicated materials using various standard isotherms.

3. Materials and Methods

The preparation of the char, and the activated carbons C1 and C2 obtained from this
char, are described in Supplementary Materials. The standard isotherms (ii) to (iv) were
used in the form of as-plots and the mathematical expressions for all the standard isotherms
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used are given in Supplementary Materials. The N2 adsorption isotherms at 77 K in the
char and in the activated carbons C1, C2 and C3 were obtained in automatic equipment
(Quantachrome mod. NOVA 2200e, Boynton. Beach, FL, USA). Before experiments, the
samples (~100 mg) were outgassed overnight at 120 ◦C under a vacuum better than 10−2 Pa.
The N2 isotherm for the zeolite Mordenite was obtained in a similar way, but the outgassing
was for 3 hours at 300 ◦C. In the t or as-plots, the amounts adsorbed are expressed in terms
of liquid volume, by using the value of 0.809 g·cm−3 for the density of nitrogen at 77 K [2]
to convert the units from mmog−1. In the case of the MOFs Cu-BTC and MIL-53(Al), these
were from Aldrich, Lisboa, Portugal and the samples were outgassed overnight at 120 ◦C
under a vacuum better than 10−2 Pa before measurements. All the other results of the N2
adsorption isotherms at 77 K discussed in this work were obtained from data previously
published in the literature, as clearly indicated in the captions of Figures 2 and 6, as well as
in the main text.

4. Conclusions

The effect of different standard isotherms in the determination of the microporous
volumes from the nitrogen adsorption isotherm at 77 K, using standard isotherms in
non-porous reference materials was reviewed for samples representative of various types
of microporous materials, such as zeolites, clay-based materials, activated carbons and
MOFs. One characteristic of the nitrogen isotherm that is more influential in this type
of analysis is the rectangular (or Type I [6]) character. In fact, when, as a result of a less
uniform distribution of micropore sizes, the Type I character of the nitrogen isotherm is
less pronounced, the dependence of the values of the micropore volumes on the type of
standard isotherm increases. Trends in the values of the micropore volumes (Tables 1 and 2)
might not be easy to extract. Nevertheless, and considering the three most employed
standard isotherms in the literature (t-curve [24], carbon [25] and hydroxylated silica [1]),
the microporous volumes using the standard isotherm for the hydroxylated silica were the
highest for 58% of the materials studied in this work. Additionally, and considering all the
studied materials, the average of the differences between the values of the microporous
volumes obtained from the t-curve and the curves for the carbon or the hydroxylated silica
reference materials were 2.4 and 5.3%, respectively. In this way, for materials with narrow
micropore size distribution, the “universal” t-curve [24] was showed to be adequate. In
the case of materials that present a broad micropore size distribution, the uncertainties in
the micropore volume determination appears to be more related to the limitations of the
methodology than with the choice of the standard isotherm. For materials such as certain
MOFs, which present structures with an expandable nature (i.e., the breathing effect), the
conclusions were unclear.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11121544/s1, Supplementary S1: Method for the preparation of the char and the
activated carbons; Supplementary S2: Mathematical expressions for the various standard isotherms;
Table S1: Coefficients of the polynomial equations that relate as and the relative pressure (p/p0) for
the standard isotherms on the hydroxylated silica, the carbon and the char; Supplementary S3: Pore
size distributions; Figure S1: Pore size distributions for the carbon materials (C1, C2 and C3) and for
the dealuminated Y zeolite (Self Steamed); Supplementary S4: Structures of the metallic complexes
supported in different materials, Supplementary S5. Network-accessible geometric volume; Table S2:
Network-accessible geometric volume (in cm3 g−1) obtained with PoreBlazer for the zeolites and
MOFs studied in this work.
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26. Cardoso, B.; Pires, J.; Carvalho, A.P.; Carvalho, M.B.; Kuźniarska-Biernacka, I.; Silva, A.R.; Freire, C.; de Castro, B. Catalytic
Properties of a MnIII-Salen Complex Immobilised in a Pillared Clay by Simultaneous Pillaring/Encapsulation Procedures. Eur. J.
Inorg. Chem. 2005, 2005, 837–844. [CrossRef]

27. Pereira, C.; Biernacki, K.; Rebelo, S.L.H.; Magalh?es, A.L.; Carvalho, A.P.; Pires, J.; Freire, C. Designing heterogeneous oxovana-
dium and copper acetylacetonate catalysts: Effect of covalent immobilisation in epoxidation and aziridination reactions. J. Mol.
Catal. A Chem. 2009, 312, 53–64. [CrossRef]

28. Pires, J.; Carvalho, A.; Pinto, M.; Rocha, J. Characterization of Y zeolites dealuminated by solid-state reaction with ammonium
hexafluorosilicate. J. Porous Mater. 2006, 13, 107–114. [CrossRef]

29. Pinto, M.L.; Fernandes, A.C.; Antunes, F.; Pires, J.; Rocha, J. Storage and delivery of nitric oxide by microporous titanosilicate
ETS-10 and Al and Ga substituted analogues. Microporous Mesoporous Mater. 2016, 229, 83–89. [CrossRef]

30. Granadeiro, C.M.; Silva, P.; Saini, V.K.; Paz, F.A.A.; Pires, J.; Cunha-Silva, L.; Balula, S.S. Novel heterogeneous catalysts based on
lanthanopolyoxometalates supported on MIL-101(Cr). Catal. Today 2013, 218–219, 35–42. [CrossRef]

31. Pinto, M.L.; Dias, S.; Pires, J. Composite MOF foams: The example of UiO-66/polyurethane. ACS Appl. Mater. Interfaces 2013, 5,
2360–2363. [CrossRef]

32. Schoonheydt, R.A.; Pinnavaia, T.; Lagaly, G.; Gangas, N. Pillared clays and pillared layered solids—Technical Report. PURE Appl.
Chem. 1999, 71, 2367–2371. [CrossRef]
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