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Abstract: ZnWO4 nanoparticles on reduced graphene oxide (ZnWO4-NPs@rGO) nanocomposites
were synthesized using the hydrothermal method. Structural, morphological, optical, and photo-
catalytic studies of the ZnWO4-NPs@rGO nanocomposites were successfully investigated. Photo-
catalytic performances of the ZnWO4-NPs@rGO nanocomposites were examined for the degradation
of hazardous methylene blue dye (HMBD) in a neutral medium. ZnWO4-NPs@rGO nanocomposites
show superior photo-catalytic performances over pure ZnWO4 nanoparticles. ZnWO4-NPs@rGO
nanocomposites degrade ~98% dye while pure ZnWO4 nanoparticles degrade ~53% dye in 120 min.
The prepared nanocomposites also show excellent recycled photo-catalytic efficiencies over multi-
ple cycles.

Keywords: ZnWO4-NPs@rGO; nanocomposites; photo-catalysis; degradation

1. Introduction

The recycling of catalysts for multifunctional purposes is currently receiving the at-
tention of scientists, to reduce the cost of commercial materials for a diverse range of
technological uses. In this paper, we focus on the catalytic efficiency of reused cost-effective
materials for various applications. It is noteworthy that the compounds belonging to
group VI-B (including tungsten) showed tremendous efficiencies in various applications
including as photo-catalysis [1–4], electro-catalysis [5,6], and for energy storage [7,8]. The
treatment of contaminated water is an important way to regulate health issues by removing
organic pollutants from water through the photo-catalytic process. Photo-catalysis is one
of the promising methods for environmental remediation. Semiconductor-based nanocom-
posite materials were investigated as low-cost and high-performance photo-catalysts to
control water pollution problems [9–13]. Zinc tungstate (ZnWO4) has large band gap
energy (3.5–3.7 eV) and is used as an efficient photo-catalyst in the degradation of organic
dyes under ultraviolet (UV) radiation [1,14]. ZnWO4 nanostructured materials used as
photo-catalysts were also previously reported to degrade dyes [15–19]. However, the
recombination of charge carriers in these materials is a challenge for researchers. Therefore,
loading heteroatoms, carbon-based materials, or transition metal ions into a ZnWO4 matrix
could be helpful for achieving efficient charge separation in semiconductors to improve
their photocatalytic performance. The amalgamation of WO3 and ZnWO4 nanocomposites
has enabled the achievement of efficient electron-hole charge separation, resulting in their
reporting as efficient photo-catalysts [13,20]. Recently, Ag/ZnWO4 nanocomposites have
shown promising efficiencies in the degradation of methyl orange (MO) and methylene blue
(MB) dyes under UV irradiation [21,22]. ZnWO4 nanostructured materials have also been
used for a range of purposes including for the extraction of dyes and heavy metals [23–25],
as bacterial disinfectants [23], and for their photoluminescence [26], alongside being used
as components in lithium-ion batteries [27,28] and supercapacitors [29,30]. Nevertheless,
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some reports state that dyes are not appropriate molecules for visible-light degradation
reactions because they can absorb light and desensitize the photo-catalysts [31,32]. Previ-
ously, we have designed various transition metal tungstate, molybdate, gallate, and ferrite
nanostructured materials for a variety of applications including wastewater treatment [1,2],
electro-catalysis [1,5,33–37], and supercapacitor [1,33,38] applications. Functionalization of
the semiconducting nanoparticles with materials that have high electrical conductivities
and surface areas is an interest of researchers for the effective improvement of the catalytic
activities and stabilities of low-cost photo-catalysts. Graphene-based zinc oxide [39–41]
nanocomposites were previously reported as promising photo-catalysts in organic dye
degradation reactions. Therefore, we have designed nanocomposites containing rGO
sheet-supported ZnWO4 nanoparticles (ZnWO4-NPs@rGO) for superior photocatalytic
activities in neutral media. Recently, nickel molybdenum oxide nano-rods were initially
used as photo-catalysts, and thereafter reused as efficient catalysts in electrochemical sens-
ing and energy storage applications [42]. This report is mainly focused on the synthesis,
characterization, and enhanced visible-light photo-catalytic efficiencies of the synthesized
ZnWO4-NPs@rGO nanocomposites.

2. Materials and Methods
2.1. Preparation of ZnWO4 Nanoparticles

ZnWO4 nanoparticles were initially synthesized using a solvent-free method (i.e.,
using molten salts) as reported elsewhere [1]. To prepare ZnWO4 nanoparticles, one mole
of Zn(NO3)2·6H2O (Sigma Aldrich, 99%), one mole of Na2WO4·2H2O (Sigma Aldrich,
99%), thirty moles of NaNO3 (Sigma Aldrich, 98 + %), and thirty moles of KNO3 (Sigma
Aldrich, 99%) were taken and mixed homogeneously by grinding properly, and then heated
at 500 ± 10 ◦C for 6 h in a muffle furnace. White-colored nano-powder was collected and
washed with de-ionized water to remove the impurities. The resulting nanoparticles were
dried at 50 ◦C. The phase purity of the prepared nanoparticles was analyzed by powder
X-ray diffraction (XRD) studies using a Bruker D-8 Advanced diffractometer with Cu-Kα

radiation.

2.2. Preparation of ZnWO4-NPs@rGO Nanocomposites

The prepared ZnWO4 nanoparticles and commercially available reduced graphene
oxides (rGO, Sigma Aldrich) were taken in an appropriate ratio, followed by dispersion
in de-ionized water (18 mL) and ethylene glycol (2 mL) via sonication for twenty min.
The suspension was then transferred into an autoclave and treated via the hydrothermal
method at 120 ◦C for 48 h. Dark grey-colored ZnWO4-NPs@rGO nanocomposites were
collected through centrifugation and then dried at 60 ◦C.

2.3. Characterization

The structural characterization of the prepared ZnWO4-NPs@rGO nanocomposites
was undertaken by powder X-ray diffraction (XRD), Fourier-transform infrared spec-
troscopy (FTIR, Bruker TENSOR-27), and X-ray photoelectron spectroscopy (XPS, PHI-
5300). The surface morphologies and elemental compositions were evaluated by field
emission scanning electron microscope (FESEM, JEOL, JSM-7600F) and energy dispersive
studies (EDS). The optical band gap energy of ZnWO4-NPs@rGO nanocomposites was
determined using UV–Vis absorption spectra (Shimadzu-2550 spectrophotometer).

2.4. Photocatalytic Studies

The photocatalytic performance of ZnWO4-NPs@rGO nanocomposites was measured
by the degradation of a hazardous methylene blue dye (HMBD) solution. The Xenon lamp
(400 W) with λ of ~400 nm was used as the visible light source for irradiation of the HMBD
solution. 50 mg of ZnWO4-NPs@rGO photo-catalyst was taken with 20 mL aqueous
HMBD solution followed by stirring for 30 min to confirm the adsorption/desorption
equilibrium. The photocatalytic degradation of the HMBD solution was investigated in
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a neutral medium (pH ~7) at the λmax of ~662 nm. Samples of the suspension measuring
2.0 mL (with maximum transparency) were taken at regular time intervals for the photo-
catalytic analysis. Note that the regeneration efficiency of the ZnWO4-NPs@rGO photo-
catalyst was also investigated using similar experimental conditions as explained above.
The mass spectrometry (MS) method for measuring dye degradation using photo-catalysts
was also performed using an Agilent HPLC 1200 connected to a triple quadrupole mass
spectrometer (Agilent 6410 QqQ) using a direct injection connector instead of a column.
Detection was performed on a QqQ MS detector operated with an electrospray ionization
(ESI) source. Low purity N2 gas was used as drying gas with a flow rate of 12 L min−1, and
high purity N2 gas as collision gas at a pressure of 60 psi. Source temperature and capillary
voltage were set at 350 ◦C and 4000 V, respectively. Fragmentor voltage was set at 110 V
with collision energy of 15 V.

3. Results and Discussion

The phases and crystalline structures of the prepared ZnWO4-NPs@rGO nanocom-
posites were initially analyzed by XRD. Figure 1a shows the XRD patterns of the ZnWO4-
NPs@rGO nanocomposites, and all the reflections including the (011), (110), (111), (021),
(200), (121), (112), (211), (022), (220), (130), (202), (113), (311), and (041) planes can be identi-
fied for the monoclinic phase of ZnWO4 (JCPDS # 15–774). The resulting XRD patterns also
agree with previous reports [1]. The additional XRD peaks (as marked by an *) represent
rGO. No other peaks based on Zn or W oxides were detected in the XRD patterns, which
confirmed the formation of ZnWO4-NPs@rGO nanocomposites. Figure 1b shows the FTIR
spectrum of the ZnWO4-NPs@rGO nanocomposites. FTIR bands at low wavenumbers
confirm the presence of ZnWO4. FTIR bands at ~620 and ~850 cm−1 represent Zn-O-Zn and
W-O bonds, respectively. FTIR bands at ~3500 and ~1650 cm−1 belong to the −OH groups
from atmospheric moisture. FTIR bands at ~1220 and ~1570 cm−1 could be identified as
the C=O and C-H vibrations of rGO, respectively, as supported by previous reports [5].
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Figure 1. (a) XRD patterns and (b) FTIR spectrum of synthesized ZnWO4-NPs@rGO nanocomposites. 
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graphs clearly show that the ZnWO4 nanoparticles are very well supported by the rGO 
sheets (Figure 2a,c). A careful visualization for particle size analysis was also studied at 
high magnification, and the average particle diameter of the ZnWO4 nanoparticles was 
found to be ~50 nm (Figure 2d). Energy dispersive spectroscopy (EDS) equipped with 
FESEM was employed for the compositional analysis of the ZnWO4-NPs@rGO nano-
composites (Figure 3). The EDS study revealed the presence of the chemical elements 
(i.e., Zn, W, O, and C) in the ZnWO4-NPs@rGO nanocomposites as expected (Figure 3). 

Figure 1. (a) XRD patterns and (b) FTIR spectrum of synthesized ZnWO4-NPs@rGO nanocomposites.

FESEM measurements were taken at different magnifications to understand the mor-
phology of the ZnWO4-NPs@rGO nanocomposites (Figure 2). The FESEM micrographs
clearly show that the ZnWO4 nanoparticles are very well supported by the rGO sheets
(Figure 2a,c). A careful visualization for particle size analysis was also studied at high mag-
nification, and the average particle diameter of the ZnWO4 nanoparticles was found to be
~50 nm (Figure 2d). Energy dispersive spectroscopy (EDS) equipped with FESEM was em-
ployed for the compositional analysis of the ZnWO4-NPs@rGO nanocomposites (Figure 3).
The EDS study revealed the presence of the chemical elements (i.e., Zn, W, O, and C) in the
ZnWO4-NPs@rGO nanocomposites as expected (Figure 3). The atomic % compositions
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of Zn and W were found to be in a 1:1 ratio, in agreement with the initial 1:1 loaded
stoichiometry. The XPS study was also further investigated to determine the elemental
composition and chemical states of the ZnWO4-NPs@rGO nanocomposites. Figure 4 shows
a high-resolution XPS spectra of Zn (2p), W (4f), O (1s), and C (1s) in the ZnWO4-NPs@rGO
nanocomposites. Figure 4a shows the high-resolution XPS spectrum of Zn (2p). The XPS
spectrum shows two peaks at ~1025 eV and 1048 eV, which are attributed to Zn (2p3/2)
and Zn (2p1/2), respectively, and suggest the presence of a Zn2+ chemical state. Figure 4b
shows the high-resolution XPS spectrum of W (4f). It shows two spin-orbit doublet peaks
at ~35.25 eV and ~37.20 eV, which represent W (4f7/2) and W (4f5/2), respectively, in the
W6+ chemical state. Figure 4c shows the high-resolution XPS spectrum of O (1s). The
resulting O (1s) peak at ~532.7 eV was deconvoluted into two peaks at 532.8 and 533.9 eV,
of Zn–O and W–O, respectively. A high-resolution XPS spectrum of C (1s) is shown in
Figure 4d. A peak of C (1s) appeared at ~284.40 eV and deconvoluted into four peaks of
C=C at ~284.22 eV, C-OH at ~284.44 eV, C-O-C at ~285.90 eV, and C=O at ~286.30 eV. It is
noteworthy that the above characterization techniques strongly support the formation of
ZnWO4-NPs@rGO nanocomposites. Thereafter, the prepared nanocomposites were used
as photo-catalysts in the degradation of organic pollutants into inorganic minerals under
visible-light irradiation.
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The optical properties of ZnWO4-NPs@rGO nanocomposites were also examined
using UV–Vis absorption studies. The absorbance data of the ZnWO4-NPs@rGO nanocom-
posites were recorded in the region from 100 to 900 nm (Figure 5). The optical band gap of
the ZnWO4-NPs@rGO nanocomposites was calculated using the absorption data, followed
by use of Tauc’s model [43]. The band gap energy of the ZnWO4-NPs@rGO nanocompos-
ites was found to be ~3.50 eV, as shown in the inset of Figure 5. The resulting band gap
energy of the ZnWO4-NPs@rGO nanocomposites was lower than that of pure ZnWO4
materials (i.e., ~3.8 eV), as reported elsewhere [44]. Figure 6a shows the mechanism of
photo-catalytic degradation of the HMBD solution into inorganic minerals under visible-
light irradiation in the presence of the ZnWO4-NPs@rGO nanocomposites. Photo-catalytic
degradation of HMBD could be accompanied by the transfer of electrons from the valence
band (VB) to the conduction band (CB) to form the electron (e−)–hole (h+) pairs. The e−–h+

pairs generate the O2
−• and OH• radicals, followed by the attack on HMBD to oxidize it

into the form of inorganic minerals (e.g., NH4
+, H2O, CO2, etc.). The reaction mechanism

of hazardous methylene blue dye (HMBD) degradation could be summarized with the
given mechanistic steps:

Photo-catalyst + hυ→ Photo-catalyst (e− + h+)→ Photo-catalyst + H+ + OH• + O2
•−

Photo-catalyst (h+) + OH− → Photo-catalyst + OH•
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HMBD using ZnWO4-NPs@rGO nanocomposites.

The electrons of photo-catalyst reduce the molecular O2 to superoxide (O2
•−) at CB:

Photo-catalyst + O2 + e− → Photo-catalyst + O2
•

O2
•− + H+ → HO2

•

Formation of H2O2 followed by further reduction:

2HO2
•− → H2O2 + O2

H2O2 + e− → OH− + OH•

The degradation of hazardous methylene blue dye (HMBD) through direct oxidation
reactions on the surface of photo-catalyst gives the oxidized products:

OH• + HMBD→ HMBD• + H2O
HMBD + h+ → HMBD+• (degraded products, i.e., NH4

+, H2O, CO2 etc.)

Photo-catalytic activities of the ZnWO4-NPs@rGO nanocomposites were examined
by degradation of an HMBD solution under visible-light irradiation at a pH of ~7, and
the photo-catalytic degradation data were monitored at the maximum absorption peak
(λmax) of ~662 nm by a UV–Vis spectrophotometer. The absorption peak intensities were
reduced with time under visible-light irradiations (Figure 6b). The decremental responses in
absorption peak intensities of the HMBD solution demonstrates the degradation of HMBD
on the surface of the ZnWO4-NPs@rGO nanocomposites. Photo-catalytic efficiencies of
the ZnWO4-NPs@rGO nanocomposites acting as photo-catalysts were estimated using
the given formula (η = [1−(Ct/C0)] × 100%), where ‘C0’ and ‘Ct’ represent the initial
concentration of the HMBD solution, and the concentration after time ‘t’, respectively. The
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ZnWO4-NPs@rGO nanocomposites degraded ~98% of the HMBD solution, and almost
decolorized the solution in 120 min, while ~52% of HMBD was degraded by pure ZnWO4-
NPs in the same time (i.e., 120 min) as shown in Figure 6c. Figure 6d shows a linear plot of
the photo-catalytic efficiencies with time vs. ln(C0/Ct). The linear plot shows the pseudo
first-order kinetic behavior of the photo-catalytic reactions. The rate constant and R2 values
were found to be ~0.016 m−1 and ~0.9833, respectively. The photo-catalytic degradations
of HMBD were reported to be ~90%, 70%, and 30% with the ZnWO4, CuWO4, and CoWO4
photo-catalysts, respectively, in 120 min [45]. WO3 nanoparticles were also used as photo-
catalysts in the degradation of HMBD, and the degradation of the dye was reported to be
~20% in 160 min [46]. Recently, ZnWO4 nanostructures were significantly used as photo-
catalysts in the photo-catalytic degradation of an HMBD solution (i.e., ~85% degradation in
3 h) [1]. Hence, existing work reveals the enhanced photo-catalytic performance of ZnWO4-
NPs@rGO nanocomposites in the degradation of HMBD solutions under visible-light
irradiations. An ESI-MS spectrometric study of the degraded samples was also undertaken
to support our conclusions regarding the photocatalytic degradation reactions of methylene
blue dye. Figure 7 shows the ESI-MS spectra of the HMBD solution before and after
photo-catalytic degradation. The molecular ion peak of methylene blue dye was reported
previously at the m/z peak position of 284 before degradation [2,47]. No spectral line was
detected in the mass spectrometric spectrum at the m/z position of 284 after photocatalytic
degradation of methylene blue dye. These results indicate that the dye had been oxidized
into various intermediates or fragments (i.e., organic molecules), as the spectral lines
appeared at various m/z values in the spectrum. This is noteworthy as the intermediates,
or fragments of the dye could be generated by the attack of free radicals (i.e., OH• and
O2
•−) on dye molecules under visible-light irradiations. The intermediates, or fragments,

can further degrade into inorganic minerals under longer irradiation times, as also reported
elsewhere [48]. Recycling of the ZnWO4-NPs@rGO photo-catalysts is one of the important
concerns for industrial applications. The recycled photocatalytic efficiencies of the ZnWO4-
NPs@rGO nanocomposites were also examined for eight consecutive cycles under visible-
light irradiation. ZnWO4-NPs@rGO nanocomposites show excellent recycled efficiencies
for the photo-catalytic degradation of HMBD solutions. We found that regenerated ZnWO4-
NPs@rGO photo-catalysts degraded the HMBD solution efficiently for up to eight cycles
(Figure 8). Note that the ZnWO4-NPs@rGO photo-catalysts were washed with deionized
water several times after each cycle, and then used again for the next cycle repeatedly. Based
on the current results, ZnWO4-NPs@rGO nanocomposites work as superior photo-catalysts
in water purification applications for environmental remediation.
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4. Conclusions

Hydrothermally synthesized ZnWO4-NPs@rGO nanocomposites were shown to have
superior photo-catalytic activities over pure ZnWO4 nanoparticles. The photo-catalytic
activities of ZnWO4-NPs@rGO nanocomposites for the degradation of HMBD showed
excellent performances with ~98% dye degradation, which is far better than that of pure
ZnWO4 photo-catalysts (~53% dye degradation), in 120 min. Hence, ZnWO4-NPs@rGO
nanocomposites can be considered as significant photo-catalysts for environmental remedi-
ation and energy applications.
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