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Abstract: Titanium dioxide (TiO2) is widely used, studied, and synthesized using different method-
ologies. By a modification of the material, it can be applied to wastewater treatment. A combined
sputtering-laser ablation setup was used to deposit TiO2 thin films modified, individually and si-
multaneously, with gold (Au) and silver (Ag). To investigate the effect of the metal incorporation
in titanium and its impact on the photocatalytic activity, with dye discoloration as a pollutant com-
pound model, the deposited films were characterized by UV–Vis, photoluminescence, and Raman
spectroscopies, as well as by parallel beam X-ray diffraction. The results showed that films with
different Au and Ag loads, and an 18 nm average crystallite size, were obtained. These metals have
an essential effect on the deposited film’s compositional, structural, and optical properties, directly
reflected in its photocatalytic activity. The photocatalytic test results using UV-Vis showed that, after
1 h of applying a 4.8 V electric voltage, a discoloration of up to 80% of malachite green (MG) was
achieved, using ultraviolet (UV) light.

Keywords: sputtering; laser ablation; thins films; titanium oxide; photo-electrocatalysis

1. Introduction

The preparation of thin films using plasma-based deposition systems represents an
innovative route to prepare materials on a nanometric scale, with potential applications
in different scientific research fields, such as renewable energy, photocatalysis, and water
treatment [1,2]. Plasmas produced by laser ablation and magnetron sputtering have been
widely used for thin film deposition, using different experimental setups. Nanomaterials,
including thin films, have been studied in recent years because of their properties, which
can differ significantly from the same material’s properties in a bulk form. It is possible
to prepare different thin films with thicknesses from a few, to hundreds, of nanometers
by varying the deposition parameters. These techniques, based on the use of plasmas in
some cases, have distinctive characteristic; for example, laser ablation has the advantage
of congruent transfer, with which it is not necessary to use other reagents or chemical
elements to obtain complex oxides with more than two cations in thin film form. On the
other hand, the main advantages of the sputtering technique are high deposition rates,
good uniformity, and easy control of the properties of the deposited films [3].

TiO2 has been widely applied as a photocatalyst to mineralize non-biodegradable and
recalcitrant chemical compounds into CO2 and water under UV-light irradiation [4]. This
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semiconductor has been used for nanopowders, nanorods, nanotubes, and in nanocompos-
ites. It is worth mentioning that having the photocatalyst supported on a suitable surface
avoids any subsequent separation process in the reaction system [5]. TiO2 is a semiconduc-
tor that absorbs electromagnetic radiation in the UV region (e.g., <387 nm for the anatase
phase), is amphoteric, and chemically stable [6]. It is widely used as a photocatalyst, due to
its optical and electronic properties, relatively low cost, and low toxicity [7,8]. The anatase
crystalline phase of TiO2 exhibits photocatalytic activity; however, this is limited due to
its low efficiency in the charge separation process when illuminated with visible light.
Attempts to extend the photocatalytic activity of titanium oxide towards the visible region
of the electromagnetic spectrum have been made by substituting Ti4+ in the TiO2 lattice
and incorporating metal ions as dopants, such as gold (Au), silver (Ag), platinum (Pt), and
palladium (Pd) [9–13]. In addition, the combination of photocatalytic processes with the
electrochemical ones, known as photo-electrocatalysis (PEC) [14], has been experimented
with. In a PEC process the semiconductor is used as a photoanode, which is irradiated
with light and simultaneously subjected to an external electric potential; in this way it is
possible to induce charge separation of the electron/hole pairs (e−/h+), improving the
catalytic process.

TiO2 thin films grown using different deposition techniques, including thermal evap-
oration, sputtering, sol-gel, electrodeposition, chemical evaporation, and pulsed laser
deposition, have been successfully obtained [3,15–21]. Laser ablation and magnetron sput-
tering techniques has been studied separately, as independent techniques to synthesize thin
films of oxides [3,22–24]. Their combination of producing thin films by sputtering and their
modification, by adding other elements such as metals through laser ablation, allows taking
advantage of the intrinsic characteristics and advantages of these techniques. The use of
hybrid configurations, in which the deposited material is formed by two independent
plasmas produced from different targets, allows the possibility of modifying the plasma
parameters independently, in a controlled manner [3]. Particularly, TiO2 thin films modified
with metals, non-metals, and coupled with other oxides in a controlled manner have been
considered good alternatives for developing high-efficiency photocatalysts, with some key
advantages, such as efficient charge separation and bandgap narrowing, thus, improving
their photocatalytic performance using solar light [25]. Additionally, the combination of a
noble metal with TiO2 forms a Schottky barrier at the metal–semiconductor interface that
works as an electron scavenger, reducing the photogenerated charge carrier recombination
and consequently increasing the photocatalytic response [26].

Different studies have been reported successfully using such combinations, including
TiO2 based deposits [21]; TiC-Ag composites [27]; Co:TiO2 and Bi:TiO2 [3,28]; V2O5:Ag [29,30],
for diverse applications. This research work aimed to use a hybrid deposition configuration
by combining a sputtering plasma with a laser ablation plasma, to prepare and modify
TiO2 thin films with metals, as well as to evaluate their potential photocatalytic activity
in the discoloration of malachite green (MG) dye in electrochemical advanced oxidation
processes (EAOP), such as PEC.

2. Results and Discussion
2.1. Microstructural Characterization

Films with thicknesses around 48.4 ± 9.6 nm (average of seven measurements), as is
shown in Figure 1, were obtained. This proved that the deposited materials consisted of
thin films.

Parallel beam X-ray diffraction experiments were carried out to characterize the crys-
talline phase of the deposited materials. It can be seen in Figure 2 that crystalline materials
were obtained. The diffraction patterns of the samples Au/TiO2 and Ag/TiO2 show the
characteristic diffraction reflections of TiO2 anatase phase at 2θ = 25.3◦, 37.0◦, 38.6◦, 48.1◦,
53.9◦, 62.7◦, (ICDD PDF#71-1166). Only one diffraction peak, attributed to the rutile phase
at 2θ = 27.5◦, (ICDD PDF#75-1754), was found [31,32]. The standard diffractograms cor-
responding to the anatase and rutile crystalline phases of TiO2 are included in Figure 2
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as a reference. The Bragg reflections at 2θ = 26. 6◦ 33.9◦, 52.6◦, 54.6◦, 61.7◦, 65.7◦, 72.3◦,
and 78.9◦ indicate the presence of tetragonal tin oxide, SnO2 (ICDD PDF#46-1088) [33–35],
corresponding to the ITO substrate. The peak at 2θ = 37.8◦ indicates the presence of gold
and silver metallic particles (ICDD PDF#65-8601 and 65-8428, respectively) [32,36,37].
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The Williamson–Hall (W–H) method was used to calculate the crystallite size [38,39].
Figure 3 shows graphs of βCosθ vs. Sinθ obtained by applying the proposed method. The
average values of the Au, Ag, and Au-Ag crystallite size, determined from the intercept
values (Kλ/D), were 20, 17, and 17 nm, respectively.
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Figure 3. W–H analysis of TiO2 metal-modified thin films (a) Au, (b) Ag, and (c) Au-Ag.

Figure 4 shows the Raman spectra obtained for the different samples. In all cases vibra-
tional features at 143.3 cm−1 (Eg), 196.3 cm−1 (Eg), 397.1 cm−1 (B1g), 517.4 cm−1 (A1g + B1g),
and 638.6 cm−1 (Eg), characteristic of the TiO2 anatase crystalline, were observed. No
vibrational modes due to the rutile phase were detected [40,41].
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Figure 4. Raman spectra of TiO2 Au, Ag, and Au-Ag modified thin films.

Figure 5 shows the vibrational mode corresponding to 517.4 cm−1 (A1g + B1g). It
presents a clear broadening of the signal between 520 and 560 cm−1; previous studies
attributed the presence of this signal (Figure 5b,c) to the presence of metallic gold on the
surface of the thin film [21,41]. In the case of the film with silver, the signal broadening was
lower than the corresponding signal of the films with Au (Figure 5a).
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Figure 5. Eg Vibrational mode of TiO2 in anatase phase at 537 cm−1 for (a) Ag, (b) Au and (c) AuAg
modified thin films.

2.2. Optical Characterization

To determine the bandgap of the thin films and to know the nature of the metallic
particles, UV-Vis measurements in the absorbance and transmittance modes were carried
out. Figure 6a shows the absorbance spectra corresponding to the different thin films.
For the samples Au/TiO2 and Ag/TiO2, the presence of absorbance bands peaking at
557 nm and 441 nm is clearly observed, attributed to the surface resonance plasmons of
Au and Ag, and indicating the presence of nanoparticles with spherical shapes and sizes
in the nanometer scale; ranging 15–20 nm for Ag and 20–30 nm for Au. The spectrum
corresponding to the sample with Au-Ag does not show defined absorbance band peaks,
probably due to the lack of spherical nanoparticle formation [11,32,42,43].
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Figure 6b shows the transmittance spectra of the thin films. A red shift of the absorp-
tion edge for the Au-Ag/TiO2 is observed. The bandgap was determined using the Tauc
method, assuming indirect transitions due to the nature of the semiconductor (Figure 6c);
this was plotted (αhv)1/2 as a function of the photon energy. Eg values were obtained by a
linear fit of the linear portion of the curve, determining its intersection with the photon
energy axis as the quotient of the intercept to the slope. The obtained Eg values were
3.72 eV for the thin film with Au, and 3.76 eV for the film with Ag. The higher bandgap
values of metal-modified TiO2 thin films compared to the bulk TiO2 bandgap value can be
attributed to the thickness of the thin film, which modifies the optical properties, and it is
not possible to observe well-defined interference patterns in the transmittance spectrum
(Figure 6b); therefore, the thin film behaves as a kind of electrical insulator. Consequently,
the photon effect over the surface causes a bandgap shift, requiring higher energy to be
activated [21].

The presence of Ag and Au in the form of nanoparticles was corroborated through
transmission electron microscopy (TEM); due to the joint between the thin film and the
substrate meaning they could not be analyzed together, the Ag and Au samples were
deposited directly on copper TEM grids under the same laser ablation conditions men-
tioned in the experimental section. Figure 7a corresponds to the Ag nanoparticles, showing
quasi-spherical shapes with an average particle size close to 13 nm. Figure 7b corresponds
to the Au nanoparticles with a completely different shape, which could have been formed
by quasi-spherical particles forming linear agglomerates. The observed sizes are in good
agreement with the wavelength position of the surface plasmons discussed in the UV-Vis
results (Figure 6a). Therefore, it can be inferred that the thermal process did not modify the
metallic particles deposited by ablation over the thin films [32,43,44].

Figure 8 shows the photoluminescence emission spectra obtained for the thin films
prepared in this work. In general terms, it is observed that the spectra have the same
shape and broadening for each thin film. Four major features can be distinguished in these
spectra. The shoulder in the wavelength interval from 375 to 400 nm (3.3 to 3.1 eV) may
be attributed to band to band transitions related directly to the bandgap [2,45]. On the
other hand, the signal between 430 and 450 nm (2.9 to 2.7 eV) may be associated with the
production of excitons (electron-hole pairs) generated by the excitation energy.
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Figure 8. Photoluminescence spectra of TiO2 films with Ag, Au, and Au-Ag nanoparticles.

Finally, the emissions observed in the wavelength interval between 450–475 nm (2.7
to 2.6 eV) and 550–575 nm (2.2 to 2.1 eV) can be attributed to the surface states of oxygen
vacancies in TiO2 in its anatase phase [21,46]. Additionally, the differences in emission
intensity reveals that metal modification changes the recombination rate of the electron-
hole pairs. The thin film with Au shows a lower recombination rate, while the thin film
with the simultaneous presence of Au and Ag, seems to favor the recombination process.

2.3. Photoelectrocatalytic Experiments

Figure 9 shows the absorbance spectrum corresponding to the malachite green dye at
50 mg/L concentration. The bands peaking at 617, 427, and 317 nm are characteristic of
malachite green dye [47]. The band responsible for the color is the most intense, located at
617 nm in the spectrum [48,49].
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Figure 9. Absorbance spectrum of malachite green dye.

Figure 10 shows the obtained results from the electro and photo-electrocatalytic
experiments for each of the thin films (photoanodes). The experiments were carried
out with and without light irradiation (PEC and EC, respectively). The degradation of
malachite green dye using the three photoanodes was satisfactory. In the EC experiments
the lowest color removal, close to 45%, was obtained with the Ag/TiO2 film; followed by
the Au/TiO2 film, with 60% of color removal; the maximum of 70% being obtained with the
Ag-Au/TiO2 film in a total reaction time of 60 min. Concerning the photo-electrocatalytic
experiment (PEC), the Ag/TiO2 and Ag-Au/TiO2 films reached approximately the same
discoloration degree, close to 75%, while the thin film of TiO2-Au achieved a maximum
degradation of 84% at the same time. These results for the percentage of MG discoloration
are directly related to the obtained PL results, because the thin film with Au showed a
lower recombination rate of electron-hole pairs, contributing to the TiO2 mechanism for
organic molecule degradation [4,21,29].
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Figure 10. Comparison of color removal of malachite green dye solution at pH = 1 by the photoanodes
in the EC and PEC tests.
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The results showed that an electric voltage applied directly affects the discoloration
process when using a semiconductor as anode [21,31], due to the fact that in the photolysis
process no discoloration of the solution was observed, as expected. On the other hand,
the irradiation with UV light facilitated the EC experiments, by contributing to the color
disappearance process, in which, as a result, better discoloration was obtained than when
the experiments were performed without the application of UV light.

The three bands corresponding to malachite green at 617, 427, and 317 nm where
noticeably diminished in their intensity with the electric voltage (Figure 11a) and, in
the presence of electromagnetic radiation in the form of ultraviolet light combined with
the electric voltage (Figure 11b), with the three photoanodes. More kinetic studies and
measurements of the mineralization of MG are needed to confirm if these photoanodes
are capable of achieving complete CO2 and H2O formation from the dye MG molecules.
Nevertheless, as can be observed from the discoloration test, the Au-TiO2 photoanode
showed remarkable properties and can be considered a functional photoanode for advanced
electrochemical oxidation processes, leading the prospect of having a novel formation route
for this supported catalyst.
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Figure 11. Absorbance spectra of MG dye using the Ag-TiO2 photoanode through (a) EC and (b) PEC processes at different
reaction times.

The data shown in Figure 12 were used to plot ln (A/A0) vs. time. A pseudo-first-
order kinetic model was fit to these plots [50]. Figure 12a,b show good linear fits for all
samples, with constant rates from 0.00987 to 0.2595 min−1 (Table 1). For the EC experiments
it can be seen that the load of silver and gold in the Ag-Au-TiO2 photoanode facilitated
the discoloration process compared to the single metal TiO2 photoanode modification.
Nevertheless, for the PEC experiments, the Au-TiO2 photoanode result in the highest
kinetic reaction constant (0.02867 cm−1), but like the rest of the photoanode materials,
further studies regarding the electric properties of the photoanodes are proposed, to fully
understand how the incorporation of a single or combined metallic nanoparticle in the
TiO2 thin film could modify the donor concentration, due to the oxygen vacancies, or the
interfacial electron transfer [51].

Table 1. Rate constant (KObs) values for the different photoanodes applied to EC and PEC processes.

Sample KObs (min−1) Sample KObs (min−1)

TiO2-Ag (EC) 0.00987 TiO2-Ag (PEC) 0.025
TiO2-Au (EC) 0.01756 TiO2-Au (PEC) 0.02867

TiO2-Ag-Au (EC) 0.02124 TiO2-Ag-Au (PEC) 0.02595
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The degree of electrochemical enhancement (E) and the degree of process synergy (S)
were calculated using Equations (1) and (2), as reported by [52,53].

E = (KPEC − KPC)/KPEC (1)

S = (KPEC − (KPC + KEO))/KPEC (2)

where KPEC, KEO, and KPC are the apparent rate constants for the photo-electrocatalytic,
electrochemical, and photocatalytic degradation of MG. For all photoanodes, the process
synergy was (S) > 0, confirming that the improved performance obtained with PEC degra-
dation is more than a simple addition of the individual EC and photocatalytic degradation
processes. For Ag-TiO2, Au-TiO2, and Ag-Au-TiO2 thin films, the S values were 0.01, 0.39,
and 0.18, respectively. The calculated E values were 40% for the Ag-TiO2 film, whereas
for the Au-TiO2 and Ag-TiO2 in both cases they were >90%. These results are in good
agreement with those observed in the kinetic analysis and discoloration tests.

To the best of our knowledge, there has been no previous work that used a hybrid
system of laser ablation and sputtering for the formation of thin films of TiO2 modified
with noble metals such as Au and Ag. The use of the proposed hybrid deposition system
takes advantage of the qualities of each of these techniques for the formation of thin films,
with potential applications in photo-electrocatalytic processes (PEC), as revealed in the
results presented in this work.

There have been several different works where thin films were obtained with similar
methods and used in PEC processes. Nevertheless, only the photocatalytic process was
evaluated, with high-power lamps (compared to that of the present work), wavelengths
close to the UVC range (greater than the range handled in this work), a greater electrode
work area, and also with relatively low concentrations of pollutant in the water (up to
a couple of orders of magnitudes less than in the present work) and longer reaction
times [2,3,21,54–57].

3. Materials and Methods
3.1. Thin Films Preparation

TiO2 thin films deposited by magnetron sputtering were modified by the incorporation
of Au and Ag, using the laser ablation technique. This experimental setup had been used
in previous works with interesting results [1,2,21]. The base pressure was approximately
5 × 10−5 Torr, and the working pressure was set at 2 × 10−2 Torr of argon of high purity.
A titanium target (purity 99.99%, Kurt J. Lesker Company, Jefferson Hills, PA, USA 2”
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diameter and 0.25” thickness, was sputtered at a power of 150 W. Films were deposited
on ITO (indium and tin oxide) substrates (1 × 1 inch, prepared using a ITO target, purity
99.99%, Kurt J. Lesker Company, Jefferson Hills, PA, USA) kept at room temperature. The
target to substrate distance was 12.5 cm, and the deposition time was 30 min.

Figure 13 shows schematically the setup used to deposit the metals by laser ablation.
In this case, Au and Ag targets (high purity, 99.99%, Kurt J. Lesker Company, Jefferson
Hills, PA, USA), 1” diameter and 0.25” thick, were used. The third harmonic (355 nm) of
a Nd:YAG laser (Q-Smart 850, Quantel, Lannion, France) was used as an energy source,
focusing the laser beam using a 30-cm focal length plano-convex lens. The target to
substrate distance was 7 cm. The target was rotated with an electric motor to avoid
depletion of material at any given spot. After deposition of the Ti film, the vacuum chamber
was evacuated to the base pressure to incorporate simultaneously the gold (Au/TiO2),
silver (Ag/TiO2) and Au-Ag (Au-Ag/TiO2) nanoparticles on the Ti film. The ablation
conditions were energy per laser pulse of 18 mJ (1000 pulses) for gold and 25 mJ (7000
pulses) for silver. After deposition, the films were subjected to a thermal treatment at 450
◦C for two hours, to promote the growth of the anatase crystalline phase through thermal
oxidation. We expected to obtain the anatase phase after the thermal treatment, which is
well known as a catalyst for reduction–oxidation reactions for organic chemical compound
removal.
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3.2. Thin Films Characterization

The microstructure of the films was studied using Raman spectroscopy; the spectra
were obtained using a micro-Raman system (LabRam HR 800, Horiba Jobin Yvon, France),
equipped with a confocal microscope (Olympus BX40, Olympus Corporation, Pennsyl-
vania, USA); the samples were analyzed using a wavelength of 532 nm at a power close
to 1 mW. The crystalline structure of the deposited thin films was determined by a X-ray
diffraction system (Rigaku Ultima IV Diffractometer, Rigaku Corporation, Texas, USA),
with the Cu Kα radiation line (λk = 1.5406 Å) operated at 40 kV and 30 mA. The diffraction
patterns were recorded using a parallel beam in a 2θ configuration. The incident parallel
beam was fixed at 2◦ from the sample surface, acquiring data from 2θ = 5 to 80◦ with
a Solid-State Detector (D/teX-ULTRA, Rigaku Corporation, Texas, USA) at a speed of
1◦/min and a sampling time of 0.02 sec. The photoluminescence properties of the thin films
were studied using PL spectroscopy, using a spectrofluorometer (FluoroMax 4, Horiba
Jobyn Ivon, France) equipped with a 150 W Xenon lamp as excitation source. The optical
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absorbance and transmittance of the thin films were measured with a Spectrophotometer
(Lambda 35, PerkinElmer, Waltham, MA, USA), from 200 to 800 nm.

3.3. Photoanodes Preparation and Photoelectrocatalytic Experiments

Photoanodes were formed by cutting a piece of the thin film (1 cm2) and attaching it
to a copper wire, using silver paint as electrical contact. The electrical connection between
the film and the copper wire was coated with epoxy resin to avoid the copper wire from
reacting with the solution inside the photoelectrochemical cell. The photo-electrocatalytic
experiments were carried out in a photoelectrochemical cell, which consisted of a Teflon
container of 15 cm3 with a quartz window to allow the UV light (404 nm) to focus directly
on the photoanode. During the experiments, air bubbling flow (1 L/min) and constant
stirring were used. Graphite was used as cathode for the experiments.

The photo-electrocatalytic activity of the thin films (Au/TiO2, Ag/TiO2, and Au-
Ag/TiO2) was evaluated by monitoring the discoloration of malachite green (MG) dye
at different reaction times (5, 10, 15, 20, 30, and 60 min). A MG solution of 50 mg/L was
prepared with Na2SO4 (0.5 mM) as electrolyte in an acid environment (pH = 1 adjusted
with H2SO4, 95–98% JT Baker). The discoloration was evaluated by applying an electric
voltage of 4.8 V with a Triple output DC power supply 0–6 V, 5A/0 ± 25 V,1A (Keysight
E3631A, Keysight Technologies, California, USA) in the presence and absence of light using
a UV-lamp (365 nm), and with a distance between the window cell and the light source
of 10 cm [21,58]. Photolysis and photocatalytic reactions were performed to compare the
discoloration obtained for the electro- and photo-electrocatalytic systems. Dye degradation
was followed by a decrease of the characteristic MG absorption band at 616 nm, as a
function of the reaction time.

4. Conclusions

Using an alternative deposition method, combining two different plasma deposition
techniques, it was possible to obtain semiconductor thin films based on TiO2 modified with
Au, Ag, and Au-Ag, with potential applications in advanced electrochemical oxidation pro-
cesses (EAOP), to remove non-biodegradable and emerging organic pollutant compounds.
The physical and chemical characterization of the prepared materials showed a crystalline
material with a suitable phase to carry out the photocatalysis process. The UV-Vis results
and TEM images confirmed the presence of metallic Au and Ag nanoparticles on the TiO2
thin films, with sizes close to 13 nm for the Ag particles. The photoluminescence spec-
troscopy results revealed different emission bands corresponding to exciton generation, the
oxygen surface states, and the bandgap in the anatase phase in the thin film form. In the
malachite green dye photo-electrocatalysis tests, it was possible to achieve a maximum 84%
color removal after 60 min under UV radiation, applying a 4.8 V electric potential. From the
kinetic analysis and the calculation of the degree of electrochemical enhancement (E) and
the degree of process synergy (S), it was possible to assess the color removal results and to
set a precedent for subsequent studies regarding the electronic properties of thin films.

Furthermore, as future work, we plan to study the mineralization and degradation of
the MG molecule, comparing the photo-electrocatalytic process with other EAOP, such as
the electro-Fenton (EF) and photoelectro-Fenton (PEF) methods.
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