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Abstract: Hydrodesulfurization (HDS) is a widely used process currently employed in petroleum
refineries to eliminate organosulfur compounds in fuels. The current hydrotreating process struggles
to remove organosulfur compounds with a steric hindrance due to the electronic nature of the current
catalysts employed. In this work, the effects of adding chelating ligands such as ethylenediaminete-
traacetic acid (EDTA), citric acid (CA) and acetic acid (AA) to rhodium (Rh) and active molybdenum
(Mo) species for dibenzothiophene (DBT) HDS catalytic activity was evaluated. HDS activities
followed the order of RhMo/G-Al2O3 (88%) > RhMo-AA/G-Al2O3 (73%) > RhMo-CA/G-Al2O3 (72%)
> RhMo-EDTA/G-Al2O3 (68%). The observed trend was attributed to the different chelating ligands
with varying electronic properties, thus influencing the metal–support interaction and the favorable
reduction of the Mo species. RhMo/G-Al2O3 offered the highest HDS activity due to its (i) lower
metal–support interaction energy, as observed from the RhMo/G-Al2O3 band gap of 3.779 eV and
the slight shift toward the lower BE of Mo 3d, (ii) increased Mo-O-Mo species (NMo-O-Mo ~1.975)
and (iii) better sulfidation of Rh and MoO in RhMo/G-Al2O3 compared to the chelated catalysts.
The obtained data provides that HDS catalytic activity was mainly driven by the structural nature
of the RhMo-based catalyst, which influences the formation of more active sites that can enhance
the HDS activity.

Keywords: hydrodesulfurization (HDS); chelating ligands; molybdenum disulfide (MoS2); diben-
zothiophene; RhMo-(L)-γ-Al2O3

1. Introduction

Deleterious refractory organosulfur compounds in fuel oils have contributed to SOx
emissions [1,2]. Therefore, it has become very important to remove these compounds due
to the introduction of the strict environmental regulations of the Euro V limits of 10 ppmS
in diesel fuels [1,2].

Hydrodesulfurization (HDS) is the most commonly used technology to produce clean
fuels by employing hydrotreating catalysts, mainly from Co(Ni)/Mo oxides supported
on alumina [3–11]. The production of ultra-low fuels using the HDS process at present
requires extreme and expensive operating conditions, viz., high temperatures, hydrogen
and highly active catalysts.

However, other methods of fuel desulfurization have been reported, and these tech-
niques are bio-desulfurization (BDS), oxidative-desulfurization (ODS), adsorptive and
extractive desulfurization (ADS and EDS) [1,2]. Bio-desulfurization (BDS), which involves
the use of sulfur-consuming bacteria to desulfurize fuels, is nonetheless limited in meeting
very deep desulfurization, as 50–200 ppmS have been reported [1]. The ODS process of
recalcitrant sulfur-containing compounds such as dibenzothiophene have been reported
to produce nonessential side products during oxidation [2]. Adsorptive and extractive
desulfurization (ADS and EDS) is a process which employs the use of use of solid sorbents
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and extraction solvents for removing the recalcitrant sulfur-containing compounds, respec-
tively. Adsorbents have been limited in organosulfur compound selectivity, as well as low
adsorption capacity, while the organosulfur extraction solvents such as dimethylsulfoxide
(DMSO) and N,N-dimethylformamide (DMF) have high boiling points, and hence the
solvent recovery may be impossible [1,2]. The use of ODS, BDS, ADS and EDS desul-
furization techniques are currently limited, as they may pose problems for larger scale
applications [1,2]. As a result, more attention is required to improve the HDS system by
redesigning the current HDS catalysts’ inadequacies and by introducing chelating ligands
and precious metals (PGMs), which could drive HDS under mild conditions [3–26].

Several transition metal sulfides have been reported as possible candidates for the
HDS catalysts [15–30]. Rhodium-based catalysts have exhibited promising properties,
hence showing great potential as an HDS catalyst. A few HDS studies of dibenzothio-
phene (DBT) over Rh-based catalysts have been reported. Lee et al. [27] reported that
the RhCs/Al2O3 catalyst was more active than a conventional CoMo/Al2O3 catalyst for
hydrotreating dibenzothiophene. RhCs/Al2O3-catalyzed DBT hydrodesulfurization was
mainly controlled by the DDS (direct desulfurization) mechanism. Similarly, a synergetic
effect was reported with the RhMo/G-Al2O3 catalysts, suggesting that Rh and Mo interact
when employed for DBT HDS [28]. While there are reports on the use of RhMo-based
catalysts [27,28], studies with regards to the influence of chelating ligands, especially acetic
acid (AA), on hydrotreating activity is lacking. Chelating ligands are molecules with two
or more donor atoms available to bind a metal cation, and they have been reported to
improve hydrotreating activity [15,17,29–31].

The scientific novelty of the research is to arrive at a fundamental understanding of the
nature of the sulfur tolerance of the supported Rh-Mo catalysts (chelated and unchelated
RhMoS/G-Al2O3), and to offer clarification of the synergetic effect of chelating ligands such
as ethylenediaminetetraacetic acid (EDTA), citric acid (CA) and acetic acid (AA) on the indi-
vidual metal, the Rh and the Mo components in the catalytic hydrodesulfurization of DBT.
The originality of the research was in the design and the application of the nanostructured
RhMo catalysts in the presence of the chelating ligands so to ensure the uniform compo-
sition of the catalytic metal species for ease of physico-chemical characterization and the
fundamental understanding of the structure-activity relationships. In this study, the HDS
catalytic activity of the RhMo-based catalysts were carried out on dibenzothiophene (DBT).
The as-synthesized catalysts were characterized using powder X-ray diffraction (PXRD),
ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform in-
frared spectroscopy (FT-IR), scanning electron microscope (SEM), energy-dispersive X-ray
spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), transmission electron micro-
scopes (TEM) and thermogravimetric analysis (TGA)—differential scanning calorimetry
(DSC) (TGA-DSC) to determine the catalysts’ bulk chemical compositions, morphologies
and thermal stability.

The main findings are as follows:
(1) The prepared catalysts presented band gaps of 3.779 eV (RhMo/G-Al2O3), 4.341 eV

(RhMo-EDTA/G-Al2O3), 4.394 eV (RhMo-AA/G-Al2O3) and 4.478 eV (RhMo-CA/G-Al2O3),
respectively.

(2) The introduction of different chelating ligands increases the metal–support interac-
tion, which prevents the formation of easily reduced Mo species.

(3) The HDS activity decreased in the following order: RhMo/G-Al2O3 (88%) > RhMo-
AA/G-Al2O3 (73%) > RhMo-CA/G-Al2O3 (72%) > RhMo-EDTA/G-Al2O3 (68%).

(4) The observed catalytic results were ascribed to the introduction of different ligands,
thus increasing the metal–support interaction and increasing the e-charge transfer from
the valance band Rh 4d orbital to the conduction band of the Mo species. This led to the
excessive weakening of the Mo-S bond by inhibiting the absorption of sulfur (S) compound
(DBT) on the active sites, hence leading to a reduced activity.
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2. Results and Discussion
2.1. UV-Vis Spectroscopy

UV-vis spectroscopy was applied to study RhMo/γ-Al2O3, RhMo-EDTA/γ-Al2O3
and RhMo-CA/γ-Al2O3, and are shown in Figure 1. As shown in Figure 1, the UV-vis
spectra recorded for RhMo/γ-Al2O3 and RhMo(x)/γ-Al2O3 (x = EDTA, CA and AA)
exhibited a broad absorption band at 210–290 nm and were assigned to the O2−→Mo6+

ligand–metal charge transfer transitions in an octahedral environment [32]. A weak band
observed in the region of 340–360 nm with RhMo/γ-Al2O3 was associated with Rh(III)
oxides, and another weak broad band at a visible region displayed at 452 nm was due to
the presence of Rh(III) in oxide form [33]. A weak absorbance at 530 nm provided strong
evidence of well-dispersed octahedral Rh oxide species [34,35], which are known to be
easily reduced and sulfided [36–38]. A band around 550–680 nm on RhMo/γ-Al2O3 was
due to Rh3+ interacting with γ-Al2O3 support to form a rhodium aluminate complex [32].
With the addition of the ligands, the absorbance of Rh3+ shifts, as do the weak broad
bands around 430 nm, 410–470 nm and 420 nm associated with the metal to ligand transfer,
and Rh-O species for RhMo-AA/γ-Al2O3, RhMo-EDTA/γ-Al2O3 and RhMo-CA/γ-Al2O3
were observed. The observed shifts to the lower wavelength suggested that the Rh–ligand
complexes inhibit the formation of the Rh-γ-Al2O3 phase [32,39]. The shift to a lower
wavelength also indicated a decreased agglomeration of the Mo species [32,40,41].
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Figure 1. UV-vis spectra of RhMo/Al2O3 and RhMo-x/γ-Al2O3 (x = EDTA, AA, CA) catalysts.

2.2. Band Gaps of RhMo Catalysts

The Eg value obtained from the Tauc and Davis–Mott Equation (1) demonstrates
the dispersion of the Mo species. The band gaps for RhMo/γ-Al2O3, RhMo-EDTA/γ-
Al2O3, RhMo-CA/γ-Al2O3 and RhMo-AA/Al2O3 were determined and are displayed in
Figure S1. According to the literature, the higher the Eg value, the more improved the
dispersion of the Mo species [42]. The obtained band gap for RhMo/Al2O3 was 3.779 eV
(Figure S1), the Eg value obtained for RhMo-EDTA/γ-Al2O3 was 4.341 eV, the Eg value
RhMo-AA/γ-Al2O3 was Eg = 4.394 eV and the Eg value for RhMo-CA/γ-Al2O3 was
4.478 eV. The RhMo-CA/γ-Al2O3 catalyst exhibited the highest Eg value, which implies a
decrease in the average particle size and an increased charge transfer [41–44].

(αhν)
1
n = A

(
hν− Eg

)
(1)

where α is the absorption coefficient, hν is the incident photon energy, A is the propor-
tionality constant, Eg is the optical band gap energy and n represents the nature of the
electronic transition (n = 1/2 for direct transition).
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The bridging Mo-O-Mo bonds, which determine the degree of polymerization/aggregation
of Mo(VI), were determined from the Eg values by using the formula (NMo-O-Mo = 11.8 − 26Eg)
presented by Tian et al. (2010) [42]. It was established that the higher Eg values of the catalysts
corresponded to the lower average number (of covalent bridging of the central Mo6+ cation)
nearest to the Mo6+ neighbours (Table 1), thus confirming the Mo(VI) cation structural varia-
tions in the catalysts. RhMo/γ-Al2O3 was reported to offer more polymeric/aggregated Mo
species compared to the chelated catalysts (RhMo-AA/γ-Al2O3, RhMo-EDTA/γ-Al2O3 and
RhMo-CA/γ-Al2O3).

Table 1. Band gap energy and average number of nearest Mo6+ neighbors (NMo-O-Mo) in deposited
clusters, as determined from UV spectra of the oxide RhMo catalysts.

Catalyst Eg Values NMo-O-Mo

RhMo/γ-Al2O3 3.779 1.975
RhMo-AA/γ-Al2O3 4.341 0.5134

RhMo-EDTA/γ-Al2O3 4.394 0.3756
RhMo-CA/γ-Al2O3 4.478 0.1572

NMo-O-Mo = 11.8–2.6Eg.

2.3. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR bands at 3600–2800 cm−1 correspond to the OH (from H2O) stretching. At the
region between 550 cm−1, the corresponding band was assigned to the Mo-O-Mo bridge
stretching, while the bands that were found, and the Mo=O stretching, were located at
950 cm−1 [45]. RhMo-EDTA/Al2O3 showed an absorption band at 978 cm−1, which could
be assigned to the Mo-N band [35,45]. At 1588 cm−1, the absorption band could be assigned
to -COO− vibrations with H2O [46] (Figure S2).

2.4. Energy Dispersion Spectroscopy (EDX)

The EDS of the sulfided RhMo/Al2O3, RhMo-EDTA/Al2O3, RhMo-AA/Al2O3 and
RhMo-CA/Al2O3 catalysts confirmed that the catalysts are made up of Rh, Mo, O, S, C
and Al (Figure S3). The peaks at ~2.37, ~2.7, ~2.81 and ~3.28 KeV corresponded to the
theoretical Lα, Kα and Kβ of Rh, respectively. The peaks at ~2.3 and 2.81 KeV corresponded
to the theoretical Lα, Kα and Kβ of Mo, and the O peak was obtained at ~0.5 KeV and
the S peak at ~2.3 KeV. The additional peak at ~1.5 KeV corresponded to Al from the
support, and the presence of carbon (~0.28 KeV) was due to the carbon tape that was used
for the sample analysis [47]. Table 2 illustrates the qualitative atomic percentage of the
present elements for each HDS catalyst. The S/Mo atomic ratio for the catalysts are around
(0.47–4.63) and the amounts of carbon (5.46 ≤ C/Mo ≤ 31.88) are found in all of the MoS2
catalysts. The main source of carbon is most probably the heptane solvent [48,49].

Table 2. Qualitative atomic percentage of Rh, C, O, S and Mo for sulfided HDS catalysts.

Catalysts Atomic Percentage (wt. %) S/Mo C/Mo

C K O K Al K S K Rh L Mo L

RhMo/G-Al2O3 7.97 63.24 26.47 0.68 0.17 1.46 0.47 5.46
RhMo-EDTA/G-Al2O3 10.20 57.52 30.03 1.48 0.44 0.32 4.63 31.88

RhMo-AA/G-Al2O3 9.38 62.61 25.63 1.35 0.19 0.73 1.85 12.85
RhMo-CA/G-Al2O3 12.07 57.56 26.88 1.60 0.94 0.90 1.78 13.41

2.5. X-ray Diffraction (XRD)

The XRD analysis was performed to identify the diffraction phases and dispersion
of the synthesized RhMo/γ-Al2O3 and RhMo-x/γ-Al2O3 (x = EDTA, acetic acid (AA),
citric acid (CA)) catalysts. Figure 2 showed that all of the RhMo catalysts in the oxide
phase had similar diffraction patterns at 2θ = 19.6◦, 32.0◦, 37.6◦, 39.5◦, 45.5◦, 60.9◦ and
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67.0◦, and were assigned to (220), (311), (222), (400), (511) and (440), characteristic of the
γ-Al2O3 face-centered cubic phase, respectively. For the RhMo/G-Al2O3 catalyst, more
patterns were observed at 2θ = 12.1◦, 18.5◦ and 28.5◦, which were due to the orthorhombic
MoO3 crystalline phase [50], and the diffraction pattern at 49.0◦ could be ascribed to
the monoclinic crystalline phase of MoO3. The pattern observed at 2θ = 34.1◦ could be
attributed to Rh2O3 phase, and diffraction patterns at 56.0◦ and 57.8◦ were also observed.
All of the chelated catalysts showed the characteristic reflections of alumina supports and
very weak reflection peaks for RhMo-CA/G-Al2O3, which indicated that the addition of the
chelating agent could promote the redispersion of the bulk MoO3 [40,51,52]. The broadness
and the amorphous nature of the diffraction pattern observed in the chelated catalysts
indicated the absence of crystalline MoO3 (RhMo-CA/G-Al2O3). Sulfided RhMo/G-Al2O3
presented a hexagonal MoS2 phase at 14.8◦, 29.5◦, 33.3◦, 38.5◦ and 60.4◦. According to
the obtained result, it was shown that the addition of the chelating ligands resulted in the
better dispersion of molybdenum oxide [53]. Additional peaks attributed to the rhodium
sulfide phase (Rh2S3 and/or Rh3S4), with characteristic peaks at 2θ = 36–42, were detected
on all the sulfided RhMo-x/G-Al2O3, with RhMo/G-Al2O3 exhibiting more characteristic
peaks compared to RhMo-x/G-Al2O3. The broad diffraction peaks of the sulfided catalysts
(Figure 2b–d) compared to RhMo/G-Al2O3 (Figure 2a) showed bulk and relatively smaller
crystallite sizes. The RhMo catalysts’ crystallite sizes decreased in the order of RhMo/G-
Al2O3 (5.903 nm) > RhMo-CA/G-Al2O3 (5.809 nm) > RhMo-EDTA/G-Al2O3 (5.770 nm) >
RhMo-AA/G-Al2O3 (5.750 nm).
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2.6. XPS Analysis

The XPS survey spectrum of sulfided RhMo/G-Al2O3 and RhMo-EDTA/G-Al2O3 cata-
lysts with the detected species, viz., S 2p, Rh 3d and Mo 3d, are presented in Figures 3 and 4,
respectively. The survey scan spectrum, shown in Figures 3a and 4a, demonstrated the
presence of the key elements, O 1s, S 2p, C 1s, Al 2p and 2s, Rh 3d and Mo 3d in the
catalysts. The highly resolved measurements of these individual elements of O 1s, C 1s,
Al 2p, and Al 2s are demonstrated in Figures S3a–d and S4a–d for the RhMo/G-Al2O3
and RhMo-EDTA/G-Al2O3 catalysts. The binding energies of these elements are shown
in Table 3, and these energies signify the presence of the elements on the catalysts. The
XPS result of the Rh 3d peaks for RhMo/G-Al2O3 showed doublets at the binding energies
of 306.5 and 310.6 eV, and for RhMo-EDTA/G-Al2O3, the Rh 3d binding energies were
obtained at 305.0 and 310.1 eV, respectively [54,55]. Mo 3d showed three characteristic
peaks observed at 226, 230.0, and 233.2 eV for RhMo/G-Al2O3 and two visible peaks at 226
and 230.0 eV for RhMo-EDTA/G-Al2O3, respectively.
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Figure 3. XPS spectra for (a) RhMo/G-Al2O3 survey spectrum with different elemental contributions, (b) S 2p, (c) Rh 3d,
(d) Mo 3d.

Table 3. Binding energies determined in XPS experiments for RhMo/Al2O3 and RhMo-EDTA/G-Al2O3.

Elements (eV) RhMo/G-Al2O3 RhMo-EDTA/G-Al2O3

C 1s 289.5 285.5
O 1s 530.0 529.0

Mo 3d 226.2; 230.0; 233.2 226.0; 230.0
Rh 3d 306.5; 310.6 305.0; 310.1
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Table 3. Cont.

Elements (eV) RhMo/G-Al2O3 RhMo-EDTA/G-Al2O3

S 2p 160.1; 167.0 160.5; 166.1
Al 2p 72.4 72.0
Al 2s 117.0 117.0
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Figure 4. XPS spectra for (a) RhMo-EDTA/G-Al2O3 survey spectrum with different elemental contributions, (b) S 2p,
(c) Rh 3d, (d) Mo 3d.

To investigate the different phases within the samples for Rh 3d and Mo 3d for the sul-
fided RhMo/G-Al2O3 and RhMo-EDTA/G-Al2O3, the spectra were carefully deconvoluted
and the obtained results are presented in Figure 5a–d. The rhodium oxide (Rh2O3) showed
characteristic peaks between 307–310 for Rh 3d5/2, and for Rh 3d3/2 showed characteristic
peaks at a region between 312–315 eV [52,56], and the corresponding results are presented
in Figure 5a,c. The Rh2S3 phase showed a doublet at the binding energies of 307–309.2 and
312.7–314 eV in the sulfided RhMo/G-Al2O3 and RhMo-EDTA/G-Al2O3 samples (Table S2),
corresponding to the Rh 3d5/2 and Rh 3d3/2 states for rhodium sulfide, respectively [54–56].
The Mo 3d was comprised of three main peaks with oxidation states of +V (oxide), +V
(oxysulfide) and +IV (sulfide) [57,58]. Figure 5b,d shows the deconvolution of the Mo
3d spectra. In the case of Mo, its deconvolution consisted of Mo4+ (228.4–229.1 eV, sul-
fide MoS2), Mo5+ (229.7–230.5 eV, oxysulfide MoSxOy) and Mo6+ (232.1–232.7 eV, oxide
MoO3) [59].
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Figure 5. XPS deconvolution of RhMo/G-Al2O3 and RhMo-EDTA/G-Al2O3, where: (a) Rh 3d for RhMo/G-Al2O3; (b) Mo 3d
for RhMo/G-Al2O3; (c) Rh 3d for RhMo-EDTA/G-Al2O3; (d) Mo 3d for RhMo-EDTA/G-Al2O3; (e) S 2p for RhMo/G-Al2O3;
(f) S 2p RhMo-EDTA/G-Al2O3.

The doublet at a binding energy (BE) of (±) 229 eV and (±) 232.1 0.1 eV was attributed
to Mo 3d5/2 and Mo 3d3/2 levels of MoS2 (Mo4+), and the two contributions observed at (±)
230.0 eV and (±) 235.3 0.1 eV were assigned to Mo 3d5/2 and Mo 3d3/2 of Mo oxysulfide
(MoOxSy, Mo5+) [59], while the binding energy of the Mo 3d5/2 component located at
(±) 232.2 0.1 eV was assigned to the Mo6+ (MoOx) species [60], and for the Mo 3d3/2
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energy level, the binding energy was (±) 236.0 eV, respectively [61]. The peak presented
at 226.3 and 226.1 eV was ascribed to the S 2s level of sulfur (Figure 5e,f). The analysis
results, including the detailed binding energies and the sulfidation degree of the Mo species
obtained by the deconvolution, are shown in Table S1, and the different phase compositions
of the catalysts are calculated from the area of the deconvoluted peaks. Figure 5e,f displays
a contribution at 162.1 eV at the lower binding energy of the S 2p peak originating from the
S2− precursor [62], and it was clearly visible in both catalysts. The S 2p region suggests
the existence of S2−, S2

2− and SO4
2− species [63,64]. The peaks at 162.3 and 163.5 eV are

assigned to the S2− in the 2p3/2 and 2p1/2 levels, respectively, in MoS2 [40,51,63,65], and
the characteristic peak in S 2p at 166.7 eV was attributed to SO4

2− [66]. The sulfidation
degree of the Mo species was calculated by the following Formula (2):[

Mo4+
]
(%) =

AMo4+

AMo4+ + AMo5+ + AMo6+
× 100% (2)

where [Mo4+] is the sulfidation degree of the samples, and AMo
4+, AMo

5+ and AMo
6+ are the

areas of the peaks which are assigned to the Mo4+, Mo5+ and Mo6+ species, respectively [67,68].
A catalyst with a higher sulfidation degree (MoS2) would suggest that there was

a lower metal–support interaction with the active metal, bringing about easier catalyst
reduction and sulfidation [67]. The slight shift toward the lower BE of Mo 3d in the
RhMo/G-Al2O3 catalyst (Table S1) could be attributed to a weaker metal–support interac-
tion (caused by electron effects of the defects at the surface on the alumina support), which
enhances the HDS catalytic activity [68,69].

2.7. Transmission Electron Microscopy (TEM)

Information on active MoS2 crystallite dispersion and sizes in the sulfided RhMo/G-
Al2O3 and RhMo-x/G-Al2O3 (where x = AA, EDTA, CA) was obtained by means of TEM
measurement. Figure 6a–d shows the distribution of MoS2 crystallites in the sulfided
catalysts with and without the chelating agents, and their statistical distribution results for
the length of the MoS2 slab. The addition of the chelating agents influenced the particle
size distribution. The RhMo-CA/G-Al2O3 had the lowest average diameter (1.86 nm) and
the RhMo/G-Al2O3 resulted in the highest average diameter (4.72 nm). The decrease of
the MoS2 slabs due to the chelating ligand’s decomposition improved the dispersion of
the active phase [70,71]. The average slab length in diameter observed for the catalysts are
shown in Table 4, and the average slab length of the MoS2 slab with the highest frequency
was distributed between 2.5–6.0 nm. Along with these crystallites, there were a few regions
with big agglomerations of molybdenum sulfide, as confirmed by the strings of highly
stacked crystallites.

Table 4. Average length of MoS2 crystallites in RhMo/Al2O3 and RhMo-x/G-Al2O3 (x = EDTA,
AA, CA).

Catalysts Average Diameter ± SD (nm)

RhMo/G-Al2O3 4.4 (±1.38)
RhMo-EDTA/G-Al2O3 4.1 (±1.220)

RhMo-AA/G-Al2O3 3.3 (±0.757)
RhMo-CA/G-Al2O3 1.6 (±0.860)

The results for the MoS2 slab average diameter in Table 4 indicated that the MoS2
dispersion obtained for the RhMo catalysts decreased in the order of RhMo-CA/G-Al2O3 >
RhMo-AA/G-Al2O3 > RhMo/G-Al2O3 > RhMo-EDTA/G-Al2O3. The higher dispersion for
the chelated catalysts was due to the complexation of metal-chelating ligand, reducing the
metal–support interaction and leading to the delay of the sulfidation of the metals. The
high MoS2 dispersion could facilitate the generation of more active sites [72–74].
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2.8. Scanning Electron Microscopy (SEM)

The SEM images of RhMoOx are shown in Figure 7a,c,e,g for RhMo/G-Al2O3 and
RhMo-x/G-Al2O3 (x = EDTA, AA, CA). The images showed that particles are closely
spherical in shape with an average uniform distribution. All the samples had an average
particle size (82.5–102.6 µm). Figure 7b,d,f,h represents the sulfided RhMo/G-Al2O3 and
RhMo-x/G-Al2O3 (x = EDTA, AA, CA) catalysts, and the zoomed images show that all
the chelated catalysts highly agglomerated with spherical-like materials with fluffy-like
particles, which could indicate that the catalysts are porous in nature. The particle distri-
butions for the sulfided catalysts could not be measured due to the high agglomeration
of the particles.

2.9. Stability of Catalysts—TGA and DSC Thermal Analyses

TGA-DSC is a technique used for thermal analysis to characterize materials by mea-
suring their change in mass as a function of temperature. It is coupled with DSC to provide
complementary information such as measuring the heat flow as a function of time and
temperature at a controlled environment.

RhMo/G-Al2O3: The first weight loss (2.5%) for RhMo/G-Al2O3 occurred in the range
of 50–150 ◦C due to the desorption of the physically adsorbed water from the surface
of the catalyst, and this was accompanied by a broad exothermic peak in the range of
120–210 ◦C (Figure 8a). A second weight loss of 3% was observed between 200–580 ◦C, and
it was reflected by a very weak endothermic peak between 360–610 ◦C, associated with
the decomposition of nitrate radical, hexaammonium molybdate and dihydroxylation [75].
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An endothermic peak at 810 ◦C was observed, and it was attributed to the formation of a
stable MoO3 phase.
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Figure 7. SEM images for RhMo/G-Al2O3 (a) oxide, (b) sulfided; RhMo-EDTA/G-Al2O3 (c) oxide, (d) sulfided; RhMo-AA/
G-Al2O3 (e) oxide, (f) sulfided; RhMo-CA/G-Al2O3 (g) oxide, (h) sulfided catalysts.
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Figure 8. TGA-DSC curves of (a) RhMo/G-Al2O3, (b) RhMo-EDTA/G-Al2O3, (c) RhMo-AA/G-Al2O3, (d) RhMo-CA/
G-Al2O3 catalysts.

RhMo-EDTA/G-Al2O3: The first weight loss (5.2%) in Figure 8b was below 100 ◦C and
was mainly due to water desorption. From 160–800 ◦C, there was a gradual weight loss of
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3% and not many events were happening in those stages. This weight loss was associated
with the loss of the complex, and a partial dehydration–decomposition of the Rh and Mo
species of RhMo-EDTA/G-Al2O3. The first and second weight losses were accompanied by
a broad exothermic peak at a maximum of 180 ◦C, corresponding to the decomposition of
the complex. A broad exothermic peak between 280–670 ◦C was observed, and was due to
the decomposition of EDTA and the further combustion of the residual organic matrix [76],
and to the total transformation of the partially decomposed Rh and Mo precursor species
into the catalyst oxidic precursor [77].

RhMo-AA/G-Al2O3: The results obtained for RhMo-AA/G-Al2O3 (Figure 8c) showed
a weight loss (3.6%) taking place in the range of 50–150 ◦C followed by an exothermic peak
90 ◦C, which was mainly due to water desorption. The subsequent weight loss of 2.8%
between 180–410 ◦C was attributed to the dehydration–decomposition of precursor species
and the partial dehydroxylation of alumina [77]. A second exothermic peak occurred at
a maximum of 280 ◦C, which corresponded to the decomposition of the complex (metal–
AA) and the total decomposition and partial dehydration–decomposition of Rh and Mo
precursor species. A third weight loss (1.8%) between 410–850 ◦C was due to the formation
of the monometallic oxidic precursor. The DCS curve displayed an endothermic peak at a
maximum of 580 ◦C.

RhMo-CA/G-Al2O3: The results obtained for RhMo-CA/Al2O3 (Figure 8d) showed a
weight loss of 5.2% below 150 ◦C, followed by an endothermic peak of 80 ◦C, was mainly
due to H2O removal. The second weight loss of 2.8% between 180–400 ◦C was attributed
to a decomposition and combustion of the precursor species, and the complete breakdown
of citric acid [46]. A broad and weak exothermic peak occurred at a maximum of 400 ◦C,
which corresponded to the decomposition of the remaining complex (metal–CA) and
the total decomposition and partial dehydration–decomposition of Rh and Mo precursor
species. Above 400 ◦C, not much loss of weight loss was observed, and this indicated the
formation of stable metallic oxidic precursors.

2.10. Catalytic Activity

The conversion of dibenzothiophene (DBT) was used to estimate the catalytic activity
in HDS (Equation (1)). RhMo/G-Al2O3 (88%) had the highest catalytic activity, and the
activity for the chelated catalysts followed this order: RhMo-AA/G-Al2O3 (73%) > RhMo-
CA/G-Al2O3 (72%) > RhMo-EDTA/G-Al2O3 (68%) (Table 5). The observed catalytic results
were ascribed to the introduction of the different ligands, which increased the metal–
support interaction and increased the e-charge transfer (energy band gap) from the valance
band Rh 4d orbital to the conduction band of the Mo species. The absence led to a
weaker Mo-S bond strength, a higher concentration of CUS and a higher HDS activity [60].
Crystallite sizes were also observed to influence the catalytic activity, as RhMo/G-Al2O3
(with crystallite size of 5.903 nm) presented the highest activity, and this may be due to
the formation of bigger MoS2 crystals when compared to others. A combined electron
donating effect of the chelates, and the crystallite sizes of MoS2, may have influenced the
chelated catalyst activity.

Table 5. Catalytic performances of RhMo/G-Al2O3 and RhMo-x/G-Al2O3 (x = EDTA, AA, CA) in hydrotreating of DBT as
simulated fuel.

Catalysts Crystallite
Sizes (nm) Eg Values HDS (%) BP(%) PhCh(%) HYD/DDS

Ratio TOF (h−1) a

RhMo/G-Al2O3 5.903 3.779 88 65 13 0.20 51
RhMo-EDTA/G-Al2O3 5.770 4.394 68 16 1 0.06 60

RhMo-AA/G-Al2O3 5.750 4.341 73 65 3 0.05 79
RhMo-CA/G-Al2O3 5.809 4.478 72 36 2 0.06 223

Catalyst (molybdenum content) employed = 0.1 g (4.119 × 10−5 moles). Hydrodesulfurization (HDS) time = 6 h; reaction temperature = 300 ◦C;
reaction pressure = 40 bar. Phenylcyclohexane (PhCh) or biphenyl (BP) a TOF, h−1: (turnover frequency).
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The chelated RhMo/G-Al2O3 catalysts resulted in slightly lower catalytic activity due
to the formation of rhodium-chelating ligands and a molybdenum–chelate complex. For all
the catalysts, DBT converted mainly via the DDS pathway (Table 5). There was not much
difference obtained in terms of selectivity when comparing the HYD/DDS selectivity ratio.
RhMo/G-Al2O3 showed a slightly higher HYD/DDS ratio of ~0.20 when compared to the
chelated catalysts (see GC chromatogram, Figures S5–S7). The addition of the chelating
ligands showed a slight difference, and therefore we can conclude that the addition of the
chelating ligand on the catalysts did not have much influence on the selectivity (Table 5).

The HDS selectivity correlated linearly with the slab length of the MoS2 phase (TEM),
the longer slab length indicated a high ratio of edge/corner and better HDS selectivity, with
RhMo/G-Al2O3 presenting the longest slab length [64,77], and the edge sites only catalysed
the HDS reaction [78]. The values presented by the current RhMo catalysts (Table 6) exhibit
certain benefits and compare well with the other catalysts reported in the literature [79–84].
We concluded that the HDS % conversion and desulfurization route was influenced by the
catalyst composition, the electronic properties and the HDS reaction conditions.

Table 6. Comparison of catalyst performance with literature reports in DBT hydrodesulfurization.

Catalysts Model
Compound

Reaction
Temperature (◦C) HDS (%) Reaction

Pressure (Bar) Reference

RhMo/G-Al2O3 DBT 300 88 40 This work
RhMo-EDTA/G-Al2O3 DBT 300 68 40 This work

RhMo-AA/G-Al2O3 DBT 300 73 40 This work
RhMo-CA/G-Al2O3 DBT 300 72 40 This work

Ni2P DBT 340 35 40 [79]
Ni2P TH-DBT 340 50 40 [79]

NiMoP/γ-Al2O3 DBT <320 22–90 <25 [80]
RuxMoNi DBT 320 24–92 54.5 [81]

NiMo DBT 320 62 54.5 [81]
NiMo/TiO2-6 DBT 300 90 20 [82]

NiMo/MCM-41-Na DBT 300 >95 50 [83]
Fe-Zn/TiO2-Al2O3 DBT 380 >98 40 [84]

RhMo/G-Al2O3 DBT 310 84 50 [28]

Dibenzothiophene (DBT); TH-DBT = 1,2,3,4-tetrahydro-dibenzothiophene (TH-DBT).

2.11. Proposed Mechanism

The large energy gap (Eg) values of the chelated ligands RhMo-AA/G-Al2O3 (4.341 eV),
RhMo-EDTA/G-Al2O3 (4.394 eV) and RhMo-CA/G-Al2O3 (4.478 eV), supported the in-
creased charge transfer of Rh, chelates and Mo species catalysts when compared to RhMo/G-
Al2O3 (3.779 eV). However, according to Figure 5a–d, the higher amount of Mo-S/RhMo-S
phases are formed in the absence of a chelating ligand, owing to the electron transfer
between the Rh and Mo-phase. Furthermore, the BE of O 1s increases upon chelation,
confirming less neutralization of the surface O-H in G-Al2O3 (O 1s 531.08 eV). The O 1s of
RhMo/Al2O3 is 529.139 eV, and for RhMo-EDTA/Al2O3 is 529.280 eV (Figure 9).

Thus, this implies that ligand presence decreases the neutralization of the surface
Brønsted acid site OHδ+ of G-Al2O3 (an observed increase in the oxygen binding energies),
and this prevents the formation of Mo-S/RhMo-S bonds, but more Rh-S bonds are formed
due to the higher charge transfer between Rh and the chelating ligands (see Figure 5c,d).
Generally, the free electrons promoted catalytic activities by donating electrons to the
conduction band of the Mo species, thus promoting Mo-S/RhMo-S bond cleavage to form
more coordinatively unsaturated sites (CUS) (Scheme 1). In a typical HDS reaction, the
Rh2O3 phase is reduced to metallic rhodium (BE of Rh 3d5/2 at 307.0–307.1 eV, predomi-
nately observed in RhMo/G-Al2O3 [55]) and Rh2O3-x(RhO), with unpaired free electrons in
the Rh 4d orbital and oxygen vacancies transferred to the conduction band of Mo species,
thereby promoting the cleavage of Mo-S/RhMo-S to form the CUS. The increased charge
transfer (energy gap (Eg) values) in chelated RhMo/G-Al2O3 between Rh and Mo species
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led to the excessive weakening of the Mo-S bond, preventing S-compound absorption on
the active sites, thereby leading to reduced activity [84].
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3. Experimental Section
3.1. Materials

All chemicals used were obtained from Merck/Sigma-Aldrich, South Africa. These in-
clude rhodium(III) chloride (98%), ammonium heptamolybdate (99%), ethylenediaminete-
traacetic acid (EDTA, 97%), citric acid monohydrate (CA, 99.5%), acetic acid (AA, 99%),
heptane, dibenzothiophene (98%) and gamma alumina support (G-Al2O3).

3.2. Synthesis of RhMo Catalysts Prepared with Ethylenediaminetetraacetic Acid (EDTA), Citric
Acid (CA) and Acetic Acid (AA)

Rh(x)Mo(y) catalysts were prepared by wet impregnations of the precursor salts [28].
Unchelated catalyst: Rh from RhCl3 (0.0421 g, 2× 10−4 mol) and Mo from (NH4)6Mo7O24·4H2O
(0.496 g, 4 × 10−4 mol) were added in 30 mL deionized water to obtain the desired metal
content ratio (Rh/Rh + Mo) 0.3, and the pH adjusted to pH = 9. The solution was added to
γ-alumina (1 g), and the resulting mixture was transferred to a 100 mL Teflon-lined stainless
steel autoclave, and hydrothermally treated at 453 K for 4 h. The resulting solid was filtered,
dried at 393 K for 12 h and calcined at 773 K for 4 h to obtain the RhMo oxide on γ-alumina.

Chelated catalysts: Generally, for the synthesis of chelated catalyst, molar ratios 1:2 Rh
to chelates (EDTA, CA and AA) was employed. RhMo-AA/γ-Al2O3: A mixture of RhCl3
(0.0421 g, 2 × 10−4 mol), (NH4)6Mo7O24·4H2O (0.496 g, 4 × 10−4 mol) and AA (0.0241 g,
4 × 10−4 mol) was dissolved in 20 mL H2O solution. RhMo-CA/γ-Al2O3: A mixture of
RhCl3 (0.0421 g, 2 × 10−4 mol), (NH4)6Mo7O24·4H2O (0.496 g, 4 × 10−4 mol) and AA
(0.0770 g, 4 × 10−4 mol) was dissolved in 20 mL H2O solution. RhMo-EDTA/γ-Al2O3: A
mixture of RhCl3 (0.0421 g, 2 × 10−4 mol), (NH4)6Mo7O24·4H2O (0.496 g, 4 × 10−4 mol)
and EDTA (0.0745 g, 2 × 10−4 mol) was dissolved in 20 mL H2O solution. In all of the
solution mixtures, the molar ratio with Rh/Rh + Mo molar ratio of 0.3 was added to
γ-Al2O3 (1 g, calcined at 500 ◦C) and the mixture was stirred for 4 h and pH adjusted to 9.
The resulting solid was dried at 120 ◦C overnight to obtain RhMo-AA/γ-Al2O3, RhMo-
CA/γ-Al2O3 and RhMo-EDTA/γ-Al2O3. For the chelated catalysts, RhMo-AA/γ-Al2O3,
RhMo-CA/γ-Al2O3 and RhMo-EDTA/γ-Al2O3 were only treated at 120 ◦C to preserve
chelating ligands (CA, AA and EDTA) in catalyst until the activation stage [46,50].

3.3. Catalyst Characterization

Ultraviolet-visible diffuse reflectance spectroscopy (DRS) and band gap energies of
the catalysts were processed from a Shimadzu UV-vis DRS spectrophotometer UV-3100
UV-vis spectrophotometer from a wavelength range from 200 to 800 nm.

FT-IR spectroscopy of the catalysts was acquired using a Bruker Tensor 27 platinum
ATR-FTIR spectrometer (wavelength range from 4000 to 400 cm−1).

Thermogravimetric analysis (TGA-DSC) was measured using a Perkin Elmer STA 6000
at a heating range of 55 to 900 ◦C at 20 ◦C/min with N2 flow of 30 mL min−1.

X-ray powder diffraction (XRD) analysis was carried out on a Bruker D2 powder
X-ray diffractometer using Cu radiation with a LynxEye detector with a scan range of 5 to
80◦ 2 theta.

Milled samples (RhMo/γ-Al2O3, RhMo-AA/γ-Al2O3, RhMo-CA/γ-Al2O3 and RhMo-
EDTA/γ-Al2O3) were gold coated and imaged for morphological evaluation using a
JOEL 7001f scanning electron microscope (SEM). JEOL JEM-2010 transmission electron
microscope (TEM) operated at 200 kV was employed for TEM imaging.

X-ray photoelectron spectrometer (XPS) was performed on a Kratos Axis Ultra X-ray
photoelectron spectrometer equipped with a monochromatic Al Kα source (1486.6 eV).

3.4. Catalyst Sulfidation and Hydrodesulfurization Measurements

The sulfidation and HDS tests were carried in a 2 L Parr pressure reactor 4842 (350 bar,
max tem = 425 ◦C). For catalyst sulfidation: HDS catalysts (2 g, mol/mL ratio of Mo:DBT
(~1:100)) were pressurized to 4.0 MPa (40 bar) in a 100 mL heptane solution containing
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10 wt.% of CS2 (sulfiding agent) under hydrogen flow (40 mL/min) for 4 h and at 573 K to
ensure complete sulfidation.

After sulfidation, the reactor was cooled down to room temperature for the dibenzoth-
iophene HDS test. At this temperature, the liquid feed was switched to dibenzothiophene
solution (0.22 g, 1.194 × 10−5 mol/mL). The temperature was adjusted to 573 K under H2
pressure of 4.0 MPa (40 bar) and maintained for 6 h. The dibenzothiophene content was
measured with an Agilent 6890 gas chromatograph equipped with a FID detector and a
30 m × 0.25 mm × 0.25 µm capillary column (ZB-5MSi, 5% Phenyl column). HDS catalytic
activity was estimated using (3):

XHDS(%) =
C0

DBT −CDBT

C0
DBT

× 100 (3)

where C0
DBT is the DBT content in the feedstock (wt.%) and CDBT is the DBT content in the

products (wt.%) [29]. Therefore, the catalytic selectivity ratio between the hydrogenation
(HYD) and direct desulfurization (DDS) is estimated from Equation (4):

SHYD/SDDS =
Cx

C0
DBT −CDBT

(4)

where Cx is the content of phenylcyclohexane (PhCh) or biphenyl (BP) [30].

4. Conclusions

In the present work, a series of new catalysts (RhMo/Al2O3, RhMo-x/Al2O3 (where
x = EDTA, AA, CA) were successfully synthesized and characterized. The UV-vis anal-
ysis confirmed the presence of octahedral molybdate species between 320–360 nm for
RhMo/Al2O3, and the shift to a lower wavelength in the visible part of 220 nm for the
chelated catalysts was observed and indicated the formation of less polymerized molybdate
species and heteropoplymolybdates. Band gaps of 3.779 eV (RhMo/G-Al2O3), 4.341 eV
(RhM-EDTA/G-Al2O3), 4.394 eV (RhMo-AA/G-Al2O3) and 4.478 eV (RhMo-CA/G-Al2O3)
were obtained. The TEM imaging confirmed that the materials had fringe-like morpholo-
gies, deemed as MoS2 slabs. The chelated catalysts showed a greater dispersion when
compared with the unchelated catalysts, and this was confirmed by XRD analysis by the
absence of crystalline peaks for the chelated catalysts. RhMo/Al2O3 resulted in higher
catalytic activity when compared with the chelated catalysts, and this was confirmed by
XPS showing more MoS2 phases of the RhMo/Al2O3 catalyst to be (63%), and it was also
confirmed by HDS activity where RhMo/Al2O3 exhibited the highest DBT conversion of
(88%). The addition of the chelating ligands (EDTA, AA and CA) resulted in lower HDS
activity. Since this is a new catalyst, a lot of parameters must be investigated, such as the
sulfidation temperature for Rh, the crystallite size effects, the molar ratio of Rh:chelating
ligand to be used, and the type of the chelating ligand to be used. This would help to
understand the catalyst and how the activity could be enhanced.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111398/s1, Figure S1: The Eg values for RhMo/Al2O3, RhMo-x/Al2O3 (x = EDTA,
AA, CA) obtained from a UV-Vis spectra; Figure S2. FT-IR spectra of RhMo/G-Al2O3, RhMo-
EDTA/G-Al2O3, RhMo-AA/G-Al2O3, and RhMo-CA/G-Al2O3 catalysts; Figure S3. EDX analysis for
(a) RhMo/Al2O3, (b) RhMo-EDTA/Al2O3, (c) RhMo-AA/Al2O3, (d) RhMo-CA/Al2O3 catalysts.;
Figure S4. XPS spectra for RhMo/Al2O3 different elemental contributions of (a) O 1s, (b) C 1s,
(c) Al 2p, (d) Al 2s; Figure S5. XPS spectra for CoMo-EDTA/G-Al2O3 different elemental contributions
of (a) O 1s, (b) C 1s, (c) Al 2p, (d) Al 2s; Figure S6. GC chromatogram of DBT before HDS; Figure S7.
GC chromatogram of DBT after HDS using (A) RhMo/Al2O3, (B) RhMo-EDTA/Al2O3, (C) RhMo-
AA/Al2O3, (D) RhMo-CA/Al2O3, DBT = dibenzothiophene, BP = biphenyl, PhCH = biphenyl
cyclohexane, BCH = bicyclohexyl, THDBT= tetrahydrodibenzothiophene; Table S1. XPS parameters
of the different distributions (BE) of Mo 3d obtained for chelated and unchelated RhMo/Al2O3

https://www.mdpi.com/article/10.3390/catal11111398/s1
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catalysts; Table S2. XPS parameters of the contributions of Rh 3d obtained for unchelated and
chelated RhMo/Al2O3 catalysts.
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