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Abstract: Nickel(II) complexes with bidentate N,N-α-diimine ligands constitute a broad class of
promising catalysts for the synthesis of branched polyethylenes via ethylene homopolymerization.
Despite extensive studies devoted to the rational design of new Ni(II) α-diimines with desired
catalytic properties, the polymerization mechanism has not been fully rationalized. In contrast to the
well-characterized cationic Ni(II) active sites of ethylene polymerization and their precursors, the
structure and role of Ni(I) species in the polymerization process continues to be a “black box”. This
perspective discusses recent advances in the understanding of the nature and role of monovalent
nickel complexes formed in Ni(II) α-diimine-based ethylene polymerization catalyst systems.
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1. Introduction

Currently, a variety of highly branched elastomeric polyethylenes (PEs) is produced
by co-polymerization of ethylene with linear α-olefins such as propene, 1-butene, 1-hexene,
and 1-octene [1]. The synthesis of branched PE via ethylene homopolymerization is more
attractive both from economic and technological perspectives, since such approaches do
not require the use of expensive pure α-olefins. Brookhart and co-workers introduced Ni(II)
complexes with N,N-bidentate α-diimine ligands [2], capable of producing branched PE
from ethylene as the only feedstock. Since this pioneering discovery, the area has advanced
greatly, with the modifications of α-diimine ligands (by tuning both the backbone and
substituents) and adjusting proper polymerization conditions providing access to polymers
with desired molecular (molecular weight and molecular weight distribution, degree of
branching) and mechanical characteristics [3–20].

For the rational design of Ni(II) α-diimine catalysts with the desired properties (activ-
ity, thermal stability, molecular weight characteristics and microstructure of the produced
PEs), detailed understanding of the reaction mechanism and of the structure–properties
relationships is a prerequisite. The key role of Ni(II)-alkyl complexes as active sites of ethy-
lene polymerization was disclosed by Brookhart and co-workers almost 20 years ago [21],
and has been extensively corroborated in further studies [22–24]. However, although Ni(I)
species have been found to be ubiquitous in such systems, their nature and role have
remained unclear until recently [25–32]. In the present perspective, we survey the existing
experimental data, related to the structure of the monovalent nickel species formed in
Ni(II) α-diimine-based catalyst systems, and discuss their possible roles in the ethylene
polymerization process.

2. Cationic Ni(II) α-Diimine Complexes in Ethylene Polymerization

In 1999, Brookhart and co-workers introduced the first family of cationic Ni(II) com-
plexes of the type [LNiIIMe(X)]+[BAr′4]− (where L = L1 or L5, X = H2O or Et2O, and
Ar′ = 3,5-C6H3(CF3)2) (Figure 1, Scheme 1) [21]. According to the results of in situ 1H
NMR experiments, ethylene addition to the samples containing [LNiIIMe(X)]+[BAr′4]−
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led to ligand X displacement by C2H4 molecule, followed by monomer insertion into the
NiII-CH3 bond and further enchainment of the NiII-alkyl moiety. The reaction between
[L1NiIIMe(Et2O)]+[BAr′4]− and C2H4 is shown in Scheme 1.
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the ion pairs [L1NiIIR]+[BAr′4]− (R = Et, Pr, iPr) corroborated the “chain-walking” mecha-
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Scheme 1. Ethylene coordination, insertion, and polymer chain growing in the model catalyst system
[L1NiIIMe(Et2O)]+[BAr′4]−/C2H4 (Ar′ = 3,5-C6H3(CF3)2) [21].

These findings clearly demonstrate the key role of cationic Ni(II)-alkyl complexes
as the active species of ethylene polymerization. Further studies of agostic interactions
between the Ni(II) center and the β-H proton of the NiII-alkyl moiety in the cationic parts
of the ion pairs [L1NiIIR]+[BAr′4]− (R = Et, Pr, iPr) corroborated the “chain-walking”
mechanism leading to formation of branched PE [33,34] (Scheme 2), previously proposed
by Fink and Mohring for Ni(II) aminobis(imino)phosphorane catalysts [35].
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catalyzed ethylene polymerization [33].

More recently, structurally related cationic Ni(II) complexes of “real” catalyst systems
such as L2NiIIBr2/MAO, L2NiIIBr2/MMAO (Schemes 1 and 3; MAO—methylalumoxane,
MMAO—methylalumoxane, modified by AliBu3), and L3NiIIBr2/Al2R3Cl3 (R = Me or Et)
were identified by NMR spectroscopy [24,36]. Complex [L2NiII-tBu]+[MeMMAO]− was ob-
served in the L2NiIIBr2/MMAO catalyst system at −20 ◦C, whereas in the L2NiIIBr2/MAO
one, heterobinuclear dimethyl-bridged congener [L2NiII(µ-Me)2AlMe2]+[MeMAO]− was
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detected under the same conditions (Scheme 3). Both these species could play the role of
direct precursors of the active sites of ethylene polymerization. However, in the absence of
ethylene, [L2NiII-tBu]+[MeMMAO]− and [L2NiII(µ-Me)2AlMe2]+[MeMAO]− reduce to the
monovalent nickel compounds at temperatures higher than −20 ◦C [24], which suggests
that complexes of nickel(I) can also exist at higher temperatures, i.e., under practical poly-
merization conditions. Therefore, it is important to monitor the formation (and subsequent
transformations) of nickel(I) species in “real” catalyst systems and reveal their possible
role(s) in the catalytic cycle.
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3. Ni(I) α-Diimine Complexes in Ethylene Polymerization

Despite the generally recognized role of Ni(II)-alkyl complexes as the active sites of
ethylene polymerization, the nature and role of Ni(I) complexes in polymerization con-
tinues to be a subject of extensive studies [25–32,37,38]. Because of the lower tolerance
(compared with Ni(II) counterparts) of Ni(I) α-diimine complexes to trace amounts of mois-
ture and oxygen, the number of examples of their successful isolation and characterization
has been limited [31,32,39–43].

In 2007, Reiger and co-workers synthesized two dinuclear monovalent nickel complexes
[(L4NiIBr)2MgBr2(THF)2] and [(L4NiIBr)2] (Figure 2) and tested them in ethylene homopoly-
merization [32]. According to the results of catalytic studies, [(L4NiIBr)2MgBr2(THF)2] and
[(L4NiIBr)2] did not display any detectable polymerization activity, but adding an excess of
AlMe3 converted them into “polymerization-active species”. The mechanism of formation
of the active Ni(II) species was not established; however, the authors hypothesized that the
latter could be accounted for by disproportionation of the type NiI = 1/2NiII + 1/2Ni0.
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In 2015, Gao and Mu and co-workers isolated a neutral heterobinuclear nickel(I)
complex [L5NiI(µ-Br)2AlMe2] from the L5NiIIBr2/AlMe3 reaction mixture (Scheme 4,
Al/Ni = 4/1) [31]. When activated with excess AlMe3 or MAO, [L5NiI(µ-Br)2AlMe2] dis-
played high ethylene polymerization activity, comparable with those of L5NiIIBr2/AlMe3
and L5NiIIBr2/MAO systems. It was proposed that the active Ni(II) center was formed by
the intramolecular electron transfer from Ni(I) to the redox non-innocent α-diimine ligand
to form the [L5(•−)NiII(µ-Me)2AlMe2] species (Scheme 4).
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Scheme 4. Structures of [L5NiI(µ-Br)2AlMe2] and [L5(•−)NiII(µ-Me)2AlMe2].

Chirik and co-workers prepared mixed-valence Ni(I)−Ni(II) ion pairs [L1Ni(µ-H)]2[BAr′4]
and [L4Ni(µ-H)]2[BAr′4] (Ar’ = 3,5-C6H3(CF3)2) that demonstrated catalytic activity in the
polymerization of hexene regioisomers (1-hexene, trans-2-hexene, trans-3-hexene) when
activated with MAO or Et2AlOEt (Figure 3) [42].
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Gao and co-workers prepared and characterized cationic bis-ligated complex
[(L5)2NiI][B(C6F5)4], which displayed moderate ethylene polymerization activity when
activated with AlMe3 (Figure 3) [37].

Generation of monovalent nickel complexes in the catalyst systems in situ via one-
electron reduction of Ni(II) precursors seems to be an easier approach to the investigation
of the role of Ni(I) species in the ethylene polymerization process, provided that side
products of reduction or (and) traces of the starting material do not significantly affect the
catalytic behavior. Various one-electron reducing agents can be successfully used for the
quantitative conversion of Ni(II) complexes to the corresponding Ni(I) counterparts [43].

Long and co-workers investigated the effect of addition of cobaltocene Cp2Co (a
widely used one-electron reducing agent) on the catalytic properties of L5NiIIBr2/MAO
system [44]. It was found that gradual increase of the Co/Ni ratio from 0 to 1 was accompa-
nied by a 30% decrease of the degree of branching (from 114 to 88 branches/1000 C), while
the catalytic activity did not significantly change. To establish the change of nickel spin
state in the course of the reaction of L5NiIIBr2 with cobaltocene, an EPR spectrum of the
sample L5NiIIBr2/Cp2Co (Co/Ni = 1, toluene) was recorded. Single resonance at g = 2.342,
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characteristic of Ni(I) (S = 1/2) species, with uncoupled spin localized at the metal center,
was detected at −196 ◦C. The structure of this complex was not disclosed.

Another original approach to one-electron reduction of Ni(II) center in the L5NiIIBr2/MAO
system is based on using photoreductants as stoichiometric one-electron donors, fol-
lowed by exposing to visible light [45]. Adding the photoreductant (fac-Ir(ppy)3 =
tris[2-phenylpyridinato-C2,N] iridium(III)) to the system L5NiIIBr2/MAO allowed achiev-
ing partial reduction, with the degree of reduction depending of the exposure time. Like in
the case of L5NiIIBr2/Cp2Co/MAO system, the reduction of the Ni(II) center to the mono-
valent state leads to a drop of the degree of branching (from 111 to 93 branches/1000 C) of
the resulting PE.

The explanation for the observed PE branching variation was suggested in 2020 by
Roy with coworkers [38]. Computational studies have shown that Ni(II) species of the
type L5(•−)NiII(µ-Me)2AlMe2 rather than L5NiI(µ-Me)2AlMe2 congeners operate in the
catalyst system L5NiIIBr2/Cp2Co/MAO. By analogy with [L1NiIIR]+ species, observed
by Brookhart and co-workers, it is assumed that complexes with the proposed structure
L5(•−)NiIIR act as the active sites of ethylene polymerization in these systems. Although the
uncoupled electron was preferentially localized at the α-diimine ligand, small fraction of
electron density at the metal center weakened the agostic interaction between Ni and β-H
proton of the growing polymeryl chain, thus suppressing the β-hydride abstraction and
hence restricting the degree of chain-walking, responsible for the formation of branches
(Scheme 2).

Using EPR spectroscopy in situ, Petrovskii and co-workers documented rapid and
quantitative reduction of the Ni(II) center to Ni(I) state upon activation with 20 equiv.
of MAO in toluene at room temperature [29]. The resulting catalyst system was active
in ethylene polymerization, with the ethylene consumption rate profile typical for the
majority of homogeneous polymerization catalysts, with high initial polymerization rate
(90 kg·molNi

−1·bar−1·h−1) followed by gradual rate decay. The EPR spectra witnessed
resonances of two types of paramagnetic species. The nearly axial frozen-solution signal
(g1 = 2.22, g2 ≈ g3 = 2.08) was tentatively assigned to a heterobinuclear L5NiI(µ-X)2AlX2
complex (the nature of X group was not specified), whereas a multiplet at g = 2.0 with
partially resolved hyperfine structure (hfs) from one aluminum and two nitrogen nuclei
was ascribed to aluminum species L5(•−)AlX2, the product of irreversible α-diimine ligand
transfer to the co-catalyst.

The nature of monovalent nickel species formed upon Ni(II) α-diimines activation
with MMAO and AlMe3 were extensively studied using 1H, 2H NMR and EPR spec-
troscopy in situ by Soshnikov and Talsi and co-workers [25–27]. When L4NiIIBr2 complex,
containing bulky o-iPr-substituents, was activated with AlMe3, two types of paramag-
netic heterobinuclear Ni(I) complexes, L4NiI(µ-Br)(µ-Me)AlMe2 and L4NiI(µ-Me)2AlMe2,
were detected and characterized by NMR and EPR (Scheme 5, top). Using 2H-enriched
AlMe3 made it possible to assign the key 1H and 2H NMR resonances of the AlMe2 moi-
ety of L4NiI(µ-Br)(µ-Me)AlMe2, which confirmed its heterobinuclear nature. In the case
of L2NiIIBr2 with α-diimine ligand L2 containing less bulky Me-substituents (Figure 1),
only dimethyl-bridged heterobinuclear complex L2NiI(µ-Me)2AlMe2 was detected in the
L2NiIIBr2/AlMe3 reaction solution (Scheme 5, bottom).

Using MMAO as activator for L4NiIIBr2 led to a mixture of heterobinuclear complexes
L4NiI(µ-Br)(µ-Me)AlR2 and L4NiI(µ-Me)2AlR2 at Al/Ni = 25 (R = Me or iBu), with only
the latter species existing in the reaction solution at high Al/Ni ratios (Al/Ni > 100). In
the case of the L2NiIIBr2/MMAO sample, only L2NiI(µ-Me)2AlR2 was present, even at
Al/Ni = 25. These results are in line with the hypothesis of Petrovskii and co-workers on
the nature of Ni(I) species formed in LNiIIBr2/MAO catalyst systems.



Catalysts 2021, 11, 1386 6 of 11
Catalysts 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 

 
Scheme 5. Structures of complexes L4NiI(μ-Br)(μ-Me)AlMe2 and L4NiI(μ-Me)2AlMe2 formed in the 
system L4NiIIBr2/AlMe3 (top) and of L2NiI(μ-Me)2AlMe2 formed in the system L2NiIIBr2/AlMe3 (bot-
tom). 

Using MMAO as activator for L4NiIIBr2 led to a mixture of heterobinuclear complexes 
L4NiI(μ-Br)(μ-Me)AlR2 and L4NiI(μ-Me)2AlR2 at Al/Ni = 25 (R = Me or iBu), with only the 
latter species existing in the reaction solution at high Al/Ni ratios (Al/Ni > 100). In the case 
of the L2NiIIBr2/MMAO sample, only L2NiI(μ-Me)2AlR2 was present, even at Al/Ni = 25. 
These results are in line with the hypothesis of Petrovskii and co-workers on the nature of 
Ni(I) species formed in LNiIIBr2/MAO catalyst systems. 

Besides Ni(I) complexes, well-resolved EPR multiplets of L2(•−)AlR2 were detected in 
the systems L2NiIIBr2/AlMe3 and L2NiIIBr2/MMAO (Figure 4). The propensity to the α-
diimine ligand scrambling (from Ni to Al) strongly depends on the ligand structure. In-
deed, the concentration of L4(•−)AlR2 in the systems L4NiIIBr2/AlMe3 and L4NiIIBr2/MMAO 
was significantly higher than that of L2(•−)AlR2 in the systems L2NiIIBr2/AlMe3 and 
L2NiIIBr2/MMAO at the same Ni/Al molar ratio. Combining L2NiIIBr2 with AliBu3 at +25 °C 
leads to complete ligand transfer from Ni to Al even at relatively low Ni/Al ratios (Ni/Al 
≥ 10). The system L2NiIIBr2/AliBu3 showed no activity in ethylene polymerization, thus 
providing indirect evidence in favor of the catalyst deactivation via L2(•−)AlR2 formation. 

 
Figure 4. The structure of L2(•−)AlR2, formed in the systems L2NiIIBr2/AlMe3 or L2NiIIBr2/MMAO (R = 
Me or iBu). 

Dimethyl-bridged nickel(I) complexes L2NiI(μ-Me)2AlR2 (R = Me or iBu) ultimately 
formed both in the L2NiIIBr2/MMAO and L2NiIIBr2/AlMe3 catalyst systems at high Al/Ni 
ratios (Al/Ni ≥ 500). To elucidate the role of these species in the ethylene polymerization 
process, a series of catalytic experiments was performed. Both L2NiIIBr2/MMAO and 
L2NiIIBr2/AlMe3 displayed high ethylene polymerization activity, yielding branched PE 
(Table 1). 

Scheme 5. Structures of complexes L4NiI(µ-Br)(µ-Me)AlMe2 and L4NiI(µ-Me)2AlMe2 formed in the system
L4NiIIBr2/AlMe3 (top) and of L2NiI(µ-Me)2AlMe2 formed in the system L2NiIIBr2/AlMe3 (bottom).

Besides Ni(I) complexes, well-resolved EPR multiplets of L2(•−)AlR2 were detected in the
systems L2NiIIBr2/AlMe3 and L2NiIIBr2/MMAO (Figure 4). The propensity to the α-diimine
ligand scrambling (from Ni to Al) strongly depends on the ligand structure. Indeed, the concen-
tration of L4(•−)AlR2 in the systems L4NiIIBr2/AlMe3 and L4NiIIBr2/MMAO was significantly
higher than that of L2(•−)AlR2 in the systems L2NiIIBr2/AlMe3 and L2NiIIBr2/MMAO at
the same Ni/Al molar ratio. Combining L2NiIIBr2 with AliBu3 at +25 ◦C leads to complete
ligand transfer from Ni to Al even at relatively low Ni/Al ratios (Ni/Al ≥ 10). The system
L2NiIIBr2/AliBu3 showed no activity in ethylene polymerization, thus providing indirect
evidence in favor of the catalyst deactivation via L2(•−)AlR2 formation.
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Dimethyl-bridged nickel(I) complexes L2NiI(µ-Me)2AlR2 (R = Me or iBu) ultimately
formed both in the L2NiIIBr2/MMAO and L2NiIIBr2/AlMe3 catalyst systems at high Al/Ni
ratios (Al/Ni ≥ 500). To elucidate the role of these species in the ethylene polymerization
process, a series of catalytic experiments was performed. Both L2NiIIBr2/MMAO and
L2NiIIBr2/AlMe3 displayed high ethylene polymerization activity, yielding branched PE
(Table 1).
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Table 1. Ethylene polymerization data for the catalyst systems L2NiIIBr2/MMAO and L2NiIIBr2/AlMe3
a.

Entry Activator Activity b Mn
c Mw/Mn Branches/1000 C d

1 MMAO 3.7 39 1.9 40 ± 2
2 AlMe3 2.7 39 2.0 36 ± 2

3 e MMAO 1.5 38 2.3 39 ± 2
4 f AlMe3 1.3 46 2.2 36 ± 2

a Polymerization conditions: heptanes (200 mL) for entries 1, 3 and toluene (100 mL) for entries 2, 4; time
60 min; T = 50 ◦C; P(C2H4) = 5 bar; 2.0 µmol of pre-catalyst L2NiIIBr2; Al/Ni = 500. b In 106 g PE/(molNi·h). c In
103 g/mol; measured by GPC. d Measured by 1H NMR. e Complex L2NiIIBr2 was mixed with 20 eq. of MMAO in
heptanes, stored during 1 h at 25 ◦C, and then introduced in the reactor. f Complex L2NiIIBr2 was mixed with
10 eq. of AlMe3 in toluene, stored during 1 h at 25 ◦C, and then introduced in the reactor.

The time profiles of the rates of ethylene consumption by the systems L2NiIIBr2/MMAO
and L2NiIIBr2/AlMe3 were typical for the majority of homogeneous polymerization cata-
lysts, with high initial polymerization rate followed by gradual activity decay (Figure 5a).
The systems containing L2NiI(µ-Me)2AlR2 (R = Me or iBu), generated in situ by prelimi-
nary quantitative reduction of L2NiIIBr2 with 10 equiv. of AlMe3 or 20 equiv. of MMAO,
demonstrated a dramatically different catalytic behavior.
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(entry 2) (a), and L2NiIIBr2+MMAO (20 equiv)/MMAO (entry 3), L2NiIIBr2+AlMe3 (10 equiv)/AlMe3 (entry 4) (b).

Indeed, one can distinguish three regions in ethylene consumption time profiles
of the L2NiI(µ-Me)2AlR2/MMAO and L2NiI(µ-Me)2AlMe2/AlMe3 systems: the initial
activity increase from zero to maximum values within 10–15 min, followed by sta-
tionary ethylene consumption during the next 10 min, which eventually turns into
gradual decline (Figure 5b). The measured (average) catalytic activities of the systems
L2NiI(µ-Me)2AlR2/MMAO and L2NiI(µ-Me)2AlMe2/AlMe3 were twice as low as those
of the systems L2NiIIBr2/MMAO and L2NiIIBr2/AlMe3. Crucially, the molecular charac-
teristics of the polymers obtained were virtually the same (Table 1), thus witnessing the
same, single-site, catalytically active species in both cases. In contrast to the results of
Long and co-workers [44], complete reduction of Ni(II) to Ni(I) had no effect on the degree
of PE branching. We believe that the observed kinetic peculiarities (namely, the initial
induction period, Figure 5b) and polymer properties (Table 1) could be accounted for by
the disproportionation pathway NiI = 1/2NiII + 1/2Ni0, previously proposed by Reiger
and co-workers [32], rather than by intramolecular electron transfer L2NiI(µ-Me)2AlR2 →
L2(•−)NiII(µ-Me)2AlR2.

Therefore, the L2NiI(µ-Me)2AlR2 species observed in L2NiIIBr2/MMAO and
L2NiIIBr2/AlMe3 should be considered as catalyst resting state rather than deactivation prod-
ucts. To rationalize the mechanism of transformation of L2NiI(µ-Me)2AlR2 resting states into
the Ni(II) active sites in the presence of ethylene, the system L2NiIIBr2/MMAO/C2H4 was stud-
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ied by EPR spectroscopy [27]. Before ethylene addition to the sample L2NiIIBr2/MMAO
(Al/Ni = 25), the resonances of L2NiI(µ-Me)2AlR2 with nearly axial g-factor anisotropy
(g1 = 2.208, g2 = 2.060, g3 = 2.050) were detected in the frozen solution (−196 ◦C) EPR spec-
trum (Figure 6a). Noticeably, the perpendicular component (
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the addition of ca. 600 equiv. of C2H4 at −70 ◦C, partial conversion of L2NiI(µ-Me)2AlR2
to a new Ni(I) complex A with dramatically different frozen-solution EPR-parameters
(g1 ≈ g2 = 2.34, g3 ≈ 1.99) was observed (Figure 6b). At temperatures higher than −70 ◦C,
ethylene was rapidly consumed (with PE formation), accompanied by disappearance of A
and restoration of the initial concentration of L2NiI(µ-Me)2AlR2.

Catalysts 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 

states into the Ni(II) active sites in the presence of ethylene, the system 
L2NiIIBr2/MMAO/C2H4 was studied by EPR spectroscopy [27]. Before ethylene addition to 
the sample L2NiIIBr2/MMAO (Al/Ni = 25), the resonances of L2NiI(μ-Me)2AlR2 with nearly 
axial g-factor anisotropy (g1 = 2.208, g2 = 2.060, g3 = 2.050) were detected in the frozen solu-
tion (−196 °C) EPR spectrum (Figure 6a). Noticeably, the perpendicular component (g┴ = 
g2 ≈ g3) displayed a partially resolved hfs from two nitrogen atoms of the α-diimine ligand 
(a(14N) = 1.06 mT). Upon the addition of ca. 600 equiv. of C2H4 at −70 °C, partial conversion 
of L2NiI(μ-Me)2AlR2 to a new Ni(I) complex A with dramatically different frozen-solution 
EPR-parameters (g1 ≈ g2 = 2.34, g3 ≈ 1.99) was observed (Figure 6b). At temperatures higher 
than −70 °C, ethylene was rapidly consumed (with PE formation), accompanied by disap-
pearance of A and restoration of the initial concentration of L2NiI(μ-Me)2AlR2. 

 
Figure 6. Frozen solution EPR spectra (−196 °C) of the samples: (a) L2NiIIBr2/MMAO (Al/Ni = 25, 
toluene, [Ni] = 10 mM), mixed and stored for 1 h at 25 °C; (b) sample in (a) after adding 600 equiv. 
of ethylene at −70 °C. 

Remarkably, the parallel component (g║ = g3 ≈ 1.99) of the frozen solution EPR spec-
trum of A displayed hfs from only one nitrogen atom (a(14N) = 1.51 mT). This is evidence 
of dramatic reorganization of the first coordination sphere of the paramagnetic center in 
the course of L2NiI(μ-Me)2AlR2 conversion into A. Quantitative return of A into L2NiI(μ-
Me)2AlR2 after ethylene consumption, apparently, reflects reversible ethylene coordina-
tion to Ni, with the α-diimine ligand remaining coordinated to Ni in both complexes. 
Based on the above data, A was tentatively assigned to an ethylene adduct of the type 
L2NiI(C2H4)R (R = Me or iBu). Further studies are planned to reliably establish the structure 
of this adduct and evaluate its chemical reactivity. 

  

g1 = 2.208 g2 =2.060

g1 = 2.208 g2 =2.060

g1(A) ≈ g2(A) = 2.34

280 300 320 340
H, mT

a

b

g3 =2.050

 343335

2.003

g3 =2.050

339 343335

g3(A) = 2.34

Figure 6. Frozen solution EPR spectra (−196 ◦C) of the samples: (a) L2NiIIBr2/MMAO (Al/Ni = 25,
toluene, [Ni] = 10 mM), mixed and stored for 1 h at 25 ◦C; (b) sample in (a) after adding 600 equiv. of
ethylene at −70 ◦C.

Remarkably, the parallel component (g‖ = g3 ≈ 1.99) of the frozen solution EPR spectrum
of A displayed hfs from only one nitrogen atom (a(14

N) = 1.51 mT). This is evidence of dramatic
reorganization of the first coordination sphere of the paramagnetic center in the course of
L2NiI(µ-Me)2AlR2 conversion into A. Quantitative return of A into L2NiI(µ-Me)2AlR2 after
ethylene consumption, apparently, reflects reversible ethylene coordination to Ni, with the
α-diimine ligand remaining coordinated to Ni in both complexes. Based on the above data,
A was tentatively assigned to an ethylene adduct of the type L2NiI(C2H4)R (R = Me or iBu).
Further studies are planned to reliably establish the structure of this adduct and evaluate
its chemical reactivity.

4. Conclusions

Complexes of nickel(II) with bidentante N,N-donor α-diimine ligands, introduced by
Brookhart and co-workers [2], have established themselves as promising catalysts for the
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preparation of valuable polymeric products, such as branched elastomeric polyethylene
and copolymers of ethylene with polar monomers. Meanwhile, despite considerable efforts,
detailed understanding of the catalytic mechanism has not been achieved as yet.

In their pioneering studies, Brookhart and co-workers disclosed the key role of cationic
nickel(II)-alkyl complexes of the type [LNiIIR]+[A]− (L = α-diimine ligand, R = polymeryl,
[A]− = counter-ion) in the polymer chain growth. However, in-depth investigations
witness that monovalent nickel species may prevail in the catalyst systems under “real”
polymerization conditions. For example, in situ NMR and EPR studies of the Ni(I) species
formed in “real” catalytic systems (LNiIIBr2/MMAO and LNiIIBr2/AlMe3; L = α-diimine
ligand) have demonstrated the prevalence of neutral heterobinuclear complexes of the type
LNiI(µ-Me)2AlR2 (where R = Me or iBu) in the reaction solution. However, until recently,
their role in the catalytic process has remained unexplored.

The observations of the reactivity of α-diimine Ni(I) complexes (either isolated or gen-
erated in the reaction mixture in situ) toward ethylene (affording branched PEs) indicated
that monovalent nickel species should not be discounted as potential active species or,
more plausibly, their direct precursors.

The mechanism of Ni(I) conversion to the active divalent state in the course of
ethylene polymerization continues to be debated controversially. On the one hand,
intramolecular one-electron transfer from the Ni(I) to the redox non-innocent α-diimine
ligand (LNiI(µ-Me)2AlR2 → L(•−)NiII(µ-Me)2AlR2) can yield the catalytically active, for-
mally “Ni(II)” sites. On the other hand, the occurrence of disproportionation of the
type NiI = 1/2NiII + 1/2Ni0 in the course of polymerization cannot be excluded, either.
Further studies are needed to distinguish between these possibilities. In either case, how-
ever, these complexes of monovalent nickel can play important roles as precursors of
active species and/or catalyst resting state rather than the products of the catalyst de-
activation. We foresee further progress in understanding the mechanistic landscape of
α-diimine nickel(II)-based catalysts of ethylene polymerization, and try to contribute to it
in the near future.
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