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Abstract: The development of efficient biomass valorization is imperative for the future sustainable
production of chemicals and fuels. Particularly, the last decade has witnessed the development
of a plethora of effective and selective transformations of bio-based furanics using homogeneous
organometallic catalysis under mild conditions. In this review, we describe some of the advances
regarding the conversion of target furanics into value chemicals, monomers for high-performance
polymers and materials, and pharmaceutical key intermediates using homogeneous catalysis. Finally,
the incorporation of furanic skeletons into complex chemical architectures by multifunctionalization
routes is also described.

Keywords: furanics; homogeneous catalysis; biomass upgrading

1. Introduction

The transition from a fossil-based economy to a bio-based society represents a fun-
damental goal to diminish environmental issues and reduce the strong dependency on
petrochemicals [1]. The replacement of fossil-based fuels and materials with biofuels and
bioproducts is of paramount importance for this transition. Catalysis is the core of modern
chemical conversions and a key component of sustainable chemistry. The production
processes for the vast majority of our fuels and chemicals use catalysts [2].

However, two of the main drawbacks of the catalytic valorization of lignocellulosic
biomass are the relatively low stored potential chemical energy as well as the high oxygen
content [3]. Hence, there is great interest in valorizing biomass to value-added compounds.
Towards this end, new catalytic processes with higher efficiencies, greater tolerance to
diverse biomass feedstock, and longer catalyst lifetimes require significant development
across disciplines [4,5].

In particular, homogeneous catalysis is a unifying technology, pursuing the yield of
valuable feedstock from biomass with more efficient, selective, environmentally benign,
and cost-effective catalytic systems [6,7]. A major new development in homogeneous
catalysis is the application of organometallic complexes as catalysts [8–11]. Using new
catalysts and atom-economical methodologies leads to potential benefit for both the organic
synthesis and biomass valorization communities [12].

These new strategies promote the adoption of renewable chemicals produced from
biomass as part of the establishment of biorefineries. In addition to converting biomass
into alternative fuels and chemicals, this feedstock can be brought into play to render
many other processes sustainable. Moreover, life cycle assessment models have shown that
bio-based chemicals can have 60–95% lower carbon footprints compared with petroleum
derived chemicals [13].

Biomass transformation involves multiple processing steps in which it gets depoly-
merized and converted to furfurals. The catalytic upgrading of furfurals is one of the most
important steps to produce biofuels and renewable chemicals. Among many biomass-
derived products, furanics have been extensively studied using biocatalysis [14], homoge-
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neous [8–11] and heterogeneous catalysis [15], and electrocatalysis [16] in different reaction
media. Furanics can be produced from non-edible biomass and provide opportunities for
sustainable new products often with unique properties that can be used, for example, in
the polymer, solvent, and surfactant industries [17,18].

In this context, cellulose- and hemicellulose-derived furans, namely, furfural (FAL),
methyl furfural (MF), 5-hydroxymethylfurfural (HMF), 2,5-furandicarboxylic acid (FDCA),
2,5-diformylfuran (DFF), 2,5-bis(hydroxymethyl)furan (DHMF), furfuryl alcohol (FA),
5-methyl furfuryl alcohol (MFA), and 2,5-dimethylfuran (DMF) already represent an impor-
tant class of bio-based substrates for modern biorefineries (Figure 1) [19,20]. In fact, in the
biorefinery strategy, HMF stands out as a sustainable alternative towards fuels, chemicals,
and materials, and could eventually replace petroleum-derived products [21].
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For instance, hydrodeoxygenation (HDO) and deoxygenation (DO) of furans (includ-
ing HMF) produce value-added chemicals and liquid fuels [22–24]. In the HDO process,
hydrocarbon components are generated from biomass derivatives with lower oxygen
content via a catalytic reaction in the presence of H2 [25]. In the DO procedure, the mod-
ification of the hydrocarbon skeleton is carried out by the removal of oxygen through
hydrogenation, decarboxylation, decarbonylation, and dehydration without hydrogen
gas [26,27].

Furthermore, these furan derivatives are used as valuable C5/C6 resources for the
synthesis of chemicals and biofuel components, such as levulinic acid (LA), succinic acid,
1,6-hexanediol, cyclopentatone, adipic acid, furoic acid, etc. [28]. Moreover, C5/C9 alkanes
can also be produced by the hydrolytic ring opening and complete hydrogenation of furans
and their aldol products [29].

This review highlights recent advances in which homogeneous catalyzed reactions
transform biomass-derived furanics into renewable and more valuable platform chemicals.
In particular, furanic-based derivatives produced by homogeneously catalyzed processes,
such as hydrogenation, oxidation, amination, condensation, halogenation, esterification,
decarbonylation, and ring opening, are described. We will illustrate the recent development
of well-defined and selective catalysts whose performance and stability are positioning
homogeneous catalysis as key technologies for biomass transformation.

2. Homogeneous Catalysts as a Toolbox for Biorefining

Nature has been refining catalysts for life-sustaining reactions for billions of years [30].
The design of robust non-biological catalysts enable fast and selective chemical transforma-
tions under conditions that are currently not possible.
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Hence, there is an enormous opportunity for developing homogeneously catalyzed
processes, to re- and defunctionalize biogenic substrates and deliver the production of
high-value chemicals [31]. The use of catalysts has potential advantages, including using
oxygenated functionalities present in biomass, avoiding the use of harmful reagents, and,
in some cases, offering a high yield route [32]. This technology offers the opportunity
to fulfill green chemistry requirements, particularly reduced energy consumption, the
manufacture of bulk chemicals (which ensures high atom economies [3] or E factors), and
the production of biodegradable substances [33].

Homogeneous catalysis often works at much lower temperatures than heterogeneous
catalysis, which is highly advantageous when it comes to avoiding side reactions, such
as condensation. In fact, noble-metal complexes are well established as catalysts for the
catalytic conversions of key intermediates derived from biomass.

The significance of homogeneous catalysis is growing rapidly particularly in the area
of the pharmaceutical and polymer industry. For instance, William. S. Knowles, Ryoji
Noyori and K. Barry Sharpless received the Nobel Prize in 2001 for their achievements
in the field of asymmetric homogeneous catalysis. Their discoveries contributed to the
development of industrial syntheses of pharmaceutical products and other biologically
active substances [34].

For example, the successful industrial synthesis of the amino acid L-DOPA was
developed by Knowles at Monsanto. This chiral drug for treating Parkinson’s disease was
synthesized using the [Rh((R,R)-DiPAMP)COD]BF4 complex in quantitative yield with
95% of enantiomeric excess (ee) [35–37].

The Takasago process catalyzed the asymmetric isomerization of an allylic amine
to an enamine with the (S)-BINAP-Rh complex and furnished the industrial syntheses
of the chiral aroma substance menthol [38,39] with approximately 1000 tons of the an-
nual world production [40]. Another well-known example is the enantioselective hydro-
genation or transfer hydrogenation of aldehydes and ketones. This method allows the
industrial-scale production of optically active compounds, including medicines, agrochem-
icals, and perfumes.

Among them, Noyori type catalysts have shown high productivity (turnover number,
TON up to 106), high turnover frequency (TOF) under mild conditions, and excellent
enantioselectivity (95% ee) similar to enzymes [41]. This process constitutes one of the most
efficient artificial catalytic reactions developed to date. A broader applications of Noyori’s
catalyst includes Rh(I) and Ru(II) species, where BINAP-Ru is used as a catalyst in the
industrial production of the anti-inflammatory naproxen (Figure 2) [42,43].

Considering these examples, the conversion of bio-based feedstocks represents a huge
challenge for catalysis. The design of a catalyst for biomass transformations requires the de-
velopment of water tolerant catalysts that are highly resistant to acidic and chelating media
and to the impurities present in the fermentation broth [44]. Furthermore, catalysts with
strong hydrogenation and finite deoxygenation abilities are necessary for the upgrading of
biomass [45].

The catalytic deoxygenation of biomass is very important to produce highly func-
tional intermediates, such as furanics with aldehyde and alcohol moieties [46]. Those
chemicals can be produced via different processes. For example, the typical reactions
that the furanic aldehyde functionality can undergo are reduction to alcohols by H2 or
by hydrogen transfer (Meerwein–Ponndorf–Verley reduction) [47], decarbonylation [48],
reductive amination to amines [49], oxidation to carboxylic acid [50], acetalization [51],
aldol and Knoevenagel condensations [52], acylation, and Grignard reactions [53]. The
second reactive functionality is the hydroxyl group that can undergo hydrogenolysis of the
C−O bond, oxidation to an aldehyde or acid, etherification, acetalization, esterification,
and halogenation reactions [54].
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Finally, the furan ring can be transformed by hydrogenation, ring-opening, alkylation,
oxidation, halogenation, and nitration reactions [55–57]. In general, these reactions lead
to liquid alkanes, solvents, fuel additives, plasticizers, and resin precursors. These trans-
formations involve at least one step of an addition of hydrogen to reduce an unsaturated
double bond or simply promote the cleavage of a single bond.

3. Homogeneous Catalysts for the Production of FAL and HMF

Furanic energy platform chemicals, such as FAL and HMF, can be produced by
hydrothermal conversion of biomass [58]. Both chemicals are extremely relevant for biofuel
and bio-based chemical industries.

The development of process technologies and implementation of industrial-scale HMF
production has been reported [59–61]. Compared to FAL, HMF is an important building
block widely recognized for the production of liquid fuels, resins, solvents, pharmaceu-
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ticals, and fine chemicals [4,62,63]. The current commercial production of HMF mostly
relies on the syrups extracted from energy crops [64,65]. However, the use of different
biomass resources or food wastes as an alternative feedstock could enable more sustainable
manufacturing practices.

For instance, AVA Biochem produces HMF from lignocellulose at various levels of
purity (up to ≥99.9%) [66]. In this case, the hydrothermal carbonization of lignocellulose
towards hydrochar is combined with the production of HMF. Thus, the lignocellulosic
biomass is decomposed under high temperature (200–300 ◦C) and pressure to glucose
and fructose in the presence of water. Further dehydration of fructose leads to a HMF-
containing water mixture that is subjected to extraction and separation from the reaction
mixture [58,67].

Likewise, FAL is an important renewable, non-petroleum based chemical feedstock.
The industrial production of FAL is based on biomass hydrolysis and subsequent dehy-
dration of the obtained pentoses using a homogeneous Brønsted acid catalyst in aqueous
media [68]. The furanic platform chemicals are one of the most notable examples of the
biorefinery process [69]. The worldwide production of FAL was estimated at nearly 500 kT
per year [70]. However, the present yield of FAL in industrial processes is relatively low
(approximately 50%) [58]. The condensation and degradation products as well as the
formation of humins decrease the efficiency of the process. Many attempts to increase the
yield have suggested the addition of ionic liquids, biphasic systems, and heterogeneous
and homogeneous catalysts.

Diverse catalysts and methodologies are employed for the synthesis of HMF and FAL
(Figure 3). In general, the dehydration of fructose produces HMF under acidic conditions
at elevated temperatures in water. It is well known that fructose is the most convenient
starting material for the preparation of HMF, while glucose is less reactive and undergoes
isomerization to yield fructose before the dehydration [71]. Likewise, the subsequent
rehydration of HMF may occur, and its rearrangement leads to the formation of LA and
formic acid [72].

This pathway can influence the overall efficiency of the process leading to the forma-
tion of humin-like furanic polymers due to the low stability of HMF [73,74]. To prevent
this, Ishida reported the reaction in DMSO, affording high yields of HMF in the presence of
Lewis acids, such as LaCl3 at 140 ◦C [72,75]. Another strategy for the direct production of
HMF from various carbohydrates is the use of ionic liquids (ILs) in the presence of a series
of relatively eco-friendly metal chlorides.

For instance, Zhao described a pioneering work of the use of [EMIM]Cl with various
metal chlorides, such as CrCl2, FeCl2, FeCl3, VCl3, MoCl3, PdCl2, PtCl4, RuCl3, and RhCl3
achieving high catalytic activities for the dehydration of fructose to HMF with yields
ranging from 60–83% at 80 ◦C [76]. Interestingly, CrCl2 showed better activity for the
conversion of glucose to HMF with a 70% yield in 3 h at 100 ◦C. In fact, CrCl2 reacts
with the IL to form active species [EMIM]CrCl2, which facilitates sugar isomerization and
dehydration [77].

Other metal chlorides, including SnCl4 [78], CuCl4 [79], RuCl3 [80], IrCl3 [81], ZrCl4 [82],
ZrOCl2 [83], HfCl4 [84], NbCl5 [85], and YCl3 [86], have been reported as catalysts for
the transformation of carbohydrates into HMF in different solvents. This methodology
represents an important advance in the use of lignocellulose for the production of primary
furanics via a green process without volatile organic solvents [74,87].

The transition metal chlorides with Lewis acidity promote the aldose–ketose isomer-
ization during the sugar conversion and yield furan platform chemicals (HMF and FAL)
with relatively low catalyst loading [53]. The use of ionic liquids as a solvent/additive has
been proposed as alternative to promote the hydrothermal conversion of biomass in an
indirect recycling of the reaction phase.
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Wrigsted explored the use of CrCl3 in the presence of mineral acids and alkali metals salts
for the dehydration of glucose and fructose in a water–THF mixture [88]. The addition of acid
prevents the formation of a chromium-glucose chelate complex hampering the isomerization
of glucose and leading to similar yields of HMF and FAL (53% and 59%, respectively).

Lin explored the use of a relatively low-toxic, recyclable, and inexpensive catalytic
system with chromium(III) chloride (CrCl3·6H2O) and tetraethylammonium chloride
(TEAC) ionic liquid. The efficient conversion of glucose into HMF was achieved in 71% at
130 ◦C in 10 min [73].

Yadav and coworkers reported the transformation of glucose into HMF promoted
by cobalt-based metallophthalocyanines [89]. The results demonstrated high catalytic
activity of the cobalt phthalocyanine (Co-PC) with an electron-withdrawing nitro group.
Subsequent studies with this catalytic system suggested that stronger Lewis acidity in
combination with ionic liquids ([EMIM]Cl or [BMIM]Cl) could improve the conversion of
glucose into HMF in high yields (>88%) at 100 ◦C after 3 h.

Among these examples, metal triflates constitute a viable alternative for the pro-
duction of HMF with much lower corrosion and environmental pollution. In particular,
Wang and coworkers investigated the catalytic activity of various triflate salts from which
Sc(OTf)3 and Yb(OTf)3 showed an 80% yield in DMSO at 120 ◦C and 2 h [90]. Likewise, Li
investigated the production of HMF from glucose when using Hf(OTf)4 in sec-butyl phenol
at 165 ◦C and 25 min. The higher valence state of the metal cations involves stronger Lewis
acidities facilitating the isomerization of glucose and the dehydration of fructose while
improving the yield of HMF.
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Other substrates, like xylose, can be subjected to similar reactions with HCl/CrCl3
catalytic mixture in aqueous media producing FAL in 39% yield [91]. Marcotullio [92,93]
and Liu [94] found that the use of FeCl3 increased the rate of conversion of xylose or
xylotriose in water or water-CPME (cyclopentyl methyl ester) mixtures at 180 ◦C. The
conversion rate was improved under these reaction conditions, reaching a 65–74% yield for
of xylose and 78% for xylotriose. Overall, furans produced from carbohydrates have high
potential for the synthesis of useful monomers based on renewable sources. In the next
sections, we will discuss the most relevant transformation of bio-based furanics, such as
FAL and HMF compounds, by homogeneous catalysts.

4. Catalytic Reduction of Furanics

The currently forecasted transition to a hydrogen economy allows the use of renewable
hydrogen as clean energy source for many applications [95]. For example, green and
sustainable organo synthesis can use renewable hydrogen to achieve the chemical reduction
of carbohydrate-based feedstocks and convert the highly unsaturated biomass to value-
added chemicals. Thus, the efficient hydrogenation of carbonylic functionalities in biomass
derived substrates, such as HMF, FAL, and MF, represent a good strategy in organic
synthesis for the sustainable production of fuels or building block chemicals [96].

In fact, the selective hydrogenation of HMF into DHMF is very similar to the reduction
of α,β-unsaturated aldehydes or ketones to the corresponding unsaturated alcohols [97].
This reductive process has been achieved by different hydrogenation methodologies, in-
cluding electrocatalytic hydrogenation [98] or in the presence of heterogeneous catalysts at
high temperatures and pressures [99].

However, most of the catalysts compromise the activity to attain high selectivity by
modifying the active metal with second components or introducing additives or oxide
supports. In particular, Tomishige reported a heterogeneous multicomponent-based Ir-Re
catalyst supported on SiO2 for the selective hydrogenation of HMF to DHMF in high yield
(99%) under 8 bar H2 at 30 ◦C [96,100].

Moreover, DHMF is an important starting molecule for the polymerization or etherifi-
cation processes (biodiesel, polyester, and polyurethane foams) [98]. Other bulk chemicals
are derived from FAL, such as FA, methyl-tetrahydrofuran (MTHF), THF, and maleic acid
(MA) [26].

Conventionally, furfuryl alcohol is produced over copper-chromite catalysts, which
are highly toxic and cause serious environmental issues [101]. Therefore, the exploration of
non-chromium catalysts for the green catalysis of FAL hydrogenation to FA is ongoing. For
example, heteropolyacid catalysts have shown potential for this hydrogenation process,
which is of great interest as a building block for resins [102]. An alternative to these solid
Lewis acid catalysts is the addition of mineral acids (H2SO4, HCl, and H3PO4) and salts
with transition metals (CrCl3 and SnCl4) in aqueous media [103].

Even though these catalytic advances in the production of biomass-derived furanic
alcohols provide green alternatives to stoichiometric reducing agents, homogeneous catal-
ysis that, in principle, might improve selectivity under mild reaction conditions, have
been scarcely investigated. A gradual evolution of the catalytic hydrogenation of HMF to
DHMF by homogeneous catalysts has been described using high-pressure H2 gas or other
hydrogen sources and an inorganic/organic base (Figure 4).

For example, Elsevier studied the catalytic hydrogenation of HMF with a half-sandwich
Ru-NHC complex (0.5 mol%) in the presence of KOtBu and THF under 50 bar H2 at
70 ◦C [104]. This catalytic system showed a 99% conversion after 2 h and was suc-
cessfully extended to other key biomass-derived substrates, such as cinnamaldehyde
or dimethyl oxalate. Furthermore, Hashmi investigated the same reductive process using
Ru(methylallyl)2COD (4.5 mol%) combined with an NHC-based ligand at 10 bar H2 and
120 ◦C [105]. The reaction afforded 92% yield of DHMF and 12% of the side product
THFDM after 16 h.
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Mazzoni reported the use of the dimeric Shvo’s catalyst (0.1 mol%) to produce DHMF
in toluene/H2O under 10 bar H2 at 90 ◦C in 99% yield [106]. Recently, Nielsen reported the
highly effective and selective hydrogenation of the bio-based furanic aldehydes, such as
HMF and MF under mild reaction conditions to the corresponding alcohols catalyzed by
Ru-PNP and Ir-PNP complexes under 30 bar H2 at 25 ◦C and 60 ◦C, respectively [107]. This
methodology allowed a high conversion rate up to TOF >1900 min−1 and the quantitative
isolated yield of DHMF and MFA.

This work showed solvent-free catalytic reactions in large scale, which is important to
reduce costs and the environmental impact as well as to improve the efficiency [108]. In
another attempt, Beller demonstrated the use of a base-metal PNP-Mn complex (1 mol%)
for the production of DHMF in toluene under 30 bar H2 at 100 ◦C, affording 90% conversion
after 24 h [109]. Unfortunately, efforts to isolate the product remained cumbersome during
the purification yielding 64% of the product due to decomposition.

There is also an important need for the development of environmentally benign
technologies to improve the catalytic efficiency of FA production. Currently, FA is the
most important monomer in furfural-based polymers [110]. Some technologies propose
the production of bifunctionalized monomers from FA and its derivatives as precursors
for po- lymer synthesis. In fact, biorenewable C5 alcohols are considered important
commodity chemicals for the production of polyesters, polyurethanes, polyethers, and fuel
additives [68].

In this sense, there are several promising alternatives for the production of FA.
For example, Li [111], Bhanage [112], and Rothenberg [113,114] used a Ru-catalyst for
the reduction of FAL to FA at a low temperature in the presence of different solvents.
Mika also reported Ru(acac)3 pre-catalyst in the presence of a bidentade ligand DPPB
(1,4-bis(diphenylphosphino)butane) at 160 ◦C in EtOAc for 0.6 h with a maximum
TOF = 6273 h−1 and 99% conversion [115]. Ladipo explored the activity of cis-[Ru(6,6′-
Cl2(bpy)2(OH2)2](CF3SO3)2 (1 mol%) for the production of FA at 100 ◦C, 51 bar H2 in
EtOH [116]. The results displayed good selectivity (99%) and conversion (99%) after 2 h.

Deng and Fu reported high turnover numbers, up to 13,877 h−1 and 50% yield for
the transformation of FAL to FA using iridium half-sandwich catalyst (0.0083 mol%) in
the presence of a phosphate buffer solution at 120 ◦C, 10 bar H2 and 4 h [117]. The side
products LA (41%) and gamma-valerolactone (GVL, 9%) were also observed. Choudhury
accomplished the catalytic reduction of FAL using a neutral iridium half-sandwich system
at 30 ◦C, 1 bar H2 in EtOH/H2O mixture, producing a 94% yield after 2 h [118].

Additionally, an efficient catalytic hydrogenation of FAL using Triphos-Ru(CO)H2
has been reported by Grainger an coworkers. A catalyst loading of 0.05 mol% gave full
conversion after 16 h at 120 ◦C and 30 bar H2 [119]. The combination of relatively low
catalyst loading of Ru-PNP (0.05–0.1 mol%) promoted the effective catalytic conversion of
FAL to FA in 99% after 30 min employing mild conditions and green solvents [107].

Among these examples, Makhubela reported the selective production of bio-based
alcohols, including FA using a Pt(II) complex (0.2 mol%) containing a Schiff base ligand.
The catalyst displayed complete conversion of the substrate at 140 ◦C, 20 bar H2 with
good selectivity towards FA in EtOH and 88% yield after 10 h [120]. The pre-catalyst
showed enhanced activity and selectivity in the presence of HCOOH affording a highest
TOF of 1060 h−1. Recently, Aguirre studied the activity of Ru-NPN pincer complex with
0.033 mol%, producing FA in high yield (99%) at 120 ◦C under 20 bar H2 in iPrOH [121].

Within this context, the replacement of precious metal catalysts by earth-abundant
metals results in a beneficial practice in terms of green chemistry [122]. For instance, Beller
reported the first example of a base-metal catalyzed hydrogenation of furanic aldehydes.
The Fe(II) tetraphos system [FeFP(PhPPh2)3][BF4] (0.8 mol%) exhibited full chemoselectiv-
ity for the reduction of FAL to FA in iPrOH/TFA (trifluoroacetic acid) mixture at 120 ◦C,
20 bar H2 and 2 h.

The desired alcohol was obtained with a 99% yield [123]. Kirchner studied the same
reductive process with Fe-PNP (0.05 mol%) and DBU (1 mol%) at 40 ◦C, 30 bar H2, and 16 h.
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The combination of this catalyst with a supported ionic liquid phase (SILP) promoted the
hydrogenation of aldehydes. Kirchner, Hoffmann, and Bica reported the catalytic activity
of this system for the reduction of FAL to FA in a mixture of IL/n-heptane in 87–98% yield
under 10–50 bar H2 at 25 ◦C in 1 h [124–126].

In the case of manganese catalysts, the hydrogenation of carbonyl compounds proceed
at relatively high catalyst loading at elevated temperatures in the presence of strong
bases [127]. Filonenko and Pidko reported manganese-based hydrogenation catalysis for
the conversion of carbonyl derivatives including biomass aldehydes, such as FAL [128].
The Mn(I)-CNP precatalyst (50 ppm) is activated in the presence of a hydride donor
promoter KHBEt3 (1 mol%) and 25 bar H2, 24 h at 80 ◦C in iPrOH. The desired alcohol
(FA) was isolated in 54% yield (Figure 5). Kirchner improved the yield up to 77% by using
a monohydride Mn-PNP complex (0.1 mol%) and H2 pressure of 50 bar at 25 ◦C and
18 h [129].
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To avoid the use of high-pressure reactors and harsh reaction conditions for classical
hydrogenation, catalytic transfer hydrogenation is considered an attractive alternative.
This process involves the transfer of a proton and a hydride from the donor molecule to the
unsaturated substrate. There are examples of sacrificial hydrogen donors, such as formic
acid, iPrOH, EtOH, and MeOH. In fact, the replacement of molecular dihydrogen as a
reducing agent by a sacrificial hydrogen donor/solvent, such as EtOH, is an ecofriendly
and safe option.

The first example of transfer hydrogenation of carbonyl compounds is the well-known
Meerwein–Ponndorf–Verley reduction, which involved the use of aluminum alkoxide
as a promoter for the reduction of a ketone in the presence of a secondary alcohol as
a sacrificial hydrogen source [130]. Although this process has been widely utilized in
both academic and industrial processes, the major drawbacks of this protocol are the
requirement of a large amount of aluminum alkoxide reagent, unwanted side reactions,
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and the moisture sensitivity of aluminum alkoxides [131]. The catalytic TH is a relatively
new process in biomass value addition with outstanding results for the production of
biofuels. Furthermore, this synthetic procedure decreases the risk of overpressure in the
system and simplifies the reactor design.

Several iridium and ruthenium-based catalysts have been reported for the selective
transfer hydrogenation of aldehydes using water as solvent and formates as hydrogen
source. On the other hand, secondary alcohols have a higher tendency to release hydrogen
than primary alcohols [132,133]. Often the combination of a hydrogen donor and H2 gas
is necessary to avoid the oxidized product of the raw material or aldehydes and ketones
from the alcoholic hydrogen donor.

The chemoselective reduction of FAL to the corresponding alcohol was achieved
by Baratta and coworkers using benzo[h]quinoline RuCl2(CNNPh)(PP) pincer complex
(0.01 mol%) and HCOONH4 as a hydrogen donor. The heteroaromatic aldehyde was selec-
tively reduced to FA with a conversion of 98% at 90 ◦C in toluene/water after 20 h [134].

O’Connor established a proof of concept for TH of HMF under base-free conditions
employing iPrOH as a source of hydrogen. The complete reduction of the aldehyde func-
tionality was carried out with a Cp*Ir(pyridinesulfonamide)Cl complex (1 mol%) at 85 ◦C
in 30 min. Both HMF and FAL were reduced with 99% and 95% yields, respectively. This
represents one of the few examples for the selective hydrogenation of furanic aldehydes
without base or formation of side products [135]. In contrast, Xiao explored the TH of HMF
using a rhodaclycle (1 mol%) with MeOH and Cs2CO3 as base. The productivity of this
complex along with its high stability provided 82% yield at 90 ◦C in 1 h [136].

Similarly, de Vries reported using Ru-MACHO-BH (0.1 mol%) complex for the TH of
FAL using iPrOH or EtOH as a hydrogen source [137]. The desired product was isolated
in 79% yield after 16 h under reflux. A contrasting system was developed by Bagh and
coworkers for the TH of FAL using a phosphine-free air-stable ruthenium(II)-triazole
complex (2 mol%) in the presence of EtOH and K2CO3 at 70 ◦C. The reaction provided a
90% yield of FA [138].

Makhubela tested the efficiency of pyridyl-imine iridium(III) for the production of FA
with HCOOH as the source of hydrogen using a catalyst loading as low as 0.025 mol% and
Et3N as a base [139]. The catalyst showed good selectivity with TOF of 1481 h−1 and 74%
conversion at 140 ◦C.

The expansion of catalytic reduction of aldehydes can also use base-metal catalytic
systems. For example, Kirchner used Fe-PNP hydride complex for the TH of FAL employ-
ing NaHCO2/H2O at 80 ◦C producing a 99% yield of FA after 1 h [140]. Symes reported
the combination of the reducing agent NaCNBH3 as hydride source and Nitschke’s Fe4L6
cage as an enzyme-like catalyst. The encapsulation of furfural inside a supramolecular
cage prevents the oligomerization of reactive intermediates and selective production of FA
and 2-methylfuran [141].

Other outcomes for the hydrogenation of aldehydes enabled the reduction of car-
bonylic moieties, such as esters. In particular, de Vries demonstrated the effective ester
hydrogenation of methyl furan 1-carboxylate (MFC) to FA with 0.05 mol% of Ru-NNS
complex. Presumably, the use of toluene maximizes the conversion and yield of FAL to
80% at 80 ◦C, 50 bar H2, and 10 h [142].

Similarly, Beller described the use of a PNP-Ir complex for the reduction of MFC to
the corresponding alcohol. The reaction was carried out with 2 mol% catalyst loading in
the presence of NaOMe under 50 bar H2 and 130 ◦C. The product was isolated in 89% yield
after 18 h [143].

Parallel to these works, de Vries explored the hydrogenation of esters catalyzed by
PNP-pincer base metal complexes. In this regard, Fe-MACHO-BH (5 mol%) promoted the
reduction of MFC to FA (99% yield) in EtOH at 100 ◦C and 24 h [144]. Interestingly, high
yields of FA (87%) were also observed with the PNP-Mn catalyst (2 mol%) in 1,4-dioxane
at 110 ◦C and 30 bar H2 [128]. In addition, the hydrogenation of dimethyl furan-2,5-
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dicarboxylate (DMFC) towards BHMF was afforded with a 58% yield by using the cationic
Mn-PNP tricarbonyl complex (2 mol%) under similar reaction conditions [109,145].

Clarke used a Mn-PNN complex for the TH of MFC at 100 ◦C in the presence of
KOtBu and EtOH. A catalyst loading of 1 mol% achieved an 82% yield after 22 h [146].
Likewise, the enantioselective ketone hydrogenation has been demonstrated in recent years.
For instance, Ding reported a lutidine-based chiral Mn-PNN complex for the asymmetric
hydrogenation of 2-acetylfuran employing 1 mol% of the catalyst under milder reaction
condition [147]. The heteroaromatic ketone was reduced to the corresponding chiral alcohol
in 99% yield and 85% ee.

Among these examples, other processes and catalytic systems have been developed
for the transformation of furanic aldehydes into hydrogenation/ring opening products
such as ketoacids and diketones. For instance, 1-hydroxyhexane-2,5-dione (HHD) is one of
the ketone derivatives obtained from HMF (Figure 6). It is considered an important inter-
mediate generated in-situ for the formation of cyclopentanone-based chemicals through
aldol-condensation [148].
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The transformation of furans (HMF, FAL, and MF) to ketoacids and diketones was
studied by Singh and coworkers employing the water soluble 8-aminoquinoline arene-
ruthenium (II) complex [149]. This one pot catalytic transformation allows the production of
levulinic acid, 1-hydroxy-hexane-2,5-done (1-HHD), 3-hydroxyhexane-2,5-dione (3-HHD)
and hexane-2,5-dione (HD) in the presence of 1 mol% catalyst and an excess of HCOOH at
80–100 ◦C. This H-donor source is non-toxic organic acid and in combination with water as
solvent, facilitate the hydrolytic ring opening of furans.

Zhang investigated the catalytic hydrogenation of HMF using a family of bipyridine
Cp*Ir(III)complexes [150]. Thus, the hydrogenation and hydrolytic ring opening of HMF
with the half-sandwich complex (0.26 mol%) in H2O under 20 bar H2 at 110 ◦C for 1 h,
produced 86% of HHD. Further studies with analogous Cp*Ir(III) precatalyst contain-
ing a functionalized bipyridine and lower catalyst loading (0.00083 mol%) afforded a
TOF = 31,560 h−1 and 67% yield at 120 ◦C, 35 bar H2 for 6 h under acidic conditions. The
HHD formation was also possible in the presence of HCO2H as hydrogen donor with
TOF = 6140 h−1 and 64% yield [151].
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Within this context, de Vries presented a protocol for the one-pot synthesis of
2-hydroxy-3-methylcyclopent-2-enone (MCP) via ring opening of HMF to HHD in the
presence of half-sandwich Cp*Ir(dpa)Cl (dpa=dipyridylamine) in H2O/KOH at 120 ◦C,
10 bar H2 and 2 h. The MCP was isolated in 55% yield. Interestingly, the presence of base
promoted aldol condensation leading to MCP instead of the expected 3-(hydroxymethyl)cyc
lopent-2-en-1-one (HCPEN) [152]. The subsequent hydrogenation of MCP towards
3-methyl-1,2-cyclopentanediol was also tested with Ru-MACHO-BH (0.5 mol%) in THF
at 100 ◦C, 20 bar H2 affording 96% yield. Noteworthy, the use of this Ru-PNP catalyst for
the direct ring opening of HMF diminished the yield of HHD to 5% under similar reaction
conditions (Figure 6).

Hydrodeoxygenation of Furanics

Biodiesel and ethanol have been promoted over the past decade as a sustainable
substitute for fossil fuels [153]. As result, there is a growing incentive to identify new
strategies for converting non-edible biomass to biofuels. Among those examples, furanic
derived fuels (or drop-in fuel compounds) also constitute a sustainable alternative to
fossil-based products [154].

The upgrading of biomass-derived furanics to furanic biofuels is carried out by cat-
alytic hydrogenation and hydrodeoxygenation (HDO) [155]. In this regards, the catalytic
HDO of HMF or other chemical modifications allow the synthesis of more suitable liquid
biofuels. In both types of reactions, the hydrogen atoms are added to the molecule to
decrease the degree of unsaturation or cleave C–O bonds.

In fact, FAL and 5-HMF, which are generated by the corresponding dehydration of
C5 and C6 sugars in the acid hydrolysis of lignocellulose, produce 2-methylfuran (2-MF),
and 2,5-dimethylfuran (DMF), as hydrodeoxygenation (HDO) products. The other drop-in
fuels compounds include 2,5-dimethyltetrahydrofuran (DMTHF), 5-ethoxymethylfurfural
(EMF), ethyl levulinate (EL), GVL, distillate range hydrocarbons and aromatic aviation fuel
additive [156].

Thus, the selective HDO of HMF is a general approach to produce the liquid biofuel
DMF, which has combustion properties comparable to those of gasoline, [157] representing
an alternative fuel with many desirable characteristics that overcome the drawbacks of low-
carbon alcohols such as ethanol and n-butanol [158]. For example, DMF has the highest
research octane numbers (RON = 119) of the mono-oxygenated C6 compounds, while
preserving a high energy density (30 kJ cm−3) and ideal boiling point (92−95 ◦C) [159]. In
general, ethers can be blended into petroleum-derived diesel up to 17% with no adverse
effects on engine performance and decreasing particulate emissions [160].

One of the most promising transportation biofuel is 5-ethoxymethylfurfural (EMF)
with energy density of (30.3 MJ/L), which is similar to gasoline (31.3 MJ/L) and diesel
(33.6 MJ/L) [161]. This chemical is usually synthesized from biomass sugars (glucose, fruc-
tose, or inulin) over an acid catalyst in ethanol. In comparison with the traditional hydroly-
sis, the use of the ethanolic system minimize the waste-water treatment and discharge [162].
The reported homogeneous catalysts for the synthesis of EMF include inorganic acids and
soluble metal salts.

For instance, Liu reported the use of SnCl4·5H2O, FeCl3, and CrCl3·6H2O for the
production of EMF with yield up to 33% [163]. Zhang and Deng reported the one-pot
conversion of fructose into EMF using FeCl3 in the presence of ethanol-[BMIM] Cl as
solvent. This methodology improved the production of EMF in 91% yield after 4 h at
100 ◦C. Presumably, the ionic liquid stabilize HMF and improve the selectivity of the
reaction [164]. HMF is often used as a precursor for liquid hydrocarbon fuels via the
production of linear alkene aldol condensation and HDO producing hydrocarbons in the
approximate molecular weight range for diesel and jet fuel [165].

HDO of sugars and furans have been reported with heterogeneous hydrogenation and
hydrogenolysis catalytic systems. However, the homogeneous catalyst systems based on
transition metal complexes is scarcely studied. The atom economy for the hydrogenation
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and HDO processes is extremely high, and only water is formed as byproduct [155].
However, the activation energies of the hydrogenation and HDO steps can lead to a
mixture of partially hydrogenated products and intractable mixtures limiting its use [166].
The HDO of highly polar and reactive sugar-derived furans forces the use of a polar liquid
reaction medium, such as H2O. The high temperatures used for this process (>150 ◦C) are
required to trigger any dehydration or hydrolysis steps [167].

It is known that the selective hydrogenolysis of the hydroxymethyl moiety of HMF
forms 5-methylfurfural (5-MF), which has potential applications as a fuel oxygenate and
a chemical intermediate. Further reduction of 5-MF leads to 2,5-dimethylfuran (DMF)
via 2-(hydroxymethyl)-5-methylfuran (HMMF). As a promising biofuel, DMF has sim-
ilar physicochemical properties to gasoline and also a green solvent. It has also been
demonstrated as a crucial chemical intermediate to produce p-xylene for terephthalate
polymers [168].

Hydrogenation of the furan ring in DMF produces 2,5-dimethyltetrahydrofuran
(DMTHF), which is a promising fuel oxygenate and a renewable substitute for tetrahydrofu-
ran (Figure 7). Schlaf reported the use of the [(4′-Ph-terpy)Ru(H2O)3](OTf) catalyst and its
iridium analogue (4′-Ph-terpy)Ir(OTf)3 for the conversion of DMF to hydrodeoxygenated
products DMTHF and 2,5-hexanediol (2,5-HD), 2,5-hexanedione (2,5-HDO) and hexane in
aqueous acidic medium at high temperature (175–225 ◦C) and 55 bar H2 [169]. However,
the aqueous acidic medium and high temperatures eventually can decompose the catalysts.
Depending on reaction conditions, the ruthenium system with 0.1 mol% loading, leads to
2,5-HD (69% at 175 ◦C) or DMTHF (80% at 200–225 ◦C) with the concomitant generation of
small amounts of 2-hexanone and hexane.
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Both catalyst were deactivated by formation of unreactive bis-chelate complexes [M(4′-
Ph-terpy)2]n+ (M = Ru, Ir; n = 2 or 3) diminishing the catalytic activity under HDO harsh re-
action conditions. The same author evaluated the catalyst [Ru(2,2′-dipicolylamine)(OH2)3]
(OTf)2 yielding 55% of 2,5-dimethyltetrahydrofuran in the presence of acid co-catalyst
(H3PO4) at 150 ◦C.

Most of the intermediates and HDO products observed with homogeneous systems
are limited to furfural. For instance, Sen and coworkers used RhCl3/HI (1/1.5) system to
the direct conversion of xylose in a biphasic water/chlorobenzene mixture at 140 ◦C and
20 bar H2, producing 80% yield of 2-MF accompanied with the production of I2 [170].

In other attempt, Ladipo showed a cascade hydrodeoxygenation reaction of FAL
employing an active Ru(II)-bis(diimine) complex. The catalyst cis-[Ru(6,6′-Cl2bpy)2(OH2)2]
(BArF)2 (1 mol%) displayed good selectivity leading from FAL into FA (93%) at 85 ◦C,
51 bar H2 and 2 h. Further transformation of FA at 130 ◦C, led to a very useful chemical
precursor THFA (99%) via hydrogenation. The subsequent hydrogenolysis yielded 2-MF
under similar reaction conditions [116].
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Makhubela reported a Pd(II)-Schiff base complex for the conversion of FAL towards FA
(88%) and THFA as a second product (12%). The reaction was carried out using 0.2 mol%
catalyst loading with 20 bar H2 at 140 ◦C and 10 h [120].

Under catalytic conditions, the ring opening of furfuryl alcohol can happen in two
sides of the furanic ring. The reductive ring opening next to the hydroxyl group leads to 1,5-
pentanediol formation, whereas the opposite side ring opening gives 1,2-pentanediol. [53]
There is not such a catalytic process to control the selectivity of this reaction, because the
chemical environments of the two furanic C–O bonds are similar. The opposite is true
for the hydrogenation tetrahydrofurforyl alcohol, where the formation of 1,5-pentanediol
is favored.

5. Oxidative Transformations

Oxidative transformation of HMF lead to 2,5-diformylfuran (DFF), and/or 2,5-furandi
carboxylic acid (FDCA). In this regard, the selective oxidation of HMF to the industrial pre-
cursor 2,5-diformylfuran (DFF) is relevant for the synthesis of pharmaceuticals, fungicides,
and functional polymers [171]. In fact, selective oxidation reactions of HMF are currently
viewed as attractive routes to 2,5-furandicarboxylic acid (FDCA) and/or 2,5-diformylfuran
(DFF) and 5-formyl-2-furancarboxylic acid (FFCA), monomers for furan-containing poly-
mers and materials with special properties [172].

While a variety of oxidants have been used for oxidation of HMF to FDCA and
DFF, only few reports describe catalytic oxidations of HMF with oxygen or air, the most
economical oxidants [173]. Recently, much progress has been made in the development
of homogeneous catalytic systems for this transformation (Figure 8). For example, Corma
reported the use of immobilized vanadyl–pyridine complexes affording 82% conversion
and high selectivity (≥99%) at 130 ◦C [37,174].

In general, the efficient and selective formation of DFF can be achieved by using
vanadium-catalyzed systems. Xu reported a homogeneous catalytic mixture of Cu(NO3)2/
VOSO4 (2 mol%, 1:1 ratio) for the selective oxidation of HMF to DFF under mild reaction
conditions (25–80 ◦C, 1.5 h, 10 bar O2) in CH3CN [175,176]. The inorganic catalyst is
easily removed from the reaction mixture. Nevertheless, the instability and high cost of
HMF limit the production of DFF [177]. A sustainable option is the catalytic conversion of
carbohydrates to DFF without further purification of HMF.

The commercialization of FDCA produced from fructose-derived HMF is one example
of the successful use of biomass [178]. In this industrial process, fructose is dehydrated
in methanol solvent to the HMF analogue methoxymethylfurfural (MMF). Then, MMF is
oxidized to FDCA using the homogeneous oxidation catalyst [179].

Moreover, FDCA has significantly wide attention particularly as a substitute of pe-
trochemical-derived terephthalic acid in the synthesis of useful polymers [180]. In fact,
FDCA can undergo coupling with mono-ethylene glycol to produce polyethylene furanoate
(PEF), a green replacement for polyethylene terephthalate (PET) [181]. Even though, several
methods for the synthesis of FDCA have been reported such as electrochemical oxidation
and biocatalytic oxidation, synthesis of FDCA is mainly carried out via catalytic methods
using heterogeneous or homogeneous catalysts.

Thus, HMF has been oxidized with O2 to FDCA in the presence of heterogeneous
Pt catalysts with stoichiometric amounts of alkali [182,183] and to DFF with TEMPO
radicals [183] or supported vanadium catalysts [157]. On the other hand, homogeneous
catalytic system for the synthesis of FDCA has been scarcely reported when compared to
heterogeneous catalysts.
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Partenheimer described the first examples of aerobic HMF oxidation reactions, cat-
alyzed with homogeneous metal/bromide systems. The aerobic oxidation of HMF to FDCA
was achieved at 125 ◦C under 70 bar air pressure in acetic acid solvent using Co(OAc)2,
Mn(OAc)2, and HBr as the catalysts, commonly known as the Amoco Mid-Century (MC)
catalyst [184]. They observed that HMF can be oxidized to DFF or 2,5-furandicarboxylic
acid with high selectivity by tuning the reaction conditions. The oxidation of HMF with the
MC catalyst proceeded via the formation of peroxyl radical in the chain propagation step.

The peroxyl radicals were formed through the abstraction of H-atom of HMF by the
bromide radical, generated in the catalytic cycle by the oxidation of HBr with Co(III) or
Mn(III), followed by reaction of aryl alkyl radical with O2. Although both hydroxymethyl
and aldehyde groups of HMF could be simultaneously oxidized, the authors proposed that
the OH group of HMF is selectively oxidized by dioxygen and metal/bromide catalysts
to obtain 2,5-diformylfuran (DFF) in 57% isolated yield. HMF can be also oxidized via a
network of identified intermediates to 2,5-furandicarboxylic acid (FDCA) in 60% yield. For
comparison, benzyl alcohol gives benzaldehyde in 80% using the same catalytic system.

Similarly, Abu-Omar reported the use of Co(OAc)2/Zn(OAc)2/NaBr mixture for the
aerobic oxidation of HMF into FDCA [185]. DFF was observed as the only oxidation product
without an acid additive, but FDCA was obtained in a yield of 60% with trifluoroacetic acid
as an additive. McMillan proposed an efficient methodology for the efficient oxidation of
HMF to DFF using a Mn(III)-salen (2 mol%) complex in the presence of NaOCl as oxidant
under 1 bar O2 in CH2Cl2 at 25 ◦C. The yield of the expected product was improved up to
89% [186].

The use of other oxidant such as tert-butyl hydroperoxide (t-BuOOH) was also studied
for the transformation of HMF into FDCA. Riisager reported the oxidation of HMF into
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FDCA in CH3CN with t-BuOOH as the oxidant and copper salts as catalyst [187]. The
use of CuCl together with LiBr as the additive yielded 43% of FDCA after 48 h at room
temperature, whereas using CuCl2 as the catalyst afforded 45% without additive.

Another important chemical intermediate derived from HMF is maleic anhydride
(MA), which is mainly used for the synthesis of unsaturated polyester resins [188]. In
fact, FA is the starting material for the production of maleic anhydride or maleic acid, via
oxidation. Xu and co-workers reported the selective oxidation of HMF to MA using vanadyl
complexes such as VOSO4 and VO(acac)2 without proceeding through any oxidized furan
intermediates [189]. The reaction was performed at 70 ◦C in CH3CN affording 52% yield
of MA. To the best of our knowledge, the heteropolyacid catalyst H3PMo12O40 modified
with VO(acac)2 have shown the best catalytic performance towards the formation of MA in
56% yield [190,191].

Interestingly, Pd(OAc)2 catalyst showed a 16% yield to furoic acid, while only traces
of this compound were observed over other metal catalysts. However, the major compe-
titive process for the selective oxidation is the polymerization of furfural to generate resins
under the oxidative conditions. The by-product of furfural oxidation in gas phase is furan.
In fact, furan is the first intermediate in the mechanism of the furfural oxidation and an
important intermediate in chemical industry. Hence, even though it cannot be produced
directly from biomass, it is produced from FA [192].

6. Other Chemical Transformation of Furanics
6.1. Catalytic Carbonyl Coupling of Furanics with Nucleophilic Nitrogen Sources

The introduction of nitrogen-containing functionalities in biomass-derived compounds,
add value and expand their industry applicability [193]. In fact, reductive amination of
HMF constitutes an important basic route for the sustainable production of nitrogen-
containing compounds from biorenewables [194]. HMF can be converted into valu-
able N-containing furanyl compounds through the reductive amination of aldehyde
groups (Figure 9).
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N-Substituted 5-(hydroxymethyl)-2-furfuryl amines have a wide application in phar-
maceutical industry, e.g., for the production of calcium antagonists, muscarinic agonists,
cholinergic agents, and carcinogenesis inhibitors [195]. These structures are conventionally
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prepared by a Mannich-type reaction starting from FAL or FA with primary amines under
harsh reaction conditions [196]. However, the C2 aldehyde group makes the C5 position of
furan ring difficult for addition because of the deactivating effect [197].

The use of a metal catalysts is a prerequisite for efficient reductive amination via
two reaction routes, including initial reduction to alcohols followed by amination or
first the amination to form coupled imines and subsequent hydrogenation [198]. Zhang
reported an optimal Ru-based catalyst Ru(DMP)2Cl2, (DMP) dichlorobis(2,9-dimethyl-1,10-
phenanthroline)ruthenium(II) for the reductive amination of HMF with aniline. N-phenyl-
5-(hydroxymethyl)-2-furfuryl amine was obtained in 68% yield at 50 ◦C with 12 bar H2
in 5 h.

H2 is employed as the reducing agent, which improves the atom economy of the
reaction in the presence of bio-based EtOH as solvent making the process more sustain-
able [199]. Particularly, the catalytic performance of Ru(DMP)2Cl2 was more effective at
60 ◦C with a sharp increase in the yield (up to 98%). Hence, this catalytic system was effi-
cient for synthesizing a number of new aminomethyl-hydroxymethylfurans with primary
and secondary amines.

Homogeneous catalysis can promote the direct amination and reductive amination of
furanic aldehydes and its derived alcohols into polymers. Mecking described the reductive
amination of HMF with ammonia in the presence of the Milstein Ru-acridine diphosphine
complex (Figure 9) to furfuryl diamines. This reaction led to the desired product 2,5-
bis(aminomethyl)furan in 65% yield at 150 ◦C after 4 h with 2.5 bar of H2 [200]. The
monoamine derivative 2,5-bis(aminomethyl)furan is also an important monomer for the
manufacture of long-chain polyamides. Bis(hydroxylmethylfurfuryl)amine is a key furan-
based monomer for the synthesis of functional biopolymers, which can be synthesized
from the reductive amination of HMF.

Thus, the reductive amination of HMF with n-heptylamine was achieved with the
already described Ru(DMP)2Cl2 catalyst. The bis(hydroxylmethylfurfuryl)amine was ob-
tained in 90% yield at 110 ◦C with 0.2 bar of H2 and 12 h [201]. The condensation of
HMF with the alkylamine followed by hydrogenation forms the amine, which yielded
bis(hydroxylmethylfurfuryl)amine after subsequent addition reaction, dehydration and
hydrogenation. The authors claimed through comparison experiments and X-ray photo-
electron spectroscopy analysis that the synergistic effect of Ru (II) and DMP ligand was
accountable for the remarkable catalytic performance of the Ru-based catalyst.

Furfurylamines derived from the selective reductive amination of furfurals exhibits
diverse applications in the industry, including the preparation of pharmaceutical, such
as antiseptic agents, antihypertensives, and diuretics as well as agrochemicals, pesticides,
and synthetic resins and polymers [202]. The synthesis of furfurylamines from furfurals
by reductive amination has been investigated using various reducing agents and catalysts.
Reducing agents such as hydrogen gas, silanes, borohydrides, and formic acid have been
reported in the literature.

Jagadeesh described the use of RuCl2(PPh3)3 for the reductive amination of furfural
with ammonia, providing 85% yield of furfurylamine in 24 h and 130 ◦C under 40 bar of
H2 [203]. Noteworthy, the Ru-hydride species RuH2(PPh3)3 or RuHCl(PPh3)3, formed in
the reaction served as active catalytic species reacting with formed furfuryl imine. Recently,
Nielsen reported an efficient, chemoselective, and base free transfer hydrogenation of
furfural to furfuryl amines employing Ru-MACHO-BH as catalyst and iPrOH as H-donor.
A relatively low catalyst loading (0.5 mol%) in the presence of MgSO4 as drying agent
resulted in full conversion of furfural to furfuryl amines at 90 ◦C after 1 h [204]. The
general applicability of this method was tested with various amines affording moderate to
excellent yield.

Loh described the asymmetric arylation of FAL in the presence of a rhodium-catalyst
[RuCl(C2H4)]2L (L = (1R,4R)-2,5-Diphenylbicyclo[2.2.2]octa-2,5-diene) to produce fury-
lamine with 97% yield and 99% ee [205]. This methodology provides highly functionalized
amines, which can be converted to piperidone-based pharmaceuticals.
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6.2. Functionalization of Furanics and C–C Bond Formation

Furan-derived compounds are accessible intermediates for many other transforma-
tions in organic synthesis and constitute structural motifs in natural products or biologically
drug molecules [206,207]. For example, Sheldon reported the palladium-catalyzed carbony-
lation of HMF with PdCl2/TPPTS system in water at 70 ◦C and 5 bar CO (Figure 10) [208].
In addition to 4-formyl-2-furancarboxylic acid, they observed MF as byproduct from the
reduction of HMF.
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The decarbonylation/reduction of HMF was explored by Klankermayer and Leit-
ner [209]. The reaction was carried out with a catalytic system IrCl(cod)2 (cod=1,5-
cyclooctadiene) as the metal precursor in the presence of a phosphine ligand (PCy3) in
boiling 1,4-dioxane resulting in 41% conversion with 97% selectivity towards DHMF after
48 h. Interestingly, the addition of CO2 increased the conversion up to 99%, suppressing
the formation of humins. The substitution of solvent with THFA converted all the mixture
into a single product stream of THFA.

The elongating of carbon chains of biomass-derived furanic compounds to produce
fuel precursors or furan-based platform molecules can be achieved using several strategies,
including aldol condensation [210,211], hydroxyalkylation/alkylation [212,213], Knoeve-
nagel condensation [214], benzoin condensation [215], and Diels−Alder reaction [216].
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The benzoin condensation of furfural is a well-known process for the synthesis of
furoin. This class of compound is relevant for the preparation of alkane fuels via the HDO
process. Leeuwen described the asymmetric reduction of the carbonyl group of furoin with
a chiral catalyst RuCl(p-cymene)((S,S)-TsDPEN) (0.5 mol%) to produce hydrofuroin with a
96% yield [217].

In general, aldol condensation reactions involve the enolization of a carbonyl group
containing an α-C-H followed by C–C coupling with another carbonyl and subsequent
dehydration. Some homogeneous catalysts have been successfully applied in the synthesis
of diesel-fuel-range multi-carbon precursors via aldol condensation. For instance, Zhang
reported various metal chlorides catalysts, such as NiCl2, CoCl2, CrCl3, VCl3, and FeCl3, for
the aldol condensation of furfural with acetone in [BMIM]Cl (1-butyl-3-methylimidazolium
chloride) at 140 ◦C and 1.5 h [218]. The enhanced catalytic activity was observed with VCl3
in the presence of ethanol, giving a 38% yield of furfurylideneacetone (FAc) and a 52%
yield of (2-furanyl)-1,4-pentadien-3-one (F2Ac) at 160 ◦C and 1.5 h. Apparently, the acetal
reaction of furfural with ethanol reduced the formation of side reactions of furfural.

Van der Eycken and Noël used HMF as acyl surrogates for the direct C-2 acyla-
tion of indoles at ambient temperature via dual photoredox/transition-metal catalysis
in both batch and flow conditions [219]. The reaction was carried out in the presence of
Pd(OAc)2 (10 mol%), fac-[Ir(ppy)3], (2 mol%), N-(tert-butoxycarbonyl)-L-valine (Boc-Val-
OH, 20 mol%) in CH3CN (0.1 M) under argon, and exposed to light source for 24 h at
25 ◦C. Thus, the heteroatomic aldehydes, such as FAL and 2-thenaldehyde (TA), led to the
corresponding 2-acylindole with a relatively moderate yield (68−85%). Interestingly, HMF
showed low reactivity and a lower yield (34%). Presumably, this detrimental effect is due
to the poor compatibility of the hydroxymethyl group with an oxidative single electron
transfer pathway.

Finally, Aydin described the asymmetric Henry reaction of FAL with nitromethane
catalyzed by Cu(OTf)2 (5 mol%) in the presence of an excess of a chiral oxazoline base
ligand and iPrOH at 0 ◦C. The product furfural nitroaldol was isolated with a 72% yield
and 80% ee. This β-nitro alcohol can be converted into other key building block molecules
of natural products or pharmaceuticals [220].

6.3. Undirected C–H Activation

The catalytic activation of aromatic C−H bonds leading to the formation of a C−C
bond is extremely relevant for chemical and pharmaceutical industries. In this regard,
furans constitute key substrates for the synthesis of functionalized synthons. For example,
Reiser and coworkers explored the transformation of furfuryl ester to cyclopropane in
36% yield and 91% ee employing a chiral CuBox catalyst Cu(OTf)2iPr-Box (Figure 11). In
general, cyclopropanes are valuable synthetic building blocks in organic synthesis for the
construction of natural products and drugs [221].

Fujiwara reported Pd-catalyzed intermolecular dehydrogenative Heck reactions of
furans with activated olefins in the presence of Pd(OAc)2 giving styrene-type products with
a 75% yield with catalyst loadings as low as 0.5 mol% in AcOH-dioxane [222]. Since then,
other systems have been reported to increase the TON with various oxidants, additives
and solvents.

Hartwig reported the Ir-catalyzed oxidative coupling of furans with unactivated
olefins to produce branched vinylfurans in the presence of a second alkene as the hydrogen
acceptor [223]. The catalytic system Ir(coe)2Cl2 complex (2 mol%) and the air-stable
bisphosphine ligand (±)-TMS-SEGPHOS (4 mol%) were combined to carry out the reaction
at 50 ◦C for 24 h in tert-butylethylene (TBE) as a sacrificial hydrogen acceptor. Higher
yields (up to 99%) and selectivities were reported with furans containing electron-donating
groups at C-2 on the furan.
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Other synthetic methodologies for the production of bio-based synthons, such as
2-furanyl-hydroxyacetates, have been reported. For example, Jurczak published examples
of efficient Friedel−Crafts reactions of a series of furans with alkyl glyoxylates promoted
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by a 6,6′-dibromo-BINOL/Ti(IV) complex (2–5 mol%) in toluene at 20 ◦C affording up to
98% yields of 2-furanyl-hydroxyacetates with high enantioselectivity (90–97% ee) [224].
Yamazaki also described the Friedel-Crafts process using Cu(OTf)2 (10 mol%) in THF at
25 ◦C [225]. The reaction gave yields of up to 90% with 60% ee for the substituted furan.

Forgione described the modification of biomass-derived 2,5-furandicarboxylic acid
to produce 2,5-diaryl furans through the highly regioselective decarboxylative cross-
coupling reaction with Pd(dba)2 with high catalyst loadings (15 mol%) in dimethylfor-
mamide (DMF) [226]. The addition of silver-containing base, Ag2CO3 (1.5 equiv) and
(2-biphenylyl)di-tert-butylphosphine (JonhPhos) increased the yield to 80% at 200 ◦C. The
same approach was applied for the synthesis of the muscle relaxant dantrolene from
HMF [227].

Terminal alkynes are important precursors of substituted polyacetylenes, which ex-
hibit unique optical, mechanical, magnetic, and electrical properties [228]. The conventional
alkynylation of aldehydes requires harsh basic conditions, making the process unsuitable
for HMF. Ananikov established that an alternative to, e.g., the Corey–Fuchs or the Seyferth–
Gilbert reactions, is the Sonogashira coupling of 2-hydroxymethyl-5-ethynylfuran (HMEF)
with iodobenzene in the presence of PdCl2(PPh3) (2 mol%) at 60 ◦C overnight. The cor-
responding alkyne was produced at a 92% yield [229]. The polymerization of terminal
alkynes is feasible in the presence of Rh-based catalytic systems. Thus, ethynyl derivatives
derived from HMF were subjected to the polymerization reaction catalyzed by Rh(nbd)Cl2
(nbd=norbornadiene) (0.75 mol%) in triethylamine at 25 ◦C.

7. Conclusions

Biomass is the most accessible and low-cost economical solution for the production
of sustainable transportation fuels as well as the only non-petroleum route to organic
molecules for the manufacture of bulk and fine chemicals. However, designing a sustain-
able and cost-effective biorefinery remains a great challenge. The upgrading of biomass
feedstock involves chemical transformations, such as hydrolysis, dehydration, isomeriza-
tion, oxidation, hydrogenation, deoxygenation, and hydrodeoxygenation.

Effective catalysts are critical for developing efficient and clean chemical processes
in industry. Thus, the design of catalysts for such transformations require new classes of
homogeneous catalyst that are compatible with the highly oxygenated nature of biomass.
In addition, low-temperatures (<200 ◦C), the aqueous-phase processing of sugars, the de-
velopment of effective homogeneous catalysts with earth-abundant metals, and reductions
in the use of harmful reagents are desired.

The use of furanic molecules (HMF, FAL, BHMF, DFF, and FDCA) as starting materials
for synthetic applications is highly attractive for the scientific community and for indus-
trial applications. Over the past years, significant advances have been reported for the
production of biofuels with new catalysts. The highlighted examples in this review demon-
strated the range of potential chemical transformations that can occur for biomass-derived
platform molecules employing homogeneous catalysis. With the widespread application
of these synthetic methodologies, further progress is expected in this field.
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