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Abstract: The thickness of transition metal dichalcogenides (TMDs) plays a key role in enhancing
their photocatalytic CO2 reduction activity. However, the optimum thickness of the layered TMDs
that is required to achieve sufficient light absorption and excellent crystallinity has still not been
definitively determined. In this work, ultra-thin molybdenum disulfide films (MoS2TF) with 25 nm
thickness presented remarkable photocatalytic activity, and the product yield increased by about
2.3 times. The photocatalytic mechanism corresponding to the TMDs’ thickness was also proposed.
This work demonstrates that the thickness optimization of TMDs provides a cogent direction for the
design of high-performance photocatalysts.

Keywords: thickness optimization; transition metal dichalcogenides; ultra-thin molybdenum disul-
fide film; photocatalytic activity

1. Introduction

Photocatalytic CO2 reduction reaction (PC-CO2RR) is an elegant pathway in hetero-
geneous catalysis that transforms the CO2 molecule, which is a widely known pollutant
and one of the major causes of global warming, into a variety of useful chemicals by solar
light-driven conversion [1,2], and it is also expected to help achieve the goal of net-zero
industrial emissions [3]. However, the materials that have so far been investigated under
the PC-CO2RR principle still show poor conversion efficiencies and are still far from sat-
isfying practical applications [4]. One of the main issues is the lack of high efficiency in
photocatalysts that can be engaged in CO2 reduction. Although a large number of metal
oxide-based catalysts that can respond to ultraviolet light (such as titanium dioxide (TiO2))
have been reported to be suitable for PC-CO2RR applications, most of these materials
still possess relatively low conversion efficiencies [5,6]. Consequently, researchers have
devoted a great deal of time and effort to developing visible-light-active photocatalysts
with appreciable conversion efficiencies [7,8]. In addition to the issue of the absorption
of a broad range of wavelengths present in sunlight, another major factor that enhances
the performance of a photocatalyst is the ability of excellent carrier separation and trans-
portation. Presently, the conundrum faced by researchers in this field is that the low
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charge separation efficiency of the photocatalyst leads to the rapid recombination of pho-
togenerated electrons (e−) and holes (h+) in the entire photocatalytic process, making the
conversion efficiency very poor [9]. Therefore, a myriad of strategies have been explored to
manipulate the catalyst’s charge transfer and/or spatial separation capabilities to obtain
higher catalytic activity [7–10], including doping [11], co-catalysts, reduced particle size,
and heterojunctions.

Two-dimensional transition metal dichalcogenide (TMD)-based catalysts have been
predicted to be promising candidates for improving photocatalytic hydrogen evolution
and CO2 conversion efficiency in recent times [7,12,13], with several glowing mentions
of layered molybdenum disulfide (MoS2). Many reports indicate that MoS2 shows great
promise as a catalyst due to its tunable optical characteristics, suitable band-gap potential,
and high stability under continuous light illumination, allowing it to perform visible-light
photocatalysis [7,12–14]. For instance, MoS2 exhibits a good ability to convert CO2 into
valuable fuels (CH4, CO, CH3OH, HCOOH) through PC-CO2RR [15]. As a visible light-
driven photocatalyst for PC-CO2RR processes, it is necessary to conduct a thorough and
systematic study of the changes in light absorption and charge recombination caused by
tuning the number of layers of MoS2 and the subsequent photocatalytic activity. It has
been widely reported that a controlled number layers of MoS2 nanosheets can be made by
mechanical and chemical exfoliation methods [16,17]. When the size of MoS2 nanosheets
is reduced, it will not only change the ratio of the length of the edge to the base surface
of the MoS2 nanosheets but will also change the surface chemistry [16,17] of the material.
In the past, many publications have reported that the edge sites in MoS2 are more active
than the basal plane (which is relatively inert) [17,18], with respect to catalytic activity.
Therefore, it is understandably challenging to choose a method of MoS2 production that
can avoid excessive edge exposure while only tuning the number of layers in the catalyst
to solve the above-mentioned problems. The surface properties and edge size of the thin
film-type photocatalyst can remain unchanged when the film thickness changes. In this
way, the influence of thickness on the overall catalytic performance can be isolated from
other convoluting factors.

In this study, we have successfully synthesized ultra-thin MoS2 films (MoS2TFs) with
different thicknesses as model catalysts and investigated their PC-CO2RR activities under
visible light. We demonstrated that the layer numbers and crystallinity of MoS2TFs can
be fine-tuned by a three-step post-sulfurization and chemical vapor deposition process.
The results indicate that the photocatalytic activity was significantly enhanced with the
increasing thickness of the MoS2TFs. Impressively, 25 nm MoS2TFs exhibit the highest
photocatalytic activity because they have excellent optical absorption and an appropriate
grain size. This strategy not only provides a new perspective for enhancing photocatalytic
activity by controlling the thickness of the film but also gives us a deeper understand-
ing of the mechanism of optical absorption and charge separation in promising layered
photocatalysts such as MoS2.

2. Results and Discussion
2.1. Synthesis of Photocatalytic Ultra-Thin Film

In this paper, we report the growth and characterization of MoS2TFs on sapphire
substrates, wherein we used thermal evaporation in combination with chemical vapor
to synthesize the thin films to be studied. This method is similar to the one that was
reported in our previous publication [19]. Herein, we provide a detailed report on the
actual preparation of the MoS2TFs. We also elaborate upon the methods that can be
utilized to control and identify the disorder that could be observed in the thin film that we
synthesized. Figure 1a depicts the schematic diagram of the three-step method proposed
in this study. The first step is the deposition of the precursor MoO3 film on the c-sapphire
substrate by thermal evaporation. MoO3 films prepared by thermal evaporation have
the distinct advantages of adjustable thickness, large area, continuous film growth, good
uniformity, and high quality. The second step involves annealing the MoO3 film using a
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gaseous mixture of Ar and H2 at 500 ◦C for a total duration of 1 h. In this step, the MoO3
film underwent partial reduction and was converted to an MoO2 film, which is a form
that is easier to convert to our target MoS2TFs. The final step is the sulfurization of the
MoO2 films using a gaseous mixture of Ar and H2S at 900 ◦C for 0.5 h to produce the
target product (MoS2TFs). Figure 1b shows the temperature profile of the MoS2TFs growth
process for hydrogenation and sulfurization steps. Figure 1c shows the optical photographs
of the c-sapphire substrate before and after the growth of MoS2 thin films. From this picture,
it can be clearly seen that the MoS2TFs fully cover the entire sapphire substrate and have
excellent uniformity. In addition, the color of the sample surface changes from transparent
to dark yellow, as there is an increase in film thickness.
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Figure 1. (a) Schematic diagram of the MoS2TFs synthesis process. (b) The temperature profile for the
MoS2TFs growth process at different stages. (c) From left to right: the photographs of the substrate
before and after MoS2TFs growth with thicknesses varying from 0 to 50 nm.

2.2. Characterization of Photocatalytic Ultra-Thin Film

Figure 2a–d illustrate the thicknesses and surface roughness of the MoS2TFs measured
by atomic force microscopy. All specimens for the thickness measurements were prepared
by scratching the TFs. The area that was scanned in the AFM measurements is 10 × 10 µm
for these MoS2TF samples (see the first column in Figure 2). The height profiles of the AFM
images (second column in Figure 2) show that the thickness of the four MoS2TFs samples
was 7, 17, 25, and 50 nm, respectively. In addition, the surface roughness (Rq value) of the
four MoS2TFs samples was between 0.5 and 2.7 nm (third column in Figure 2). From these
AFM results, it can be conclusively stated that the MoS2TFs prepared by this three-step
method are layer-controlled, have excellent homogeneity, and have very smooth surfaces.

Confocal Raman spectroscopy was used to further characterize the quality and uni-
formity of synthesized MoS2TFs with various thicknesses. Figure 3 shows the Raman
spectra of the 25 nm MoS2TFs on sapphire substrates synthesized under different reaction
temperatures of 500 ◦C, 700 ◦C, and 900 ◦C, respectively. Figure 3a shows the two main
characteristic Raman peaks of MoS2 for all of the MoS2TFs samples, namely the in-plane
E1

2g peak at ≈384 cm−1 and the out-of-plane A1g peak at ≈409 cm−1. In addition, a small
LA(M) sub-peak at ≈227 cm−1 related to the defects in MoS2 can also be observed, which
is attributed to the longitudinal phonons at the M point in the Brillouin zone [20–22]. The
peak at 418 cm−1 comes from the sapphire substrate (A1g mode) [23]. Furthermore, the
intensity ratio of the LA(M) sub-peak to the A1g peak can be considered to be a marker for
evaluating the quality of MoS2TFs. In general, the good quality MoS2 samples with lower
disorder can be determined by lower LA(M)/A1g values [24,25]. In order to elucidate
our point, we plotted the LA(M) to A1g peak intensity ratio of the MoS2TFs samples as a
function of the reaction temperature, as shown in Figure 3b. The result shows that when
the reaction temperature increases (from T = 500 to 700 ◦C), the LA(M)/A1g intensity ratio
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shows a downward trend (from 0.15 down to 0.1). No clear LA(M) peak was identified as
the reaction temperature approaches 900 ◦C (Figure 3a). To the best of our knowledge, in
comparison to previous studies [24,25], the LA(M) to A1g peak intensity ratios reported
in this study are the lowest values to date. These data clearly indicate that the MoS2TFs
samples grown by the high-temperature process described herein have better film quality.
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Figure 3. (a) Raman spectra of the 25 nm MoS2TFs on sapphire substrates as a function of the reaction
temperature using 532 nm laser for sample excitation. The inset figure shows the Raman peak
position of the LA(M) mode at 227 cm−1. (b) The LA(M) to A1g peak intensity ratio of MoS2TFs with
different reaction temperatures. No clear LA(M) mode can be found in the Raman spectrum of the
T = 900 ◦C MoS2TF sample (green color).



Catalysts 2021, 11, 1295 5 of 16

Figure 4a presents the typical Raman spectra of the prepared MoS2TFs with thicknesses
increasing from 7 to 50 nm. The Raman spectra of commercial monolayer MoS2 on sapphire
substrate and bulk MoS2 crystal is also shown in Figure 4a, for ease of comparison. Raman
spectra of the monolayer MoS2 clearly showed the two characteristic peaks at 406.5 cm−1

(A1g mode) and 386.1 cm−1 (E12g mode). The separation between these two peaks (A1g and
E12g modes) is 20.4 cm−1. According to previous reports [20,21], the frequency difference
between the two main modes (∆k) could be used to identify the number of MoS2 layers.
When the number of MoS2 layers increases, the E12g mode will display a red-shift, whereas
the A1g mode undergoes a blue-shift [20,21]. It is worth noting that the incremental shift
becomes smaller and smaller as the number of layers increases. When the number of MoS2
layers increases, the E12g mode will display a red-shift, whereas the A1g mode undergoes a
blue-shift [20,21]. It is worth noting that the incremental shift becomes smaller and smaller
as the number of layers increases. When the number of MoS2 layers is four or more, the
frequencies of these two modes will approach the values for bulk MoS2 [26]. In Figure 4a,
we can clearly observe that when the MoS2TF thickness increases from 7 nm up to 50 nm,
there is no main peak shift phenomenon that is apparent in the Raman spectra of these
MoS2 samples, i.e., the two main Raman peaks (A1g and E12g modes) of these MoS2TF
samples were observed at ~410 cm−1 and ~384 cm−1, respectively. In addition, we also
found that the two main Raman peak positions for all MoS2TF samples are close to the
Raman peaks of commercial bulk MoS2 crystals, and there is a slight shift (MoS2TFs has
a blue shift (~1 cm−1) compared to the bulk MoS2), as shown in Figure 4b. It is worth
noting that the few-Layer MoS2 films (4 to 6 layers) synthesized by mechanical exfoliation
didn’t present this slight shift phenomenon [26]. We assume it may be related to the fact
that MoS2TF is grown on sapphire substrates, instead of being directly peeled off from
the bulk MoS2 crystal. In addition, it has been reported that due to factors inherent to the
substrate (such as, deformations and mismatch in the coefficient of thermal expansion),
the single-layer and double-layer TMD materials will generate strain, which causes these
two Raman modes to shift slightly [27,28]. The detailed mechanism of the onset of shifts in
the Raman peaks in multilayer MoS2 or the ultra-thin films synthesized by us on sapphire
substrates is still unclear, and further investigation is needed.
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In order to evaluate the uniformity of the MoS2TFs prepared by our process, we
measured the ∆k value at 16 different points on the MoS2TFs with increasing thickness,
as shown in Figure 4c. The results show that the measured ∆k values of all MoS2TF
samples are between 25.4 to 25.9, which are close to the values of bulk MoS2 crystals. This
result demonstrates the excellent uniformity of our custom-grown MoS2TFs with various
thicknesses. All Raman results also indicate that uniform thickness-controlled MoS2TFs
can have the advantage of large scalability of growth on sapphire substrate.

Evolution of the optical properties of the as-prepared MoS2TFs was further investi-
gated by measuring the optical absorbance spectra of MoS2TFs as a function of thickness.
Figure 5a shows the UV-Vis-NIR absorption spectra of 7, 17, 25, and 50 nm MoS2TFs,
respectively. All deposited films exhibit four prominent peaks characteristically indicating
2H-MoS2 excitonic features in the visible wavelength region. More specifically, the A and
B excitons that form at the K-point of the Brillouin zone appeared in the 600 to 700 nm
wavelength region, while the C and D excitonic peaks were located in the wavelength range
from 400 to 450 nm. The absorption spectrum of the sapphire substrate has been shown
in Figure 5a. Looking at Figure 5b we found that with increasing thickness of MoS2TFs
from 7 to 25 nm, the absorbance at peak of A exciton increased rapidly from 0.25 to 0.6.
However, when the film thickness increased to 50 nm, the MoS2TFs showed a saturation
trend of absorbance, similar to the absorbance spectrum of 25 nm film. The absorbance
at peak of B exciton presents a trend similar to the A exciton. We also observed that the
A exciton energy (EA) of MoS2TFs on sapphire samples will decrease as film thickness
increase (from 1.851 eV to 1.834 eV), and it will converge when the thickness reaches 25 nm
(about 40 layers), as shown in Figure 5c. It is worth noting that these results are not the
same as previously reported in literature [29]. In a previous study, the A exciton position
of the micromechanically-exfoliated nanosheets was seen to decrease from 1.89 to 1.83 eV
as the thickness increases from 1 to 6 layers. When the number of layers reaches 5 or 6,
the downward trend of A exciton position begins to converge. In addition, in the case of
liquid-phase exfoliated nanosheet samples, when the number of layers reaches 10 layers,
the exciton peak position will begin to converge. We think this may be related to the
difference between the dielectric constant of the CVD-grown MoS2TFs samples and the
exfoliated samples. Since the interlayer electronic hybridization and dielectric shielding
effect was changed as a function of the number of MoS2 layers, the resulting properties of
A excitons also changed comparably. However, the detailed mechanism of the position
shift pertaining to the energy of the A exciton of MoS2TFs on sapphire substrates is still
unclear. Therefore, we suggest that the dielectric constant of MoS2TFs grown on a sapphire
substrate should be measured directly using spectroscopic ellipsometry combined with
quantum electrostatic heterostructure (QEH) model calculation [29]. This approach can
help to elucidate the layer-related exciton effect of MoS2TFs more quantitatively.
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The optical band gap of a photocatalyst can be calculated by the following formula:
(αhv)1/n = A(hν-Eg) [30,31]. In this equation, ‘α’ is the absorption coefficient, ‘h’ is Planck’s
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constant, ‘υ’ is the photon frequency, ‘A’ is a constant, and ‘Eg’ is the band-gap energy.
The ‘n’ is the exponent term, which denotes the nature of the electronic transition. When
n = 1/2, it signifies a direct allowed transition, and when n = 2, it represents an indirect
allowed transition. According to previous reports [32], monolayer MoS2 is a direct energy
band-gap semiconductor, and an increase in the number of layers (including multi-layer,
film, and bulk crystal) causes a shift of behavior to an indirect band-gap semiconductor.
Not only that, the Eg value of MoS2 will change from 1.9 eV for a monolayer to 1.2 eV
for bulk crystal. Tauc plots as a function of photon energy for MoS2TFs can be used to
determine the Eg value by extrapolating the straight-line portion of the indirect electronic
transitions, as shown in Figure 6. Here, we used the indirect transition value (n = 2) to
calculate the Eg value of all MoS2TF samples (Figure 6a–d). The results show that when
the film thickness is increased from 7 to 50 nm, the Eg value of MoS2TFs will decrease from
1.71 to 1.60 eV (Figure 6e). The Eg values of monolayer and bulk crystal also shown in
Figure 6e for reference purposes.
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Photoluminescence (PL) is another optical spectroscopic technique used to measure
the band gap of semiconductors. Monolayer MoS2 is a direct bandgap semiconductor
that exhibits significant PL intensity and prominent excitonic features (A and B exciton
peaks) in PL spectra [33]. Multi-layer MoS2 is an indirect band gap semiconductor, and
its PL intensity will decrease rapidly as the number of layers increases. In bulk crystal
MoS2, the PL intensity is relatively weak; so much so, that in some cases no PL excitation
at all is observable. Figure 7 shows the PL spectra of MoS2TFs on sapphire with various
thicknesses. The results show that our as-deposited MoS2TFs do not exhibit strong PL
intensity. When the thickness of MoS2TFs is increased from 7 to 50 nm, the PL intensity
will decrease dramatically (Figure 7a). No clear A exciton peak was identified in the PL
spectra of 25 nm and 50 nm MoS2TFs. The prominent MoS2 Raman modes were observed
at around 550 nm wavelength region for all MoS2TFs samples. Not only that, the broad PL
spectra profile and non-obvious excitonic features (A and B exciton peak) of the MoS2TFs
are similar to bulk crystal MoS2 (Figure 7b). The PL signal of the sapphire substrate is
still visible and overlap with A exciton peak of MoS2 occurs at a wavelength of around
690 nm (Figure 7a,c). Therefore, it is difficult to determine the position of the A exciton
peak and bandgap for all MoS2TFs samples. The PL spectra of our as-prepared MoS2TFs
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exhibited similar excitation phenomena as chemically exfoliated MoS2 layers. In the case
of chemically exfoliated MoS2 layers [33], when the thickness of the MoS2 layer is greater
than 7 nm, no clear A exciton peak can be observed in the PL spectrum.
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Figure 7. Photoluminescence spectra of (a) MoS2 thin films grown on a sapphire substrate with
different thicknesses, (b) sapphire, and (c) bulk MoS2 crystal.

X-ray diffraction (XRD) was used to study the structural properties and crystalline
parameters of the as-prepared MoS2TFs. From the XRD patterns shown in Figure 8, it
can be observed that all MoS2TF samples are unequivocally identified as 2H MoS2 with a
strong characteristic peak appearing at 2θ = 14.3◦, which was assigned to the MoS2 (002)
lattice plane [34]. However, the peak denoting the (004) lattice plane of MoS2 at 2θ = 29◦

cannot be observed in our MoS2TF samples. Furthermore, we used the Scherrer Equation
to analyse the grain size of the MoS2TFs, as listed in Table 1. According to the Scherrer
formula, D = Kλ/(β cos θ) [35], where ‘D’ is the average grain size in vertical direction
of crystal structure, ‘K’ is the shape factor having a typical value of about 0.9, ‘λ’ is the
wavelength of the X-ray source, ‘β’ is the full width at half maximum intensity of the peak
(in Rad), and ‘θ’ is the Bragg angle. As seen in Figure 8b, we found that as the thickness of
MoS2TFs increased from 7 to 25 nm, the grain size of the MoS2TFs increased from 5.6 to
21 nm. However, when the film thickness increased to 50 nm, the grain size of MoS2TFs
was constrained to around 25 nm. This data indicates that all the MoS2TF samples have
good crystallinity, and the grain size is almost identical to the measured film thickness,
except in the case of the 50 nm sample.

Table 1. The calculated grain size of MoS2TFs on sapphire from the (002) peak using Scherrer’s formula.

Thickness (nm) β/Degree 2θ/Degree D/nm

7 1.43 14.29 5.60
17 0.64 14.47 12.51
25 0.38 14.50 21.07
50 0.32 14.47 25.02
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2.3. Photocatalytic Performance

The evaluation of the PC-CO2RR performance of the MoS2TFs with various thick-
nesses was performed in a visible light-driven gas-phase photoreaction vessel for 24 h, as
shown in Figure 9. Briefly, the MoS2TFs with an area of 2 cm2 were placed at the center of
the photoreactor. Then, N2 gas and moist CO2 gas were sequentially passed through the
photoreactor for 30 min and 1 h, respectively. A 100 W Xe solar simulator with an AM1.5
filter was used as the light source to study the photoconversion of CO2 and water vapor
over a time period of 24 h. The schematic representation of our gas-phase and batch-type
PC-CO2RR system is shown in Figure 9a. In order to avoid the overestimation of the
catalytic activity of our samples due to carbon contamination on the surface of the reactor,
we carried out two blank tests as the background for all MoS2TF samples (Supporting
Figure S1 in Supplementary Material). This background value will be subtracted from
the spectral data of the final gas products produced by the MoS2TF catalysts after 24 h
of photocatalysis. Figure 9b,c show the product yields of the MoS2TFs with different
reaction temperatures and different thicknesses. All the MoS2TFs samples are capable
of catalyzing the reduction of CO2 into methane (CH4), ethylene (C2H4), acetaldehyde
(CH3CHO), and acetone (C3H6O). Methane and acetaldehyde were identified as the first
and second major products, respectively. In addition, small amounts of ethane and acetone
were also detected. The corresponding gas production yield and quantum efficiencies (QE)
of all MoS2TF samples are summarized in Tables 2 and 3, respectively.
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Table 2. Production yields and QEs of MoS2TFs synthesized at various reaction temperatures.

Apparent Production Yield (nmol/cm2) QE (%)

MoS2TFs CH4 C2H4 CH3CHO C3H6O Total MoS2TFs Total (%)

Blank test 0.14 0.07 0.78 0.48 1.47 Blank test none
T = 500 ◦C 0.83 0.22 0.96 0.08 2.09 T = 500 ◦C 0.000029
T = 700 ◦C 0.86 0.39 1.77 0.14 3.16 T = 700 ◦C 0.000045
T = 900 ◦C 1.38 0.86 2.35 0.20 4.79 T = 900 ◦C 0.000068

Note: The gas products from the blank test have been subtracted from all gas product values pertaining to the samples.

Table 3. Production yields and QEs of MoS2TFs with various thicknesses.

Apparent Production Yield (nmol/cm2) QE (%)

MoS2TFs CH4 C2H4 CH3CHO C3H6O Total MoS2TFs Total (%)

Blank test 0.14 0.07 0.78 0.48 1.47 Blank test none
t = 7 nm 0.95 0.34 0.69 0.15 2.13 t = 7 nm 0.000030

t = 17 nm 0.94 0.47 1.41 0.25 3.07 t = 17 nm 0.000044
t = 25 nm 1.38 0.86 2.34 0.21 4.79 t = 25 nm 0.000068
t = 50 nm 1.10 0.75 2.16 0.15 4.16 t = 50 nm 0.000059

Note: The gas products from the blank test have been subtracted from all gas product values pertaining to the samples.

The QE of the MoS2TFs was determined as the ratio of the effective electrons used
for gas production, such as the CH4 molecule, to the total input photon flux, and it was
calculated by the following equation [36,37]:

QE% =
Effective electrons

Total photons
× 100% =

8 × Y × N
Θ × T × S

× 100% (1)

where ‘Y’ is the product yield of CH4 (mol), ‘N’ is Avogadro’s number (6.022 × 1023 mol−1),
‘Θ’ is the photon flux (2.46 × 1017 cm−2 s−1), ‘T’ is the reaction time (s), and ‘S’ is the area
of illumination (cm2). The area under illumination (S) of the MoS2TF samples is 2 cm2. For
example, the QE% of CH4 for 25 nm MoS2TFs after 24 h of PC-CO2RR can be calculated as
QE = (8 × 1.38 × 10−9 × 6.022 × 1023)/(2.46 × 1017 × 24 × 3600 × 2) × 100% = 0.000016%.
Based on the same calculation method, the QE%s of C2H4, CH3CHO, and C3H6O for the
25 nm MoS2TFs were calculated to be 0.000015%, 0.000033%, and 0.0000047%, respectively.
The total QE of all gas products for MoS2TFs is 0.000068%, and it is calculated by the
following equation:

Total QE% = QE% of CH4 + QE% of C2H4 + QE% of CH3CHO + QE% of C3H6O. (2)

Figure 9b shows that the 25 nm MoS2TFs prepared at a reaction temperature of 900 ◦C
can convert the highest amount of CO2 into the four gas products (total amount of gas
products is 4.79 nmol/cm2), which is followed by the samples produced at a reaction
temperature of 700 ◦C (3.16 nmol/cm2), and these in turn are followed by the MoS2TF
samples synthesized at a reaction temperature of 500 ◦C (2.09 nmol/cm2). The resulting
total QEs for the MoS2TF samples produced at reaction temperatures of 500, 700, and
900 ◦C were 0.000029%, 0.000045%, and 0.000068%, respectively. In Figure 9c, we observe
that as the thickness of MoS2TFs increased from 7 to 25 nm, the gas production yield and
total QE exhibited a gradually increasing trend (2.13 to 4.79 nmol/cm2 and 0.000030 to
0.000068%). However, when the film thickness increased to 50 nm, the gas production yield
and QE showed a downward trend (4.16 nmol/cm2 and 0.000059%). These results indicate
that the 25 nm MoS2TFs exhibited the highest photocatalytic activity.

2.4. Photocatalytic Mechanism

From the above-mentioned CO2 reduction activities of different MoS2TF photocata-
lysts, we can conclude that the crystallinity and thickness of MoS2TFs play an important
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role in the PC-CO2RR processes. We will try to understand the underlying photocatalytic
mechanism from the following aspects, as illustrated in Figure 10.
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2.4.1. Size Effect

In case 1 as illustrated in Figure 10, the typical process of PC-CO2RR on a semiconductor-
based photocatalyst has been schematically depicted. Briefly, the PC-CO2RR process
consists of five consecutive steps: light absorption, charge separation, CO2 adsorption,
surface redox reaction, and product desorption [38,39]. These five steps can be further
divided into two theoretical categories, that is, photophysics (the first two steps) and pho-
tochemistry (the next three steps). For the purpose of understanding the performance of
the catalysts we have synthesized, we will mainly focus on understanding the relationship
between photophysics and the activity of our photocatalysts. The first step shows that it
is necessary to analyze the ability of photocatalysts to absorb photons and consequently
generate electron–hole pairs, which is acutely affected by factors such as the energy band
gap (Eg) and thickness of the photocatalyst. The second step hinges on the ability of photo-
catalysts to effectively separate the photogenerated electrons and holes, which is directly
related to charge recombination phenomena. The crystallinity and surface properties of
photocatalysts all tangibly affect charge recombination. Therefore, in order to improve
the overall photocatalytic efficiency, it is necessary to increase the optical absorption of
the incoming visible light radiation, to generate electron–hole pairs with vigor, efficiently
separate the photo-generated charge carriers, and suppress their recombination, as shown
in Figure 10.

It is worth noting that the utilization of the so-called “nanosizing strategy” has proven
to be very beneficial toward improving the performance of visible light-driven photocata-
lysts [10,40]. For instance, Ta3N5 nanoparticles with a particle size of 30–50 nm exhibited
higher photocatalytic activity for H2 evolution, as compared to traditional bulk Ta3N5
particles (300–500 nm) [40]. A photocatalyst with a smaller particle size has the advantage
of a higher surface area, which also increases the density of surface catalytic sites. However,
it usually results in lower crystallinity and may reduce catalytic activity. Moreover, in
particle type photocatalysts with a three-dimensional geometry, calculative complications
are caused by particle size reduction, such as crystal facet and morphology change. This
makes it a challenging task to lucidly explain the actual catalytic mechanism. Therefore, we
propose the utilization of thin-film type photocatalysts with a two-dimensional geometry
to isolate the “thickness effect” and avoid the above problems for the study of specific
catalytic mechanisms study.
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2.4.2. Effect of Optical Absorption

According to past reports [32,41], by controlling the number of layers of MoS2, not
only can the bandgap be fine-tuned, but the light absorption performance can also be
optimized. In a previous study, Atwater’s group reported that the sub-15 nm thick TMD
flakes created by mechanical exfoliation, have near-unity optical absorption [41]. Their
calculated and measured absorption spectra showed that the ultra-thin (14–17 nm) MoS2
flakes on an Ag back reflector have the highest broadband absorption. According to our
experimental data, the energy bandgap of MoS2TF samples with different thicknesses is
about 1.7 to 1.6 eV and there is not too much variation in these values (Figure 6e). However,
there are obvious differences in the optical absorption of MoS2TF samples with different
thicknesses (Figure 5b). The ultra-thin MoS2TFs on sapphire with a thickness of 25 nm
exhibited the highest optical absorption. This result is similar to the optical absorption
capacity of MoS2 flakes reported in literature. Therefore, we believe that the sufficient
optical absorption of visible light radiation by films having an optimized thickness of 25 nm
(sample (case II)), which exhibits better photocatalytic activity than 7 or17 nm MoS2TFs
samples (case III), as shown in Figure 10.

2.4.3. Effect of Grain Size

According to our experimental data, the grain size of MoS2TFs samples with different
thicknesses is about 7 to 25 nm. In addition, a point to be noted is that the 25 nm MoS2TF
sample has almost the same thickness as the grain size. The 50 nm MoS2TF sample has
grain boundaries because the grain size is only 25 nm. Therefore, we propose a possible
reason to explain why the 25 nm MoS2TFs sample (case II) has better photocatalytic activity
than 50 nm MoS2TFs samples (case IV), as shown in Figure 10. It is well known that the
grain boundary of semiconductors is the primary site of charge recombination, and changes
therein significantly affect the charge transport [42,43]. Based on this knowledge, we think
it is reasonable that the grain size of ultra-thin MoS2TFs samples is similar to film thickness
(case II: D is similar to t), which can promote the internal photogenerated carriers to migrate
to the surface and efficiently drive the catalytic reaction (case II). On the contrary, the grain
size of thick MoS2TFs samples is smaller than the film thickness (case IV: D is smaller
than t), resulting in the formation of grain boundaries inside the film and the subsequent
suppression of the probability of photogenerated carrier transfer to the surface. We studied
two additional thick MoS2TFs samples and measured their grain size and catalytic activity
to support this scientific point (Supporting Figures S2 and S3 and Supporting Table S1).
The results clearly indicate that when the thickness is continuously increased (from 40 to
60 nm) without increasing the grain size (maintained at around 20 nm), the photocatalytic
activity does not increase dramatically. In our current TFs process, the biggest grain size of
MoS2TFs with a thickness of 7 to 60 nm is about 20 nm, and the 25 nm MoS2TFs sample
has the best photocatalytic activity of about 4.79 nmol/cm2. Therefore, we believe that
in addition to light absorption, the grain boundary inside the photocatalyst is another
important factor that significantly affects the catalytic activity.

2.4.4. Stability Test

In order to test the stability of our MoS2TFs, this model catalyst was reused in a
fresh reactor for three successive cycles. According to Supporting Figure S4, the total
gas production yield slightly decreases over time, and the reduced ratio was calculated
to be about 10% after three cycles. The slight decrease in the activity after the three
cycles might be due to the inactivation or poisoning of the catalytic sites on the basal plane
MoS2TFs. In addition, we also found a slight change in the production ratio of methane and
acetaldehyde (methane production is increased and acetaldehyde formation is decreased).
The results indicated that when reducing the catalytic sites on the MoS2TFs surface, the
catalytic activity and the reaction pathway of the product will be consequently altered. The
detailed reaction mechanism is still unclear, and further investigation is needed.
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In addition to optical absorption and the grain size of the MoS2TFs, other related
phenomena worth studying further include measuring the photocarrier recombination
losses, surface reaction investigations, product analysis, and isotopic labeling. For recombi-
nation, it is worth noting that traditionally, time-resolved absorption and PL spectroscopies
can successfully study the dynamic behavior of photocarriers in photocatalysis [44,45].
However, when the thickness increases, neither our as-prepared MoS2 film nor the MoS2
flake [29] have any obvious PL emission. Therefore, this tool cannot be used to understand
the behavior of carrier recombination in the case of our MoS2TFs. Other alternative tools
need to be selected and developed, such as advanced space-resolved techniques [46]. For
surface reactions, the relationship between the surface of TMD catalysts and the surface
reaction pathways has still not been clearly understood. It is necessary to use in situ
catalytic tools to study the surface reactions on the catalyst surface, such as ambient pres-
sure X-ray photoelectron spectroscopy for CO2 adsorption [47] and infrared absorption
spectroscopy for surface species [48]. For product analysis, the accurate measurement of
gas products relies heavily on the sensitivity and number of gas analysis detectors (such as
gas chromatography-thermal conductivity detector (GC-TCD) and chromatography-flame
ionization detector (GC-FID)) [49]. In most cases, only one gas detector is used, which
often leads to inaccuracies in the overall gaseous product evaluation. For instance, H2
could also be one of the products of CO2 reduction, and its detection requires GC-TCD.
Not only that, the H2 production rate should also be factored into the quantum efficiency
calculations. The complete analysis of the products of CO2 reduction with the appropriate
equipment is one of the directions that certainly must not be overlooked. While isotopic
labeling technology may be a slightly more expensive alternative to confirm the accuracy
of the products and product-specific active sites [50], it is certainly a project well worth
being further investigated.

3. Materials and Methods
3.1. Sample Preparation

Uniform MoS2TFs on (0001) sapphire substrate with different thicknesses were pre-
pared by two-step post-sulfurization of vacuum-deposited molybdenum trioxide (MoO3)
films. Initially, a c-face sapphire substrate was cleaned with ethanol, acetone, and DI water
for 5 min, respectively. Then, the clear substrates were subjected to O2 plasma treatment
for 10 min prior to the deposition of the MoO3 film. The precursor MoO3 powder was
supplied by Alfa Aesar with 99.95% purity, which was deposited on the top of sapphire
substrate as a thin film, using thermal evaporation. In this process, the desired thickness
of the film to be deposited can be closely monitored using a quartz crystal microbalance
(QCM) by measuring the change in frequency of a quartz crystal resonator. The deposition
rate was maintained in the range of 0.1 to 0.2 kÅs−1. Thereafter, all samples were placed
into a chemical vapor deposition (CVD) system to perform the post-sulfurization process.
Before introducing H2S gas into the system, the MoO3 films were annealed at 500 ◦C for 1 h
under vacuum in an Ar-H2 environment (4:1), with the aim of reducing them into MoO2.
Finally, the CVD growth process was performed at atmospheric pressure with 100 sccm of
Ar and an H2-H2S mixture (flow rate 1:4). The post-sulfurization process was performed at
1000 ◦C at the rate of 30 ◦C min−1, and this condition was maintained for 30 mins to ensure
successful sulfurization of the MoS2TFs.

3.2. Characterization

The as-grown MoS2TFs on sapphire substrates were systematically characterized
by the following microscopy and spectroscopy-based tools. Firstly, the thickness and
surface roughness of MoS2TFs was examined using the tapping mode of atomic force
microscopy (AFM) with a scanning rate of 0.5 Hz and 10 µm scanning area using a Bruker
Dimension Icon Atomic Force Microscope. The Raman and photoluminescence (PL) spectra
were recorded on a Jobin-Yvon LabRAM H800 system with a 532 nm Nd:YAG laser as
the excitation source and a spot size of ≈1 µm. In addition, the optical absorbance of
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the MoS2TFs was measured by a UV-Vis-NIR spectrophotometer (JASCO V-670). The
optical band gap of the MoS2TFs was determined using Tauc plots. After that, the crystal
structure and grain size of the MoS2TFs was determined using a Bruker D2 PHASER
X-ray diffractometer.

3.3. Photocatalytic Activity Measurement

The gaseous product species generated by all the MoS2TF photocatalysts after the
PC-CO2RR process were analyzed by gas chromatography (GC), on an Agilent 6890 system
using a glass PLOT column (RT-Q-BOND), and a flame ionization detector (FID).

4. Conclusions

In summary, the lab-grown MoS2TFs on sapphire with thickness from 7 to 50 nm
were used as a model catalyst and the photocatalytic CO2 reduction activities of thickness
dependent MoS2TFs were systematically investigated. The MoS2TFs with 25 nm thickness
exhibited the highest photocatalytic activities under visible light irradiation, corresponding
to a gas production yield of 4.79 nmol/cm2 with a QE of 0.000068%. It is demonstrated
that 25 nm MoS2TFs have the best ratio of light absorption and grain size, as compared
to films of other thicknesses. We also proposed a systematic photocatalytic mechanism
to relate the dependence of the thickness of TMD based photocatalysts, on their eventual
catalytic mechanism. This study provides a novel outlook towards the development of
high-efficiency two-dimensional material catalysts for the efficient reduction of CO2 into
other useful chemical species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111295/s1, Figure S1: The total gas products of two kinds of blank test conditions
for photocatalysis: 1.47 nmol/cm2 for blank test-1 and 0.27 nmol/cm2 for blank test-2, respectively,
Figure S2: XRD pattern of the MoS2TFs on sapphire with different thicknesses: (a) t = 40 nm and
(b) t = 60 nm, Table S1: The calculated grain size of MoS2TFs on sapphire from (002) peak using
Scherrer’s formula, Figure S3: The PC-CO2RR activity of MoS2TFs on sapphire with thickness
increasing from 40 to 60 nm, Figure S4: The stability study of the photocatalytic CO2 reduction over
the MoS2TFs with 25 nm thickness.
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