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Abstract: The presence of CO2 in gaseous fuel and feedstock stream of chemical reaction was always
considered undesirable. High CO2 content will decrease quality and heating value of gaseous
fuel, such as biohydrogen, which needs a practical approach to remove it. Thus, this work aims
to introduce the first C3N4-metal oxide hybrid for the CO2 cleaning application from a mixture of
CO2-H2 gas. The samples were tested for their chemical and physical properties, using field emission
scanning electron microscopy (FESEM), transmission electron microscopy (TEM), physical adsorption
analysis (BET), fourier-transform infrared (FTIR), x-ray diffraction (XRD), and x-ray photoelectron
spectroscopy (XPS). The CO2 capacity test was carried out by means of a breakthrough test at 1 atm
and 25◦ C using air as a desorption system. Among the samples, amine/metal oxide mass ratio of 2:1
(CNHP500-2(2-1)) showed the best performance of 26.9 wt. % (6.11 mmol/g), with a stable capacity
over 6 consecutive cycles. The hybrid sample also showed 3 times better performance than the raw
C3N4. In addition, it was observed that the hydrothermal C3N4 synthesis method demonstrated
improved chemical properties and adsorption performance than the conventional dry pyrolysis
method. In summary, the performance of hybrid samples depends on the different interactive factors
of surface area, pore size and distribution, basicity, concentration of amine precursors, ratio of amines
precursors to metal oxide, and framework stability.

Keywords: nitrogen-containing compounds; mesoporous structure; biohydrogen; physical
adsorption; CO2 capture

1. Introduction

Proton-exchange membrane fuel cell (PEMFC) technology is considered a promising
energy source to meet the growing demand for energy supply [1]. Apart from the use
of renewable fuel, its waste, which consists only of water, is environmentally friendly.
However, it requires high-purity hydrogen gas fuel with more than 99.97% quality, as stated
by the International Organization for Standardization (ISO FDIS14687-2) [2]. Traditional
H2 production from fossil fuels has been able to supply the desired fuels but with a
persistent fossil depletion and release of carbon dioxide (CO2) into the environment during
its production process. As a result, biohydrogen gas was seen as a greener method of
producing hydrogen (H2). To date, raw biohydrogen gas typically consists of H2-CO2
mixture with a CO2 ratio of 40–50 %. Therefore, the collected gas must first be purified by
removing CO2 by using either solid, liquid, or membrane adsorbents [3–5].

Scientists have attempted for years to absorb CO2 using various solid adsorbents,
such as activated carbon, silica, zeolite, and metal-organic frameworks [6–8]. Common
improvement works are carried out by impregnation of amine additives, such as dimethy-
lamine and polyethylamine (PEI), on their materials, assuming that the adsorbent basicity
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thus increases the affinity of CO2 gas to the adsorbent. However, issues, such as low CO2
adsorption performance, low sample basicity, and sample degradation over repetitive
cycles, are still under discussion. This study thus aims to use a material that is readily
amine-rich, such as carbon nitride (C3N4), as an adsorbent support. C3N4 is a graphene-like
organic material with an orderly 2D structure and a high nitrogen content. Apart from that,
C3N4 possesses unique properties such as moderate band gap, nitrogen richness, and high
thermal and chemical stability, making it a good photocatalyst, electrocatalyst, photoelec-
trocatalyst, as well as gas adsorbent for energy storage [9–12]. The materials can also be
prepared by using low-cost precursors, such as urea, melamine, and dicyanamide [13].

To date, few studies have been performed to capture CO2 on C3N4. However, they
showed weak CO2 adsorption performance due to their low porosity when they exist
in bulk structures. Few researchers have tried to improve the performance of C3N4 by
enhancing its porosity through a hard template method, apart from impregnating it with
an amine-rich source, such as dimethylamine and PEI. However, the performance will
eventually decrease due to PEI volatilization at temperatures above 100 ◦ C and sample
degradation over continuous cycles [14,15]. In some situations, a high-pressure operation
may lead to favorable performance but with a high operating cost [16,17]. It is important to
note that several preparation steps are needed for the common hard template process. Thus,
preparing a C3N4 sample with a simpler route but still with a high yield and capturing
performance is necessary.

On the other hand, few researchers have investigated the role of various metal oxides
in the capture of CO2, such as lithium oxide, calcium oxide, and magnesium oxide [18,19].
However, apart from the chemical sorption problems, these materials are costly. Zinc
oxide is considered to be a favorable candidate for its low cost and easy regeneration of
oxides. This is due to the formation of slightly exothermic and stable physisorption states
between the CO2 and polar ZnO surfaces by a linear adsorption mode [20]. In addition,
small binding energies (0.06–0.1 eV) between zinc oxide and CO2 indicate that the CO2
adsorption and desorption process can easily occur instead of activating the reaction [20,21].
Past research also showed a positive effect of temperature and pressure on the CO2 uptake
of ZnO adsorbent [22]. To date, the hybridization of ZnO onto C3N4 has not been recorded
for CO2 capture studies. Hence, by a simple hydrothermal and pyrolysis process, we report
the production of high-yield carbon nitride and zinc oxide hybrids. Firstly, we concentrated
on raw C3N4 and C3N4-ZnO hybrid development via traditional dry-pyrolysis process.
Then, we construct a more stable hybrid sample through the double preparation route with
different ratio of amine to metal oxide. In short, we aim to manufacture a high-yield hybrid
with high CO2 capture performance.

2. Results and Discussion

Initial morphology test was performed by using field emission scanning electron
microscopy (FESEM) analysis of sample CNHP500-2(2-1) as shown in Figure 1a,b. The
hybrid sample displayed an exfoliated and agglomerated structure of C3N4 with a coral-
reef-like framework. Sample measurement was recorded as 2 µm. In the meantime, detailed
structure analysis through transmission electron microscopy (TEM) shows a dispersion of
crystalline lattice clusters in a dimension of 10 nm (Figure 1c). These lattice structures with
parallel array framework may indicate good hybridization of ZnO clusters on modified
C3N4, as seen in Figure 1d.
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Figure 1. Field emission scanning electron microscopy (FESEM) micrographs of CNHP500-2(2-1) 
in (a) 5000× and (b) 10,000× magnifications. (c,d) TEM images of sample CNHP500-2(2-1). 

Brunauer-Emmett-Teller (BET) technique was conducted to further assess the sample 
surface area and pore morphology. Figure 2 shows the nitrogen adsorption isotherm and 
their corresponding pore size distribution curves for sample CNHP500-2(4-1), CNHP500-
2(3-1), and CNHP500-2(2-1). Sample CNHP500-2(3-1) displayed the highest surface area 
of 36.3 m2/g, with average pore diameter of 18.1 nm. Meanwhile, samples CNHP500-2(4-
1) and CNHP500-2(2-1) displayed a surface area of 18.2 and 12.3 m2/g with pore size of 
17.4 and 42.5 nm, respectively (Table 1). Although all samples displayed the same multi-
layer adsorption isotherm with mesoporous saturation point (Type V), each had different 
pore distribution curves. The pore numbers of sample CNHP500-2(4-1) is higher than 
sample CNHP500-2(3-1), with similar pore size uniformity. Meanwhile, sample 
CNHP500-2(2-1) displayed the lowest pore number counts and least uniform pore size 
distribution. In summary, the optimal amine to metal oxide ratio with the maximum sur-
face area and uniform pore distribution is 3:1. 

Table 1. Textural properties of the adsorbents 

Sample BET Surface Area (m2/g) Pore Size (nm) 
CNHP500-2(2-1) 12.3 42.5 
CNHP500-2(3-1) 36.3 18.1 
CNHP500-2(4-1) 18.2 17.4 

Figure 1. Field emission scanning electron microscopy (FESEM) micrographs of CNHP500-2(2-1) in
(a) 5000× and (b) 10,000× magnifications. (c,d) TEM images of sample CNHP500-2(2-1).

Brunauer-Emmett-Teller (BET) technique was conducted to further assess the sample
surface area and pore morphology. Figure 2 shows the nitrogen adsorption isotherm and
their corresponding pore size distribution curves for sample CNHP500-2(4-1), CNHP500-
2(3-1), and CNHP500-2(2-1). Sample CNHP500-2(3-1) displayed the highest surface area of
36.3 m2/g, with average pore diameter of 18.1 nm. Meanwhile, samples CNHP500-2(4-1)
and CNHP500-2(2-1) displayed a surface area of 18.2 and 12.3 m2/g with pore size of 17.4
and 42.5 nm, respectively (Table 1). Although all samples displayed the same multilayer
adsorption isotherm with mesoporous saturation point (Type V), each had different pore
distribution curves. The pore numbers of sample CNHP500-2(4-1) is higher than sample
CNHP500-2(3-1), with similar pore size uniformity. Meanwhile, sample CNHP500-2(2-1)
displayed the lowest pore number counts and least uniform pore size distribution. In
summary, the optimal amine to metal oxide ratio with the maximum surface area and
uniform pore distribution is 3:1.

The samples were then characterized by using Fourier transformation infrared (FTIR)
spectroscopy (Figure 3a). As shown by CN500 and CNH500 spectrum, the strong peak at
806 cm−1 can be attributed to the triazine unit vibration of C3N4; the peak at 1240, 1327,
1412, and 1465 cm−1 can be assigned to aromatic C–N heterocyclic stretching mode [23];
meanwhile, the peak at 1568 and 1635 cm−1 represents the stretching mode of C–N and
C=N [24]. The broad band between 3000–3674 cm-1 can be correlated to the terminal
amine group (–NH2 or =NH) and hydroxyl (O–H) vibration [13]. For CNHP500-1, the
spectrum resembles the CN500 band but in a weakened intensity, revealing overlapping
bands of C3N4 and ZnO. Both CNHP500-1 and CNHP500-2(2-1) had a weak peak around
2200 cm−1, suggesting that modification with zinc acetate at 2:1 ratio promotes nitrile bond
C≡N formation, as detailed by Deng and co-workers [14]. Since CNHP500-2 preparation
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was modified through a hydrothermal synthesis, the typical spectrum of C3N4 was again
reserved as seen in Figure 3b. This was due to the universal solvent properties of water that
dissolve all polar reactants during preparation steps. All CNHP500-2(4-1), CNHP500-2(3-1),
and CNHP500-2(2-1) samples exhibited the same functional group properties, with peak
intensity decreases in the order of decreasing amine to metal oxide ratio. It may also be
noted that an amine to metal oxide ratio higher than 2:1 does not promote nitrile formation.
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Figure 2. Nitrogen adsorption-desorption isotherms and their corresponding pore size distribution curves (inset) for sample
(a) CNHP500-2(4-1), (b) CNHP500-2(3-1), and (c) CNHP500-2(2-1).

Table 1. Textural properties of the adsorbents.

Sample BET Surface Area (m2/g) Pore Size (nm)

CNHP500-2(2-1) 12.3 42.5
CNHP500-2(3-1) 36.3 18.1
CNHP500-2(4-1) 18.2 17.4

Powder X-ray diffraction (XRD) analysis was done to study the sample crystalline
properties (Figure 4). The XRD patterns of sample CN500, CNH500, CNHP500-2(4-1),
CNHP500-2(3-1), and CNHP500-2(2-1) showed a sharp peak at 27.4◦, 27.2◦, 27.7◦, 27.7◦,
and 27.2◦, respectively. It can be assigned as the turbo static ordering of carbon and nitrogen
atoms (002) in CN-graphene like layers with a uniform distribution of N atoms. While Niu
and co-workers suggested a reduction of gallery distance when a peak shift towards higher
angle, a shift to the lower angle suggests an improvement in the gallery distance between
the basic sheets of g-C3N4 nanosheets due to ZnO incorporation, as shown by sample
CNH500 and CNHP500-2(2-1) [25]. A slightly broad peak of CNHP500-2(2-1) suggested a
semi-crystalline nature that can be related to the fabrication of amorphous carbon in the
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sample. For CNHP500-1, a wide and diffusing peak indicate an assembly of a randomly
arranged amorphous structure. This can be ascribed to the incorporation of metal oxide
caused the interference of crystal growth of C3N4 [26]. Meanwhile, an additional peak
at 13.3◦ of all samples indicates the in-plane structural packing motif indexed as (100)
phase of g-C3N4 [27]. Additionally, the low-intensity diffraction peaks related to ZnO were
detected at 32, 34, and 36◦. However, the peaks were not visible in sample CNHP500-
2(3-1), suggesting smaller crystallite size or highly dispersed of ZnO particles on the C3N4
mesoporous surface.
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Figure 3. (a) FTIR spectra for sample CN500, CNH500, CNHP500-1, and CNHP500-2(2-1). (b) FTIR spectra for sample
CNHP500-2(4-1), CNHP500-2(3-1), and CNHP500-2(2-1).
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The X-ray photoelectron spectroscopy (XPS) analysis was further carried out to analyse
the elemental composition of sample. From Figure 5, it can be seen that both CN500 and
CNH500 displayed a typical spectrum of carbon nitride, with peaks of C 1s and N 1s at
285 and 396 eV, respectively. Meanwhile, the survey spectra of CNHP500-1 and CNHP500-
2(2-1) showed obvious signals from elements C, N, O, and Zn, indicating the successful
formation of C3N4-ZnO hybrid. It proves that the second synthesis method is better than
the first method given the differences in intensity. The C 1s deconvolution spectrum of
CNHP500-2(2-1) represents the C-C and C-N interaction at the binding energy of 284.5 and
288.2 eV [28]. Meanwhile, the peak of O 1s at 529.7 eV signifies the Zn-O interaction [29].
For N 1s, the peak at 397 eV indicates the formation of pyridinic-N structure [13] as the
best basic site for CO2 interaction. The pyridinic-N is considered the most favorable site
for CO2 binding owing to its high Lewis basic characteristic [30]. The formation of Zn2+,
with peaks at 1021.7 and 1044.7 eV, denotes the peak of Zn 2p3/2 and Zn 2p1/2 [31]. The
elemental composition of CNHP500-2(2-1) sample (Table 2) revealed the atomic percentage
of carbon, nitrogen, oxygen, zinc are 41.8, 22.3, 22.7, and 13.2%, respectively. This indicates
that the content of C3N4 and ZnO in the sample are 64.1% and 35.9%, which is close to
theoretical ratio of C3N4:ZnO (2:1 or 66.7:33.3) in the CNHP500-2(2-1) sample.

Table 2. Surface elemental composition of CNHP500-2(2-1) sample.

Element Atomic Percentage (at %)

C 41.8
N 22.3
O 22.7
Zn 13.2

For the final analysis, the adsorbent samples were further tested for CO2 adsorption-
desorption activity at low temperature and pressure. Figure 6 represents the adsorp-
tion curves (a), desorption curves (b), and CO2 capture capacity (c) for all samples. In
the meantime, Figure 6d represents the adsorption capacity of sample CNHP500-2(4-1),
CNHP500-2(3-1), and CNHP500-2(2-1) for three consecutive cycles. Based on adsorption
and desorption curves, the samples CNHP500-2(3-1) and CNHP500-2(4-1) exhibited a
longer time for CO2 adsorption compared to other samples, but steeper curves of desorp-
tion were shown, suggesting a more complex and time-consuming desorption process. On
the other hand, CNHP500-2(2-1) and CNHP500-1 samples demonstrated a rapid and easy
desorption of CO2, which is beneficial for efficient adsorption cycle.

In terms of capture performance, sample CNHP500-2(2-1) displayed the highest
adsorption capacity of 26.9 wt. %. The sample displayed 3-fold higher CO2 adsorption
capacity when compared to CNHP500-1, although both samples were prepared with similar
amine to metal oxide ratio. This shows the importance of water as a universal solvent
during hydrothermal synthesis in contrast to the conventional dry-pyrolysis method.
Meanwhile, the performance of hybrid samples with different amine to metal oxide ratio
displayed an increasing adsorption capacity in the order of CNHP500-2(4-1) < CNHP500-
2(3-1) < CNHP500-2(2-1). This can be attributed to the increasing numbers of metal oxide
per active site in the sample. Theoretically, C3N4 linkages are good for CO2 capture
because they provide the required basic site for acidic CO2 adsorption activities. Recent
analysis of density functional theory (DFT) between CO2 and C3N4 materials shows that
the weak van der Waals bond form by abundantly accessible pyridinic-N structure of
C3N4 has been favorable for CO2 interaction [32]. On the other hand, metal oxide ZnO
can further enhance the intensity of accessible active site by forming low binding strength
interaction, as explained by Tang and co-workers [20]. That explained why the hybrid
samples performed better than a pure C3N4 (CN500). As for the three-cycle adsorption
test in Figure 6d, CNHP500-2(2-1) sample showed a decrease in capture capacity after
the first to second cycles and then slight increase towards the third cycle. Furthermore,
CHNP500-2(3-1) sample also demonstrated similar performance in the second and third
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cycles. However, considering the desorption isotherms in Figure 6b, CNHP500-2(2-1)
sample demonstrated far more rapid and easier desorption process for CO2 compared
to CNHP500-2(3-1), suggesting better adsorbent characteristics. Further raising the ratio
to 4:1 would not be advantageous for the capture performance, as the low CO2 capture
capacities of CNHP500-2(4-1) sample were shown in all three consecutive cycles. This can
be explained by the reduced amount of ZnO on the adsorbent surface as the ratio increases,
thus lessening the promotional effects of ZnO.
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curves (a), desorption curves (b), and CO2 capture capacity (c) for all samples. In the mean-
time, Figure 6(d) represents the adsorption capacity of sample CNHP500-2(4-1), 
CNHP500-2(3-1), and CNHP500-2(2-1) for three consecutive cycles. Based on adsorption 
and desorption curves, the samples CNHP500-2(3-1) and CNHP500-2(4-1) exhibited a 
longer time for CO2 adsorption compared to other samples, but steeper curves of desorp-
tion were shown, suggesting a more complex and time-consuming desorption process. 
On the other hand, CNHP500-2(2-1) and CNHP500-1 samples demonstrated a rapid and 
easy desorption of CO2, which is beneficial for efficient adsorption cycle. 

Figure 5. (a) Wide x-ray photoelectron spectroscopy (XPS) spectra for sample CN500, CNH500,
CNHP500-1, and CNHP500-2(2-1) and (b) the corresponding Gaussian–Lorenzian deconvolution
shapes for C1s, O1s, N1s, and Zn 2p of sample CNHP500-2(2-1).
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Figure 6. (a) Adsorption and (b) desorption isotherm of sample CN500, CNH500, CNHP500-1,
CNHP500-2(4-1), CNHP500-2(3-1), and CNHP500-2(2-1). (c) CO2 capture capacity of different
samples at 50 ml/min and room condition (1 atm, 25 ◦C). (d) CO2 capture capacity of sample
CNHP500-2(4-1), CNHP500-2(3-1), and CNHP500-2(2-1) for 3 continuous cycles.

The effect of melamine and urea combination in C3N4 synthesis can be seen in sample
CNH500. Compared to a pure melamine-based C3N4 (CN500), the sample displayed a
better adsorption capacity, as in Figure 6c. Similar to a study by Zheng and co-workers,
the incorporation of urea created a disturbance during C3N4 formation, thus providing a
higher sheet gap and a better surface area [33–36]. To note, all hybrid samples in this study
applied the combination of melamine and urea as the amine source to boost the sheet gap
and surface contact area.

To further comprehend the stability of the best sample, CNHP500-2(2-1) was tested
for adsorption-desorption activity over six continuous cycles. Based on Figure 7a, the
sample showed a rapid overall cycle with a complete cycle measured as 20 minutes
each, indicating a quick adsorption-desorption process. Figure 7b displayed a sharp and
consistent adsorption isotherm of sample except at the first cycle. In terms of desorption
activity, the result from Figure 7c clearly showed an excellent profile consistency for over
six cycles. Hence, fast desorption activity confirms the absence of major clogging issue.
Based on Figure 7d, the sample displayed high and consistent CO2 adsorption capacity,
which indicated a low material degradation rate. Meanwhile, a slight decline in CO2
capacity for the second cycle afterwards can be explained by several factors, such as the
pore heterogeneity or arrangement and minor chemical adsorption. In terms of moisture
consequence on CO2 capture performance, the durability of the sample was proven through
the usage of air as desorbing gas. Although there is a little percentage of moisture in the
air, the sample still displayed a stable CO2 capacity.
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Figure 7. (a) Continuous CO2 capture profile, (b) adsorption isotherm, (c) desorption isotherm, and 
(d) CO2 capture capacity of sample CNHP500-2(2-1) for 6 consecutive cycles at 50 ml/min and room 
condition (1 atm, 25 °C). 
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cals (London, UK). CO2-H2 gas mixture with vol. % of 50:50 was supplied by Linde Ma-
laysia Sdn Bhd, Selangor, Malaysia. All materials were used without further treatment. 

  

Figure 7. (a) Continuous CO2 capture profile, (b) adsorption isotherm, (c) desorption isotherm, and
(d) CO2 capture capacity of sample CNHP500-2(2-1) for 6 consecutive cycles at 50 ml/min and room
condition (1 atm, 25 ◦C).

3. Materials and Methods
3.1. Chemical and Reagents

Reagent grade melamine powder was purchased from Sigma-Aldrich, Saint Louis,
MO, USA. Meanwhile, urea and zinc acetate powder were purchased from R&M Chemicals
(London, UK). CO2-H2 gas mixture with vol. % of 50:50 was supplied by Linde Malaysia
Sdn Bhd, Selangor, Malaysia. All materials were used without further treatment.

3.2. Synthesis of Adsorbents

A carbon nitride hybrid with porogen sample, namely CNHP500-1, was prepared
via a simple dry in-situ pyrolysis method (1st method). Initially, amine sources (urea and
melamine) and zinc acetate were placed into a closed-lid crucible and underwent pyrolysis
at 500 ◦C for 1 h. The sample was left to cool at room temperature for 24 h before being
ground into fine powder in a mortar. Meanwhile, the sample hybrid CNHP500-2(x-y),
where x-y represent the amine to metal oxide mass ratio, was prepared through a facile
hydrothermal and pyrolysis method (2nd method). Initially, appropriate amounts of the
amine sources (urea and melamine) and zinc acetate were added with water and stirred
for 24 h. The resulting solution was sonicated and dried for 24 h. The dried sample was
then pyrolyzed at 500 ◦C for 1 h under closed crucible. The sample was left to cool for
24 h before being ground into powder. The ratios of amine to metal oxide of 2:1, 3:1, and
4:1 were denoted as CNHP500-2(2-1), CNHP500-2(3-1), and CNHP500-2(4-1), respectively.
For comparison, bulk C3N4 namely CN500 was prepared through the conventional dry-
pyrolysis of melamine powder at 500 ◦C for 1 h. Another bulk C3N4 sample was prepared
through direct pyrolysis of melamine-urea mixture in 1:1 mass ratio at 500 ◦C for 1 h and
was labelled as CNH500. Table 3 summarizes the samples synthesized in this study.
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Table 3. Summary of the samples prepared in the study.

Sample Method Amine Source Amine/Metal Oxide Mass Ratio

CN500 Dry pyrolysis Melamine -
CNH500 Dry pyrolysis Melamine and urea -
CNHP500-1 Dry pyrolysis Melamine and urea 2:1
CNHP500-2(2-1) Hydrothermal and dry pyrolysis Melamine and urea 2:1
CNHP500-2(3-1) Hydrothermal and dry pyrolysis Melamine and urea 3:1
CNHP500-2(4-1) Hydrothermal and dry pyrolysis Melamine and urea 4:1

3.3. Characterization

To view the sample morphology, field emission scanning electron microscopy (FESEM)
and transmission electron microscopy (TEM) was carried out using SEM ZEISS Supra
55 VP (Oberkochen, Germany) and TEM Thermo Fischer (Model Talos 120C) (OR, USA),
respectively. Textural analysis was conducted using Micromeritics ASAP 2020 (Norcross,
GA, USA) with Brunauer–Emmett–Teller (BET) model was used to determine the specific
surface area. Bulk Scientific M, Perkin Elmer (Waltham, MA, USA) Fourier-transform
infrared (FTIR) spectrophotometer was used to analyze the functional groups. FTIR ATR
sampling technique was applied while the sample used, as it is in powder form. Sample
crystallinity study was conducted via X-ray diffraction (XRD) by Bruker AXS D8 Advance
diffractometer (Bremen, Germany) operating at 40 kV and 40 mA using Ni filtered Cu
Kα source (λ = 0.15406 nm), and XRD patterns were measured between 2θ = 5 – 80◦ at
a scan rate 0.25◦ s−1. Meanwhile, X-ray photoelectron spectroscopy (XPS) analysis was
employed on Kratos/Shimadzu Axis Ultra DLD (Manchester, UK), with Al Kα (1486 eV)
monochromatic X-ray as the excitation source.

3.4. CO2 Capture Test

The CO2 capture test was done through a breakthrough experiment, as in previous
study [37]. In summary, the sample was packed into a column before being connected to gas-
flowmeter-sample-CO2 analyzer system. A CO2 analyzer from Quantek Instrument Model
906 (Grafton, MA, USA) was used with HOBO software (HOBOware Pro 3.7.18 version,
Onset, Cape Cod, Massachusetts, USA, 2018) as data logger. All tests were conducted on a
fixed flowrate of 50 mL/min at room temperature and pressure.

4. Conclusions

To conclude, the C3N4-ZnO organic-inorganic hybrid, namely CNHP500-2(2-1), was
successfully prepared via a facile hydrothermal and pyrolysis route. The simplistic fabri-
cation of this sample, with low cost with high yield, high CO2 capture capacity, and high
sample stability, qualify it as a prospective adsorbent for future CO2 removal application.
To highlight, past C3N4 studies for CO2 capture application favored a high surface area
sample via hard template synthesis to improve the mass transport of gas. Through this
study, a low surface area C3N4 with optimal ratio of metal oxide hybridisation, a disturbed
sheet of N heterogens, and favorable bond strength between adsorbent and adsorbate was
able to display a comparable CO2 capture performance. Thus, the synthesis of abundantly
graphitic-N C3N4 with ZnO hybridization is an interesting and promising study that may
be conducted in the near future. Above all, we hope this work can open a new path to the
development of a versatile adsorbent for CO2 capture soon.
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