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Abstract: Phytoene desaturase (CrtI, E.C. 1.3.99.31) shows variable desaturation activity, thereby
introducing different numbers of conjugated double bonds (CDB) into the substrate phytoene.
In particular, Rhodobacter sphaeroides CrtI is known to introduce additional 6 CDBs into the phy-
toene with 3 CDBs, generating neurosporene with 9 CDBs. Although in-depth studies have been
conducted on the function and phylogenetic evolution of CrtI, little information exists on its
range of CDB-introducing capabilities. We investigated the relationship between the structure
and CDB-introducing capability of CrtI. CrtI of R. sphaeroides KCTC 12085 was randomly mutage-
nized to produce carotenoids of different CDBs (neurosporene for 9 CDBs, lycopene for 11 CDBs,
and 3,4-didehydrolycopene for 13 CDBs). From six CrtI mutants producing different ratios of
neurosporene/lycopene/3,4-didehydrolycopene, three amino acids (Leu163, Ala171, and Ile454)
were identified that significantly determined carotenoid profiles. While the L163P mutation was
responsible for producing neurosporene as a major carotenoid, A171P and I454T produced lycopene
as the major product. Finally, according to the in silico model, the mutated amino acids are gathered
in the membrane-binding domain of CrtI, which could distantly influence the FAD binding region
and consequently the degree of desaturation in phytoene.

Keywords: phytoene desaturase; CrtI; Rhodobacter sphaeroides; random mutagenesis

1. Introduction

Carotenoids are a diverse group of colored isoprenoid derivatives that play distinct
roles in nature [1]. More than 800 different carotenoids are synthesized in photosynthetic
microorganisms, plants, and animals [2]. Naturally occurring carotenoids and their biosyn-
thetic pathways are classified as C30, C40, and C50 based on the carbon numbers of their
backbone structures [3]. Carotenoids serve several biological functions, including in col-
oration, photoprotective activities, and light harvesting, and are also the precursors for
several plant hormones [4–6]. Carotenoids are widely used in the food, medical, phar-
maceutical, and cosmetic industries as colorants and functional ingredients [7,8]. Despite
the structural diversity and commercial importance of carotenoids, only a few simple-
structured carotenoids, such as β-carotene and lycopene, are produced commercially by
chemical synthesis or isolation. Their increasing industrial importance has led to renewed
efforts to develop bioprocesses for the production of diverse carotenoids [8–10].

Rhodobacter sphaeroides is a Gram-negative purple bacterium that produces cellu-
lar energy through photosynthesis and synthesizes a C40 carotenoid spheroidene [11]
through sequential reactions with seven pathway enzymes: geranylgeranyl diphosphate
(GGPP) synthase (CrtE), phytoene synthase (CrtB), phytoene desaturase (CrtI), spheroidene
monooxygenase (CrtA), methoxy-neurosporene desaturase (CrtD), hydroxy-neurosporene
synthase (CrtC), and hydroxyneurosporene-O-methyltransferase (CrtF). R. sphaeroides is a
well-known carotenogenic bacterium similar to Pantoea agglomerans, which was previously
classified as Erwinia herbicola [12], and its carotenogenic pathway has been widely used as
a model system [13].
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In cyanobacteria and plants, a complex and multi-component pathway is employed
by phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), carotene cis-trans isomerase
(CRTISO), and ζ-carotene cis-trans isomerase (Z-ISO) for desaturation of 15-cis-phytoene to
all-trans-lycopene [14–16]. In contrast, bacteria and fungi employ a sole CrtI to generate
all-trans-lycopene from 15-cis-phytoene [17]. During the catalytic desaturation reaction,
CrtI uses flavin adenine dinucleotide (FAD) as an electron shuttle and oxygen as the accep-
tor [18]. In nature, C40 carotenoid structures have been diversified by CrtI, with different
desaturation activities for 15-cis-phytoene. Depending on the carotenogenic microorgan-
isms, CrtI can catalyze either a 3-step, 4-step, or 5-step desaturation reaction of 15-cis-
phytoene, which is synthesized by CrtB from two moles of GGPP (Figure 1a). R. sphaeroides
CrtI catalyzes 3-step desaturation, P. agglomerans CrtI catalyzes 4-step desaturation [19],
and Neurospora crassa CrtI catalyzes 5-step desaturation [20]. The neurosporene with 9 con-
jugated double bonds (CDBs), lycopene with 11 CDBs, and 3,4-didehydrolycopene with 13
CDBs (or tetradehydrolycopene with 15 CDBs) are end-products in desaturation reactions,
whereby 15-cis-phytoene is sequentially desaturated by different catalytic activities of CrtIs
(Figure 1b). Most carotenogenic enzymes, including CrtI, can be functionally expressed in
Escherichia coli; therefore, E. coli is a convenient heterologous host for the production of di-
verse carotenoids [21–25]. To date, several studies have considered the catalytic mechanism
of CrtI (or PDS) in E. coli and native host strains. Our understanding of substrate binding
sites, potential catalytic residues, and recognition regions of the hydrocarbon substrate is
based largely on the crystal structure of the plant-type phytoene desaturase PDS via in
silico docking experiments [26]; however, the exact mechanism for the desaturation process
is still unclear.
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desaturation catalyzed by CrtI from Rhodobacter sphaeroides. Metabolite abbreviations: IPP, 
isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, 
farnesyl diphosphate; GGPP, geranylgeranyl diphosphate. Pathway enzymes: IDI, isopentenyl 
diphosphate isomerase; IspA, farnesyl diphosphate synthase; CrtB, geranylgeranyl diphosphate 

Figure 1. The lycopene biosynthesis pathway and phytoene desaturation catalyzed by phytoene
desaturase (CrtI): (a) lycopene biosynthesis pathway in recombinant Escherichia coli; (b) phytoene
desaturation catalyzed by CrtI from Rhodobacter sphaeroides. Metabolite abbreviations: IPP, isopen-
tenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl
diphosphate; GGPP, geranylgeranyl diphosphate. Pathway enzymes: IDI, isopentenyl diphosphate
isomerase; IspA, farnesyl diphosphate synthase; CrtB, geranylgeranyl diphosphate synthase; CrtE,
phytoene synthase; CrtI, phytoene desaturase. The dotted line indicates the multi-step desaturation
process of phytoene to lycopene.

In the present study, R. sphaeroides CrtI was mutated using random mutagenesis to
introduce different degrees of desaturation in phytoene in an E. coli strain expressing
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R. sphaeroides CrtE and CrtB. Next, altered amino acids in the evolved CrtI mutants were
analyzed in silico to investigate the relationship between the structural changes caused by
mutated amino acids and phytoene desaturation.

2. Results
2.1. Reconstruction of Lycopene Biosynthesis Pathways and Directed Evolution of the
R. sphaeroides Phytoene Desaturase (CrtI)

Three lycopene synthetic genes encoding CrtERS/PA, CrtBRS/PA, and CrtIRS/PA from
R. sphaeroides and P. agglomerans were modified to be modularly expressed and then
coexpressed on plasmids in E. coli [26,27]. R. sphaeroides produces neurosporene from
phytoene through a 3-step desaturation reaction catalyzed by CrtIRS; however, a re-
combinant E. coli coexpressing CrtERS, CrtBRS, and CrtIRS as an individual expression
module (pUCM_IRS + pACM_ERS_BRS) produced further desaturated lycopene (11 CDBs,
30.7 ± 7.1%), 3,4-didehydrolycopene (13 CDBs, 4± 2.7%), as well as neurosporene (9 CDBs,
66 ± 10.1%) (Figure 2a). On the other hand, coexpression of CrtIRS with heterologous
CrtEPA and CrtBPA (pUCM_IRS + pACM_EPA_BPA) produced neurosporene (73.4 ± 3.7%)
and lycopene (27.6 ± 4.7%), without formation of 3,4-didehydrolycopene (Figure 2b). This
suggests that the heterologous carotenogenic enzyme complex can influence the desatura-
tion of phytoene.
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Figure 2. Relative carotenoid profiles in E. coli strains coexpressing six CrtIRS mutants with
(a) R. sphaeroides CrtERS and CrtBRS and (b) P. agglomerans CrtEPA and CrtBPA. Blue, red, and yellow
bars represent 3,4-didehydrolycopene, lycopene, and neurosporene, respectively. RIw refers to a
wild-type CrtIRS. Data are expressed as the mean ± SD.

Random mutation of the crtIRS gene was performed using PCR-based mutagene-
sis [28], and the resulting mutant crtIRS genes were transformed and coexpressed in a
recombinant E. coli expressing the R. sphaeroides CrtERS and CrtBRS as pACM_ERS_BRS
(Table 1). From a colony library of approximately 10,000 colonies, colonies of dissimi-
lar colors were visually screened, isolated, and analyzed. Among yellow (background
carotenogenic clones) and white colonies (non-carotenogenic clones, due to inactivated
CrtIRS), two red colonies, named RIm1 and RIm2, were selected, and carotenoid profiles
of the clones were investigated by high-performance liquid chromatography (HPLC).
RIm1 and RIm2 mutant clones produced significantly different carotenoid profiles: neu-
rosporene (17.2 ± 6.7%), a major lycopene (72.9 ± 6.3%), and 3,4-didehydrolycopene
(9.9 ± 0.4%) in RIm1 vs. neurosporene (7.2 ± 1.3%), a major lycopene (91.5 ± 2.0%), and
3,4-didehydrolycopene (1.3 ± 0.7%) in RIm2 mutant (Figure 2a and Table 2). Interestingly,
one weak yellow colony (RIm6) produced a major neurosporene (95 ± 3.1%) and a small
amount of lycopene (5.3 ± 2.4%) (Figure 2a and Table 2). Next, a 2nd round of random
mutagenesis of RIm1 and RIm2 was carried out to generate the 2nd colony library of ca.
10,000 colonies. Among the 2nd library, two deep pink colonies (RIm3 and RIm4) from the
parental RIm1 and one weak pink colony (RIm5) from the parental RIm2 were selected.
HPLC analysis revealed that the mutants RIm3, RIm4, and RIm5 also showed unique
carotenoid profile variations with a major lycopene (51.2 ± 1.2% in RIm3, 60.5 ± 5.5%
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in RIm4, and 90.8 ± 0.9% in RIm5), followed by neurosporene (39.4 ± 0.9% in RIm3,
33.4 ± 2.4% in RIm4, and 8.1 ± 0.9% in RIm5) and 3,4-didehydrolycopene (9.4 ± 2.1% in
RIm3, 6.2 ± 3.2% in RIm4, and 1.1 ± 0.1% in RIm5) (Figure 2a and Table 2).

Table 1. Strains and plasmids used in this study.

Plasmid Description Source or
Reference

Strains

Rhodobacter sphaeroides
Pantoea agglomerans Microbial source for C40 carotenoid pathway genes KCTC 12085

KCTC 2479

Plasmids
pGEM® T-easy vector Cloning vector Promega

pT_crtERS Vector containing crtE gene from R. sphaeroides This study
pT_crtBRS Vector containing crtB gene from R. sphaeroides This study
pT_crtIRS Vector containing crtI gene from R. sphaeroides This study

pUCM Cloning vector modified from pUC19. constitutive lac promoter, Amp [8]
pUCM_ERS Constitutively expressed crtE gene from R. sphaeroides This study
pUCM_BRS Constitutively expressed crtB gene from R. sphaeroides This study
pUCM_IRS Constitutively expressed crtI gene from R. sphaeroides This study
pACM_ERS Constitutively expressed crtE gene from R. sphaeroides This study

pACM_ERS_BRS Constitutively expressed crtE and crtB genes from R. sphaeroides This study
pACM_EPA_BPA Constitutively expressed crtE and crtB genes from P. agglomerans [22]
pUCM_IRS_Im1 Constitutively expressed mutant crtI gene (I454T) This study
pUCM_IRS_Im2 Constitutively expressed mutant crtI gene (A171P) This study
pUCM_IRS_Im3 Constitutively expressed mutant crtI gene (I454T and E186G) This study
pUCM_IRS_Im4 Constitutively expressed mutant crtI gene (I454T and L429L) This study
pUCM_IRS_Im5 Constitutively expressed mutant crtI gene (A171P and W142R) This study
pUCM_IRS_Im6 Constitutively expressed mutant crtI gene (L163P) This study

pUCM_IRS_ImA171P Constitutively expressed mutant crtI (Site-directed mutation) This study
pUCM_IRS_ImL163P Constitutively expressed mutant crtI (Site-directed mutation) This study
pUCM-IRS_ImW142R Constitutively expressed mutant crtI (Site-directed mutation) This study
pUCM-IRS_ImE186G Constitutively expressed mutant crtI (Site-directed mutation) This study
pUCM-IRS_ImI454T Constitutively expressed mutant crtI (Site-directed mutation) This study

pUCM-IRS_ImA171P&I454T Constitutively expressed mutant crtI (Site-directed mutation) This study

Table 2. CrtIRS mutants generated by random mutagenesis and altered carotenoid profiles when complemented with
the R. sphaeroides CrtBRS and CrtERS and the P. agglomerans CrtBPA and CrtEPA. * Neu, neurosporene; Lyc, lycopene; Ddl,
didehydrolycopene. Proportions reported in parentheses: relative ratio of carotenoid profiles.

Mutants Parental
Gene

Nucleotide
Changes

Amino Acid
Changes

Carotenoid Profiles with
CrtERS and CrtBRS

Carotenoid
Profiles with CrtEPA and CrtBPA

RIm1 WT T1361C
(ATC→ACC) I454T

* Ddl (9.9%) Ddl (11.3%)
Lyc (72.9%) Lyc (53.5%)
Neu (17.2%) Neu (35.1%)

RIm2 WT G511C
(GCC→CCC) A171P

Ddl (1.3%) Ddl (2.1%)
Lyc (91.5%) Lyc (86.7%)
Neu (7.2%) Neu (11.2%)

RIm3 RIm1
T1361C

(ATC→ACC)
A557G

(GAG→GGG)

I454T Ddl (9.4%) Ddl (4.7%)
Lyc (51.2%) Lyc (32.6%)

E186G Neu (39.4%) Neu (62.7%)

RIm4 RIm1
T1361C

(ATC→ACC)
C1287T

(CTC→CTT)

I454T Ddl (6.2%) Ddl (4.6%)
Lyc (60.5%) Lyc (82.0%)

Silent mutation Neu (33.4%) Neu (13.4%)

RIm5 RIm2
G511C

(GCC→CCC)
T424A

(TGG→AGG)

A171P Ddl (1.1%) Ddl (7.6%)
Lyc (90.8%) Lyc (41.9%)

W142R Neu (8.1%) Neu (50.5%)

RIm6 WT T488C
(CTG→CCG) L163P

Ddl (0%) Ddl (0%)
Lyc (5.3%) Lyc (0%)

Neu (94.7%) Neu (100%)
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2.2. Identification of Mutation in Mutant Crtirs by Sequencing Analysis

To reveal the genetic alterations of the six mutant CrtIRS, genes encoding RIm1, RIm2,
RIm3, RIm4, RIm5, and RIm6 were sequenced using the Sanger method (Table 2). A
single-nucleotide point mutation was found in RIm1 and RIm2, causing an I454T amino
acid change and an A171P change, respectively. To confirm the effect of the single I454T
and A171P mutations on the degree of desaturation on phytoene, site-directed mutage-
nesis (SDM) of wild-type CrtIRS was applied to generate Ism4 (SDM_I454T) and Ism5
(SDM_A171P). HPLC analysis revealed that the two SDM mutants, Ism4 and Ism5, pro-
duced very similar carotenoid profiles to those of RIm1 and RIm2: 14.6 ± 2.7% of neu-
rosporene, 79.4 ± 2.5% of lycopene, 6 ± 0.2% of 3,4-didehydrolycopene in the SDM
mutant Ism4, and 19.2 ± 4.6% of neurosporene and 80.8 ± 4.7% of lycopene without
3,4-didehydrolycopene in the SDM mutant Ism5 (Figure 3a). The very similar carotenoid
profiles observed between random mutants and SDM mutants strongly indicate that the
single amino acid mutations (I454T and A171P) intrinsically altered the catalytic activity
of CrtIRS toward phytoene. Similarly, an SDM mutant (Ism1, SDM_L163P) of the major
neurosporene-producing RIm6 (Figure 3a) showed a carotenoid profile very similar to that
of RIm6, demonstrating the intrinsically altered catalytic activity of CrtIRS.
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One additional nucleotide point mutation was observed in the 2nd round mutants
RIm3, RIm4, and RIm5. The 2nd single amino acid change of E186G in RIm3 led to double
amino acid mutations (I454T and E186G). Similarly, the 2nd single W142R change in RIm5
generated a double amino acid mutation (A171P and W142R). Compared to RIm3 and
RIm5, the single nucleotide point mutation in RIm4 caused a silent mutation. Notably,
although RIm4 shared a single amino acid A171P mutation with RIm2, except for an
additional single silent mutation in RIm4, the two mutants produced different carotenoid
profiles (Table 2 and Figure 2a); however, the difference in carotenoid profiles between the
two mutants was negligible.
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2.3. Verification of the Effect of E186g and W142r Mutations on Activity of Phytoene Desaturase
by Site-Directed Mutagenesis

As RIm3 and RIm5 mutants had additional amino acid mutations (E186G in RIm3
and W142R in RIm5) in comparison with RIm1 (I454T) and RIm2 (A171P) (Table 2). The
individual effects of the W142R and E186G mutations were investigated by generating
two SDM mutants, Ism2 (SDM_W142R) and Ism3 (SDM_E186G). HPLC analysis revealed
that both Ism2 and Ism3 produced slightly less lycopene in comparison with that of
the wild-type CrtIRS (Figure 3a), suggesting a marginal effect of the W142R and E186G
mutations on the degree of phytoene desaturation by RIm3 (E186G and I454T) and RIm5
(W142R and A171P). Since I454T and A171P mutations significantly influenced the degree
of desaturation of phytoene, an SDM mutant Ism6 (SDM_I454T_A171P) was generated
and its carotenoid profile was investigated. As expected, dramatical alteration of the
carotenoid profile (10.1 ± 1.9% of neurosporene, 84.5 ± 2.7% of lycopene, and 5.4 ± 4.6%
of 3,4-didehydrolycopene) was observed in comparison with that of the wild-type CrtIRS
(Figure 3a).

2.4. Complementation of Mutant Crtirs with the P. agglomerans Crtepa and Crtbpa

Even though carotenogenic enzymes have the same catalytic function, carotenoid
profiles tend to vary depending on the source of the enzymes when expressed in a het-
erologous host [22]. To better understand the function of the mutant CrtIRS, random and
SDM mutants were coexpressed in E. coli with the heterologous P. agglomerans CrtEPA and
CrtBPA. HPLC analysis revealed that the three single amino acid mutants (RIm1, RIm2, and
RIm6) when coexpressed with the heterologous CrtEPA and CrtBPA produced carotenoid
profiles similar to those of RIm1, RIm2, and RIm6 when coexpressed with the native CrtBRS
and CrtERS (Table 2 and Figure 2b); however, RIm3, RIm5 (two double amino acid mutants)
and RIm6 (a single amino acid mutant) when coexpressed with the heterologous CrtEPA
and CrtBPA produced different carotenoid profiles in comparison with those coexpressed
with native CrtBRS and CrtERS (Table 2 and Figure 2b). This suggests that the 2nd amino
acid alteration of E186G in RIm3 and W142R in RIm5 might influence the conformation of
the enzyme complex structure, which consequently alters the catalytic activity of mutant
CrtIRS toward phytoene. Notably, unlike the single amino acid mutants (RIm1, RIm2, and
RIm6), RIm4 produced different carotenoid profiles when coexpressed with heterologous
and native CrtE and CrtB. Three SDM mutants Ism2 (SDM_W142R), Ism3 (SDM_E186G),
and Ism6 (SDM_I454T_A171P) produced similar carotenoid profiles when coexpressed
with heterologous and native CrtE and CrtB (Figure 3b).

2.5. Structural Evaluation of Mutant Crtirs Using Computational Model Analysis

To understand the correlation between the structural changes and the observed activity
of mutant CrtIRS, an in silico model of CrtIRS was created using the I-TASSER program [29]
with the Protein Data Bank (PDB) templates of Nonlabens dokdonensis DSW-6 γ-carotenoid
desaturase (4REP, [30]) and Pantoea ananatis phytoene desaturase (4DGK, [18]) (Figure 4a).
As FAD, a redox-active cofactor, is present in the active site region of CrtIRS, in silico
ligand docking was simulated using COACH-D [31] with the PDB of FAD binding residues
of Pseudomonas savastanoi pv. phaseolicola oxidoreductase. Predicted FAD binding sites
of CrtIRS were the residues 16–17, 19–21, 40–42, 47–49, 61–65, 251–523, 282–284, 287,
315, 385, 433, 476–477, 483–485, and 488 (blue in Figures 4b and 5a). Interestingly, the
five mutated amino acids of CrtIRS (Trp142, Leu163, Ala171, Glu186, and Ile454) were
present in the putative membrane-binding domain (red in Figure 5a and blue in Figure 5b).
The membrane-binding domain was previously predicted to influence the hydrophobic
residues (cyan in Figure 5a), which are involved in the FAD-associated tunnel of CrtI
from P. ananatis [18]; therefore, different degrees of phytoene desaturation (the observed
differences in carotenoid profiles) in mutant CrtIRS could be attributed to the alteration of
the FAD binding environment in the active site region of CrtIRS.
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3. Materials and Methods
3.1. Strains, Plasmids, and Culture Conditions

All strains and plasmids used in this study are listed in Table 1. E. coli XL-Blue
was grown in Luria–Bertani (LB, 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl) or
M9 minimal medium (2 g/L glucose, 3 g/L KH2PO4, 0.5 g/L NaCl, 6 g/L Na2HPO4,
1 g/L NH4Cl, 0.5 g/L CaCl2, 0.5 g/L MgSO4). Genomic DNA of R. sphaeroides KCTC
12085 grown in LB medium was isolated using the genomic DNA extraction kit GeneAll®

ExgeneTM cell SV mini (GeneAll, Seoul, South Korea). The crtE gene (encoding GGPP
synthase), crtB (phytoene synthase), and crtI (phytoene desaturase) were amplified from
genomic DNA by PCR using gene-specific primers (Table 3) and cloned into the pGEM® T-
easy vector (Promega Corporation, Madison, WI, USA), resulting in pT_crtERS, pT_crtBRS,
and pT_crtIRS. The cloned gene was amplified from pT_crtERS, pT_crtBRS, and pT_crtIRS
by PCR, then subcloned into the constitutive expression vector pUCM [22], generating
pUCM_ERS, pUCM_BRS, and pUCM_IRS. To assemble the individual expression modules
of the crtE, crtB, and crtI genes on pUCM, each gene module was amplified by PCR and
subsequentially cloned into pACM plasmid, generating pACM-ERS, pACM-ERS-BRS, and
pACM-ERS-BRS-IRS.
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Table 3. Primers used in this study. The underlined sections indicate restriction enzyme sites.

Gene Primer Sequence Enzyme Site

crtE
F: 5′ GCTCTAGAAGGAGGATTACAAAATGGCGTTTGAACAGCGGATTG 3′ XbaI

R: 5′ GGAATTCTCAGACGCGGGCCGCGACCT 3′ EcoRI

crtB
F: 5′ GGAATTCAGGAGGATTACAAAATGATTGCCTCTGCCGATCT3′ EcoRI

R: 5′ CATGCCATGGCTAGATCGGGTTGGCCCG3′ NcoI

crtI
F: 5′ GCTCTAGAAGGAGGATTACAAAATGCCCTCGATCTCGCCC 3′ XbaI

R:5′ CGGAATTCTCATTCCGCGGCAAGCCT 3′ EcoRI

3.2. Error-Prone PCR Mutagenesis

Random mutagenesis of the R. sphaeroides crtI gene on the plasmid pUCM was
performed using a previously reported error-prone PCR method [28]. Briefly, the mu-
tagenic PCR condition of 1.5 mM MgCl2, unbalanced dNTP ratio (ATP:TTP:CTP:GTP,
1:1:1:4), and Taq polymerase were utilized to incorporate mismatched bases into the crtI
gene with primers (5′-GCTCTAGAAGGATTACAAAATGCCCTCGATCTCGCCC-3′ and
5′-CGGAATTCTCATTCCGCGGCAAGCCT-3′) flanking the crtI gene on the pUCM vector.
The PCR products were purified using a gel DNA extraction kit (Macrogen, Inc., Seoul,
Korea), followed by digestion with the restriction enzymes EcoRI and XbaI. The fragments
were cloned into the corresponding site of vector pUCM and then transformed into E. coli
harboring pACM-ERS-BRS. The cells grown on M9 agar plates were supplemented with
ampicillin (100 µg/mL) and chloramphenicol (50 µg/mL) at 37 ◦C for 24 h and then
incubated at 20 ◦C until colonies developed. Colonies on M9 agar plates were visually
screened, and those with color changes were selected and restreaked on LB agar plates to
isolate pure colonies. The isolated cells were cultured in LB medium supplemented with
ampicillin (100 µg/mL) and chloramphenicol (50 µg/mL), and pUCM plasmids containing
the mutagenic crtI gene were isolated from 1% (v/v) agarose gel with a gel DNA extraction
kit (Macrogen). Mutagenic crtI gene sequences were verified by Sanger sequencing (Macro-
gen). Fresh transformed E. coli strains harboring pACM-ERS-BRS and pUCM_mutant_crtI
were prepared and cultured in Terrific Broth (12 g/L tryptone, 24 g/L yeast extract, 0.17 M
KH2PO4, 0.72 M K2HPO4, and 10 g/L glycerol) supplemented with ampicillin (100 µg/mL)
and chloramphenicol (50 µg/mL) to investigate the carotenoid profile.

3.3. Site-Directed Mutagenesis

Phusion High-Fidelity DNA Polymerase (New England BioLabs, Inc., Ipswich, MA,
USA) was used to perform SDM of the crtI gene. Mutagenesis primers were designed
according to the desired crtI gene mutations. After PCR amplification, the PCR product
was digested with DpnI for 5 h and transformed into E. coli. The sequence changes in SDM
were verified by Sanger sequencing (Macrogen).

3.4. Analysis of Carotenoid Production

Carotenoid extraction was performed using a previously described extraction method [22].
Briefly, 50 mL of culture was harvested and separated into a cell pellet and culture medium.
Carotenoids were repeatedly extracted with a total of 20 mL of acetone until all visible
color disappeared from the cell pellet. Equal volumes of water and hexane were added to
the acetone extract and vortex-mixed. The upper carotenoid-containing solvent layer was
carefully collected and dehydrated with 0.1 g anhydrous sodium sulfate (Sigma-Aldrich,
St-Louis, MO, USA) for 20 min. After centrifugation (4 ◦C and 13,000 rpm), the supernatant
was collected and completely dried using a Genevac EZ2 centrifugal evaporator (Genevac,
Inc., Vally Center, NY, USA). The dried residue was resuspended in 500 µL acetone and
20 µL of aliquot was subjected to an Agilent 1260 series HPLC (Agilent technologies, Palo
Alto, CA, USA) system equipped with an Agilent photodiode array detector and Zorbax
eclipse XDB-C18 column (4.6 × 150 mm, silica particle, 80 Å, 5 µm; Agilent Technologies).
The column temperature was maintained at 35 ◦C and the flow rate was 1 mL/min.
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Acetonitrile, methanol, and isopropanol (80:15:5, v/v/v) were used for isocratic elution.
UV/Vis analysis of neurosporene, lycopene, and 3,4-didehydrolycopene was carried out
at wavelengths of 440 nm, 470 nm, and 490 nm, respectively. The relative ratio of each
carotenoid profile was calculated by comparing the peak area of each carotenoid in the LC
chromatogram generated by OpenLab ChemStation® software (Agilent Technologies). The
results are expressed as means ± standard deviations of three replicates.

3.5. Computational Modeling of Phytoene Desaturase

To compare the functional differences of mutant CrtI enzymes, protein structures of
CrtI mutants were computationally predicted using I-TASSER [29]. Two protein templates
were used to construct CrtI protein models: γ-carotenoid desaturase (PDB ID: 4repA) from
N. dokdonensis DSW-6 [30] and phytoene desaturase (PDB ID: 4dgkA) from P. ananatis [18].
Starting with the protein structures, FAD was docked into the crystal structures using
COACH-D [31]. The structure of the FAD ligand was prepared using Chemsketch [32]
prior to performing docking simulations. The model structures were visualized using the
PyMol Molecular Graphics System (ver 2.0.4, Schrödinger, LLC, New York, NY, USA).

4. Conclusions

In this study, phytoene desaturase of R. sphaeroides (CrtIRS), a catalyst in the 3-step
desaturation of phytoene, was randomly mutated to alter its catalytic activity towards
phytoene. CrtIRS mutants produced different ratios of neurosporene (9 CDBs)/lycopene
(11 CDBs)/3,4-didehydrolycopene (13 CDBs). Leu163, Ala171, and Ile454 were particularly
important residues in determining product alteration between neurosporene, lycopene, and
3,4-didehydrolycopene (Table 2). The evaluation of an in silico model of CrtIRS concluded
that the mutated amino acids were gathered in the membrane-binding domain, which
could distantly influence the FAD binding region [18]. As CrtIRS is a bacterial carotene
desaturase, the microenvironment of the cofactor FAD-binding region is important for
the desaturation of phytoene catalyzed by a sole CrtI [33]. Although the distant influence
of mutated residues on the FAD binding region of CrtIRS was demonstrated through
the altered activity of mutant CrtIRS, the mechanism of FAD reoxidation in successive
phytoene desaturation requires further investigation. Notably, phytoene desaturation and
FAD reoxidation by quinones are separate events in plant-type phytoene desaturase [34].
This can provide insights into how bacterial CrtI simultaneously modulate phytoene
desaturation and FAD reoxidation.
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