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Abstract: A set of tetranuclear alkyl aluminum adducts 1 and 2 supported by benzodiimidazole-
diylidene ligands L1, N,N’-(1,5-diisopropylbenzodiimidazole-2,6-diylidene)bis(propan-2-amine),
and L2, N,N’-(1,5-dicyclohexyl-benzodiimidazole-2,6-diylidene)dicyclohexanamine were synthetized
in exceptional yields and characterized by spectroscopic methods. These compounds were studied
as catalysts for cyclic carbonate formation (3a–o) from their corresponding terminal epoxides (2a–o)
and carbon dioxide utilizing tetrabutylammonium iodide as a nucleophile in the absence of a solvent.
The experiments were carried out at 70 ◦C and 1 bar CO2 pressure for 24 h and adduct 1 was the
most efficient catalyst for the synthesis of a large variety of monosubstituted cyclic carbonates with
excellent conversions and yields.

Keywords: alkyl aluminum adduct; cyclic carbonates; epoxides; carbon dioxide conversion; catalysis

1. Introduction

The accumulation of carbon dioxide (CO2) emissions in the atmosphere has a negative
effect on the environment and has been recognized as the principal phenomenon respon-
sible for global warming by the international community [1,2]. Consequently, reducing
greenhouse gas emissions must be the main challenge in order to mitigate climate change,
and the use of CO2 as sustainable feedstock in the chemical industry could help to achieve
this objective [1,3–5]. For this reason, the development of new technologies, such as CO2
capture and storage (CCS) and CO2 capture and usage (CCU) have acquired significant
relevance over the past few years [6,7]. While CCS is the principal method to decrease
CO2 concentrations in the environment, CCU is the most promising for transforming
CO2 into highly value-added products, including organic molecules [8–12] and polymeric
materials [13–17].

It is worth highlighting that one of the main uses of CO2 is focused on the synthesis of
cyclic carbonates. The preparation of these products is performed in different ways [18],
and the reaction of CO2 with epoxides is the most predominant [19–32], although ethylene
glycol [33], halohydrins [34], and propargyl alcohols [35] can also be used as precursors to
prepare cyclic carbonates. Specifically, epoxides, which are highly reactive substrates, have
the ability to activate inert CO2 molecules, overcoming their thermodynamic stability [1,36],
which makes these substrates suitable for the preparation of cyclic carbonates, since their
combination with CO2 is a simple and effective reaction. Recently, the preparation of cyclic
carbonates has grown enormously, attributed to their use as polar aprotic solvents [37,38],
electrolytes for lithium-ion batteries [39,40], chemical intermediates [41], and monomers to
produce polymers [14,42–44], making them products of elevated interest.

It is important to mention that the use of different catalytic systems is essential to
perform high reaction conversions and produce yields for the synthesis of cyclic carbonates,
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preferably under mild reaction conditions (low temperature and CO2 pressure), therefore
a wide array of catalysts have been designed to achieve this catalytic process. These
catalysts are fundamentally based on highly efficient organometallic complexes [45–49]
and organocatalysts [50–53]. Related to this matter, aluminum complexes have recently
been studied [23,24,54–59], since aluminum is one of the most abundant elements in the
Earth’s crust, which makes it highly desirable for large-scale production.

Among all aluminum catalysts recently developed for the preparation of cyclic car-
bonates, it is worth highlighting that only a few of them present adduct-type coordinations,
which have shown exceptional catalytic results in this process. The most prominent alu-
minum compounds are those supported by scorpionate ligands in which a AlR3 moiety
(R = Me, Et) is attached to an oxygen or nitrogen atom through a dative bond, as can
be seen in Figure 1 [23,60–64]. In that sense, the one-component aluminum adducts re-
ported by Otero et al. have the ability to synthesize cyclic carbonates in the absence of
a co-catalysts in high isolated yields (Figure 1a–c) [23,60,61]. Furthermore, the bimetal-
lic (Figure 1d–e) [62,63] and trimetallic (Figure 1f) [64] aluminum complexes exhibited
outstanding activity for the preparation of styrene carbonate using tetrabutylammonium
bromide (TBAB) as a co-catalyst.
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On the other hand, our research group has experience in the preparation of aluminum
complexes that have proven to be efficient catalysts in the synthesis of cyclic carbon-
ate formation (Figure 2) [65–68]. Firstly, the aluminum-based bis(amidinate) complex
(Figure 2a) demonstrated excellent conversions (81–100%) and yields (57–87%) for the
production of cyclic carbonates from disubstituted epoxides and CO2 [65]. Addition-
ally, trinuclear aluminum adduct (Figure 2b) showed exceptional catalytic activity for
this transformation in relatively moderate reaction conditions (50 ◦C and 1 bar) under
solvent-free conditions [66], as well the bulky aluminum complex supported by 4-amino-
3-iminoquinoline ligand at 80 ◦C and 1 bar pressure of CO2 (Figure 2c) [67]. Recently,
there has been particular interest in the synthesis of heterobimetallic complexes (Figure 2d),
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which are the first ferrocenyl amidinate aluminum complexes in CO2 catalysis reported to
date [68]. In this context, inspired by our previous work [66], in which it was found that bi-
and trinuclear aluminum adducts were more active than their analogous monometallic
aluminum complexes for the synthesis of a wide range of cyclic carbonates and by the
high catalytic activity of the previously discussed aluminum adducts (Figure 1) [23,60–64],
herein, we focused our attention in the preparation of new tetranuclear alkyl aluminum
adducts supported by benzodiimidazole-diylidene ligands [69], which exhibited excellent
performance for the chemical fixation of CO2 into cyclic carbonates.
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2. Results and Discussion
2.1. Tetranuclear Alkyl Aluminum Adduct Characterization

Benzodiimidazole-diylidene ligands L1, N,N’-(1,5-diisopropylbenzodiimidazole-2,6-
diylidene)bis(propan-2-amine) and L2, N, N’-(1,5-dicyclohexyl-benzodiimidazole-2,6-
diylidene)dicyclohexanamine were synthesized by the reaction of 1,4-bisguanidino aro-
matic precursors with Cu(OAc)2 in acetonitrile with good yields, as previously reported [69].

As previously commented, it was found that alkyl aluminum adducts were more
active than their analogous complexes for the synthesis of cyclic carbonates [66]; therefore,
inspired by these catalytic results, the preparation of tetranuclear alkyl aluminum adducts
1 and 2 supported by benzodiimidazole-diylidene ligands was carried out with the main
purpose of obtaining excellent catalytic performance in this catalytic process. Adducts 1
and 2 were synthesized by a Lewis acid–base reaction of the corresponding ligands, L1
and L2, with four equivalents of Al(CH3)3 in CH2Cl2 for 2 h at room temperature under
nitrogen atmosphere (Scheme 1). Adducts 1 and 2 were isolated in exceptional yields
(>95%) as white solids.
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Scheme 1. Synthesis of alkyl aluminum adducts 1 and 2.

Alkyl aluminum adducts 1 and 2 were characterized by spectroscopic methods (1H
NMR, 13C{1H} NMR, 1H−13C g-HSQC, 1H NOESY-1D and FT-IR). The 1H NMR spectra
of these compounds show a broad signal around (−0.58)−0.30 ppm for 1 (Figure 3) and
(-0.61)−0.46 ppm for 2 (see Supplementary Materials), which belong to the methyl groups
coordinated to the aluminum centers. The corresponding signals of the isopropyl groups
are observed at 1.27 and 1.18 ppm (CH), 4.27 and 3.31 ppm (CH3) in adduct 1 (Figure 3),
while the resonances belonging to the CH2 and CH groups from the cyclohexyl substituent
appear around 0.94–4.07 ppm in adduct 2 (see Supplementary Materials). Finally, aromatic
signals are shifted to 7.73 ppm in 1 and 7.96 ppm in 2. Two-dimensional experiments were
carried out to assign the majority of 1H NMR signals and 1H–13C g-HSQC experiments
were carried out to locate resonances from carbon atoms (see Supplementary Materials).
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FT-IR spectroscopy is also an efficient tool to confirm the formation of new compounds.
In that regard, a slight variation and broadening was observed in most IR bands between
adducts and ligand precursors (1 versus L1 and 2 versus L2), which is characteristic of the
interaction between a metal and an organic structure. As an example, the IR spectrum of
1 shows two signals at 1516 and 1461 cm−1 corresponding to the C=N and C=C groups,
respectively, whereas those same two signals appear at 1613 (C=N) and 1527 (C=C) cm−1

in the IR spectrum of L1, in which a clear displacement is detected, as can be seen in
Figure 4 [69]. Other evidence of the phenomenon mentioned above can be found in the
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bands belonging to the C−N stretching frequencies (1187 and 1114 cm−1 for adduct 1 and
1356 and 1063 cm−1 for L1) [69]. In addition, as Al(CH3)3 is a metallic precursor with low
atomic mass, a characteristic broad band of adduct 1 appears at 689 cm−1 corresponding
to the Al−NC interaction. A similar FT-IR discussion can apply to adduct 2 and L2 (see
Supplementary Materials for further details).
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Characterization of adducts 1 and 2 performed by NMR and FT-IR spectroscopy
allowed us to propose a structure for these compounds in which the benzodiimidazole-
diylidene ligand is coordinated to four aluminum centers via dative bonds.

2.2. Catalytic Studies

Once the new tetranuclear aluminum adducts 1 and 2 were prepared, their potential
utility as catalysts for the formation of cyclic carbonates from the reaction between CO2
and epoxides was explored. Firstly, reaction conditions were optimized using styrene oxide
2a as substrate. As shown in Table 1, moderate conversions were observed with catalysts 1
and 2 when tetrabutylammonium iodide (TBAI), TBAB, or tetrabutylammonium chloride
(TBAC) was used as a co-catalyst (Table 1, entries 1–3 and 6–8), however, no conversion
was obtained in the presence of tetrabutylammonium fluoride (TBAF) (Table 1, entries 4
and 9) at 50 ◦C and 1 bar of CO2 pressure for 24 h. It was found that TBAI was a more
efficient co-catalyst than TBAB, TBAC, or TBAF under the same reaction conditions, which
could be due to the superior leaving group ability and nucleophilicity of the iodide ion
versus bromide, chloride, and fluoride ions. In addition, the lower electrostatic interaction
between the ammonium cation and the iodide anion compared to bromide, chloride, and
fluoride anions is caused by the ion pairing effect. Accordingly, the iodide is farther away
from the ammonium cation and, consequently, the nucleophilic attack of the iodide atom
to the epoxide is favored [70,71]. According to these results, the reaction temperature was
increased to 70 ◦C and higher conversions were obtained (Table 1, entries 5 and 10). At this
reaction temperature, adduct 1 was more active than 2, probably due to the higher steric
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hindrance generated by cyclohexyl groups compared to isopropyl groups, which makes
the approximation of epoxide to the metal centers more difficult.

Table 1. Optimization of reaction conditions for the preparation of styrene carbonate (3a).1.
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Entry Catalyst Co-Catalyst Temperature (◦C) Conversion 2,3 (%)

1 1 TBAI 50 70
2 1 TBAB 50 62
3 1 TBAC 50 46
4 1 TBAF 50 1
5 1 TBAI 70 86
6 2 TBAI 50 42
7 2 TBAB 50 35
8 2 TBAC 50 31
9 2 TBAF 50 2

10 2 TBAI 70 53
11 4 Al(CH3)3 TBAI 50 20
12 4 Al(CH3)3 TBAI 70 31
13 5 Al(CH3)3 TBAI 70 18
14 6 1 - 70 0
15 7 - TBAI 70 5

1 Reactions were carried out at 70 ◦C and 1.0 bar CO2 pressure using 1.25 mol% of catalyst and 5 mol% of co-catalyst under solvent-free
conditions; 2 established by 1H NMR of crude reaction mixture; 3 selectivity toward the cyclic carbonate >99%; 4 5 mol% of both Al(CH3)3
and pyridine was added; 5 5 mol% of Al(CH3)3 was added; no pyridine was added; 6 no tetrabutylammonium iodide (TBAI) was added;
7 no catalyst 1 was added. TBAB, tetrabutylammonium bromide. TBAC, tetrabutylammonium chrolide. TBAF, tetrabutylammonium
fluoride.

The compound pyridine–Al(CH3)3 was also tested at 50 and 70 ◦C (Table 1, entries 11
and 12), showing minor catalytic activity compared to adducts 1 and 2 at those temperatures
(Table 1, entries 1 and 6 versus entry 11; entries 5 and 10 versus entry 12), confirming
the great effectiveness of benzodiimidazole-diylidene ligands in this catalytic process.
Additionally, with the main challenge of demonstrating that the coordination of adducts
to metal centers greatly favors the synthesis of cyclic carbonates, an experiment using
Al(CH3)3 and TBAI in the absence of adducts was performed under the same reaction
conditions, 70 ◦C and 1 bar CO2 pressure for 24 h (Table 1, entry 13) and, as expected, a
lower conversion occurred (Table 1, entry 13 versus entries 5, 10, and 12). Finally, control
experiments were carried out to prove that both catalyst 1 and TBAI are essential for the
catalytic production of 3a (Table 1, entries 14 and 15).

Once the reaction conditions for the preparation of styrene carbonate 3a from styrene
oxide 2a and CO2 were optimized as 1.25 mol% of adduct 1 and 5 mol% of TBAI at 70 ◦C
and 1 bar of CO2 pressure for 24 h, a wide variety of monosubstituted cyclic carbonates
3a–o were prepared from their corresponding terminal epoxides 2a–o (Figure 5). It is worth
highlighting that in most cases, elevated conversions and isolated yields were afforded
using 1/TBAI as the catalyst system with selectivity toward cyclic carbonate product under
the conditions mentioned above. Cyclic carbonates 3b–d and 3o, which contain an alkyl
group in their structure, were isolated in exceptional yields of 78–94%. Moreover, it was
found that 1/TBAI prepared glycerol carbonate 3e with excellent yield (90%), despite
glycidol being highly likely to form polymers [72–74]. In addition, the preparation of
highly fluorinated cyclic carbonates 3j and 3k was performed with excellent yields. These
cyclic carbonates have hardly been investigated and could be used in lithium-ion batteries
as electrolytes [75–77]. Finally, cyclic carbonates 3l–n were also obtained in high yields
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(81–89%). Particularly, product 3n is an interesting substrate since it can be employed as
building blocks for the preparation of non-isocyanate polyurethanes (NIPUs) by its reaction
with diamines [78,79]. It is notable that the catalyst system (1/TBAB) was able to prepare
a great variety of cyclic carbonates with different functional groups such as aryl, alkyl,
alcohol, ether, and halide. These catalytic results show that this catalyst system has great
potential for cyclic carbonate production.
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2.3. Catalysis Comparison

In recent years, a significant number of catalytic systems based on aluminum com-
plexes have been reported in the literature for the synthesis of cyclic carbonates. Many of
them require CO2 pressure greater than 1 bar to perform the catalytic process, although
there are some examples of aluminum compounds that show outstanding catalytic ac-
tivity at atmospheric pressure (1 bar). For this reason, the catalytic results displayed
by aluminum adduct 1 can be compared with other aluminum complexes found in the
literature to determine whether adduct formation shows significant improvements in
cyclic carbonate synthesis. The catalytic performance of these catalysts is presented in
Table 2. For styrene carbonate (3a) formation (Table 2, entries 1–6), it is relevant to mention
that the Al(Salen) catalyst prepared by North et al. [80] displayed the best TOF value
(7.65) under ambient conditions (Table 1, entry 2). The bimetallic aluminum complex [66]
required 2.5 mol% of catalyst loading to obtain an isolated yield of 85 % (Table 2, entry 3),
whereas adduct 1 afforded a similar result using only 1.25 mol%. Moreover, the aluminum
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complex supported by aminoquinoline ligand [67] showed an almost identical TOF value
as adduct 1 (Table 2, entry 5), although this catalyst required a higher temperature (80 ◦C).
In addition, another aluminum complex reported by Otero and co-workers [60] exhibited
excellent conversion for the synthesis of styrene carbonate at 35 ◦C (Table 2, entry 6). It is
also worth noting the elevated TOF value presented by another Al(Salen) complex [56] for
the preparation of cyclic carbonate 3g (Table 2, entry 8), which is clearly more active than
adduct 1, although this complex required 100 ◦C to accomplish the catalytic activity. On
the other hand, various aluminum catalysts have recently been used for the preparation
of 3-phenoxypropylene carbonate, 3f [57,63,68,81,82]. The Al(Salen) molecular cage [57]
(Table 2, entry 10) and the aluminum catalyst reported by Xu et al. [81] (Table 2, entry 11)
have proven to be exceptional catalysts for the synthesis of 3f, although these catalysts
also had important disadvantages, including that the Al-cage required 10 mol% of TBAB
to reach a medium yield (Table 2, entry 10) and the Al-Schiff needed an elevated reaction
temperature, 100 ◦C (Table 2, entry 11). Finally, the potassium organoaluminate com-
pound [82] and the aluminum ferrocenyl amidine complex [68] achieved lower catalytic
activity than adduct 1 (Table 2, entries 12 and 14) for the preparation of 3f. In conclusion,
the catalytic system (1/TBAI) developed in this work afforded the formation of a significant
variety of cyclic carbonates 3a–o under moderate reaction conditions (70 ◦C and 1 bar) and
has proven to be one of the most active aluminum catalysts for the preparation of cyclic
carbonates at 1 bar CO2 pressure.

Table 2. Comparison of catalytic activity of different aluminum complexes 1.

Entry Epoxide Catalyst System
(mol%)

Reaction Conditions:
T (◦C), time (h) Yield (%) 2 TOF

(h−1) 3 Reference

1 2a 1/TBAI
(1.25/5.0) 70, 24 82 2.73 This work

2 2a Al(Salen)/TBAB
(2.5/2.5) 25, 3 57 7.65 [80]

3 2a Al cat/TBAI
(2.5/5.0) 50, 24 85 1.41 [66]

4 2a Al cat/TBAI
(5.0/5.0) 25, 24 80 0.66 [65]

5 2a Al cat/TBAI
(1.5/1.5) 80, 24 90 2.5 [67]

6 2a Al cat/TBAI
(5.0/5.0) 35, 24 100 4 - [60]

7 2g 1/TBAI
(1.25/5.0) 70, 24 93 3.10 This work

8 2g Al(Salen)
(0.25) 100, 24 63 10.50 [56]

9 2f 1/TBAI
(1.25/5.0) 70, 24 85 2.83 This work

10 2f Al-cage/TBAB
(0.33/10.0) rt, 24 54 3.40 [57]

11 2f Al-Schiff/TBAB
(0.3/0.9) 100, 18 94 17.41 [81]

12 5 2f Al-K/TBAI
(5.0/2.5) 50, 24 73 0.61 [82]

13 2f Al cat/TBAB
(5.0/5.0) 35, 18 80 4 - [63]

14 2f Al-Fe/TBAI
(1.7/1.7) 80, 24 71 1.74 [68]

1 Reactions were carried out at 1.0 bar CO2 pressure under solvent-free conditions. 2 Isolated yield from purified cyclic carbonate. 3 mol
of product/(mol of catalyst · time). 4 No isolated yield was reported under these reaction conditions. 5 1 mL of THF was added. TOF,
turnover frequency.
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3. Materials and Methods
3.1. Materials and Equipment

All experiments were carried out in the absence of oxygen employing Schlenk-line
and standard glovebox techniques. Reagent-grade solvent was acquired from E. Merck.
CH2Cl2 was dried using an Innovative Technology Pure Solv model PS-MD-5. The com-
pounds trimethylaluminum (Al(CH3)3), epoxides, TBAF, TBAC, TBAB, and TBAI were
obtained from Merck and used as received. L1, N,N’-(1,5-diisopropylbenzodiimidazole-
2,6-diylidene)bis(propan-2-amine) and L2, N, N’-(1,5-dicyclohexyl-benzodiimidazole-2,6-
diylidene)dicyclohexanamine were prepared according to published procedures [69].

The following equipment was employed for the characterization of tetranuclear alkyl
aluminum adducts: 1H and 13C{1H} NMR spectra were obtained on a Bruker Avance-
400 spectrometer. The coupling constants and chemical shifts are registered in Hertz
and parts per million (SiMe4 as standard), respectively. NMR signals were supported
by supplementary 2D NMR experiments, and the numbers of scans used for 13C{1H}
NMR ranged from 0.5 to 2 K depending on the experimental concentration. FT-IR spectra
were obtained on a Bruker Vector-22 spectrophometer using KBr pellets, and the infrared
frequencies are reported in cm−1.

3.2. Catalyst Preparation and Characterization

Synthesis of 1. A solution of trimethylaluminum (Al(CH3)3) (81.35 mg, 1.13 mmol) in
CH2Cl2 was immediately added to a solution of L1 (100.0 mg, 0.28 mmol) in CH2Cl2. Then,
the reaction mixture was agitated for 2 h at room temperature. All volatiles were eliminated
under reduced pressure, and the resulting solid was washed with cold pentane to remove
impurities. Adduct 1 was isolated as a white solid (178.2 mg, 99%). 1H NMR (400 MHz,
C6D6, 298 K): δ = 7.73 (s, 2H, CH-Ar), 4.27 (m, 2H, CH-iPr), 3.31 (m, 2H, CH-iPr), 1.27 (d,
3JHH= 6.6 Hz, 12H, CH3-iPr), 1.18 (d, 3JHH= 7.0 Hz, 12H, CH3-iPr), (−0.58)−0.39 ppm (br, d,
36H, CH3-Al). 13C{1H} NMR (100 MHz, C6D6, 298 K): δ = 162.2 (C-Ar), 155.2 (CN3), 132.2
(C-Ar), 98.8 (CH-Ar), 54.5 (CH-iPr), 49.4 (CH-iPr), 25.6 (CH3-iPr), 20.8 (CH3-iPr), -4.5 ppm

(br, CH3-Al). FT-IR (KBr)
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= 2931 (C−H), 2859 (C−H), 1516 (C=N), 1461 (C=C), 1194 (C−N), 1078
(C−N), 689 (Al−NC).

3.3. General Procedure for Catalyst Screening at 1 bar Pressure

Styrene oxide 2a (1.66 mmol), alkyl aluminum catalysts 1 and 2, pyridine−Al(CH3)3
or Al(CH3)3 (0.021–0.083 mmol), and co-catalysts (0.083 mmol) were placed in individual
glass reaction tubes with a magnetic stirrer bar in a Carousel 12 Place Reaction Station
multipoint reactor under constant pressure of 1 bar of CO2. The reaction was agitated at
50–70 ◦C for 24 h, and then the styrene carbonate 3a conversion was determined by 1H
NMR spectroscopy.
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3.4. General Method for Preparation of Cyclic Carbonates 3a–o

Epoxide 2a–o (1.66 mmol), alkyl aluminum adduct 1 (20.7 µmol), and TBAI (83.0 µmol)
were placed in individual glass reaction tubes with a magnetic stirrer bar in a Carousel
12 Place Reaction Station multipoint reactor under constant pressure of 1 bar of CO2. The
reaction mixture was agitated at 70 ◦C for 24 h. Cyclic carbonate conversion was then
determined by analyzing an aliquot by 1H NMR spectroscopy. The rest of the sample was
filtered across a plug of silica, eluting with CH2Cl2 to eliminate the catalyst. The eluent
was vaporized under reduced pressure to obtain either the purified cyclic carbonate or a
mixture of unreacted epoxide and cyclic carbonate. However, in the last case, the mixture
was purified by flash chromatography using the following solvent system: first hexane,
then hexane:EtOAc (6:1), then hexane:EtOAc (3:1), then EtOAc to give the purified cyclic
carbonate. Cyclic carbonates 3a–o are all known compounds and the spectroscopic data
for samples prepared using alkyl aluminum adduct 1 were consistent with those reported
in the literature.

3.5. NMR Data for Cyclic Carbonates 3a–o

Styrene carbonate (3a). Obtained as a white solid (196.2 mg, 82%). 1H NMR (400 MHz,
CDCl3, 298 K): δ = 7.36–7.43 (m, 3H, ArH), 7.32–7.36 (m, 2H, ArH), 5.65 (t, 3JHH= 8.0 Hz, 1H,
OCH), 4.77 (t, 3JHH = 8.5 Hz, 1H, OCH2), 4.29 ppm (t, 3JHH = 7.5 Hz, 1H, OCH2); 13C{1H}
NMR (100 MHz, CDCl3, 298 K): δ = 155.0, 135.9, 129.7, 129.2, 126.0, 78.1, 71.2 ppm.

Propylene carbonate (3b). Obtained as a colorless liquid (155.9 mg, 94%); 1H NMR
(400 MHz, CDCl3, 298 K): δ = 4.80−4.86 (m, 1H, OCH), 4.53 (t, 3JHH= 8.0 Hz, OCH2), 4.00
(t, 3JHH= 7.5 Hz, OCH2), 1.44 ppm (d, 3JHH= 6.5 Hz, 3H, CH3); 13C{1H} NMR (100 MHz,
CDCl3, 298 K): δ = 155.1, 73.6, 70.7, 19.4 ppm.

1,2-Butylene carbonate (3c). Obtained as a colorless liquid (160.0 mg, 83%). 1H NMR
(400 MHz, CDCl3, 298 K): δ = 4.59–4.65 (m, 1H, OCH), 4.49 (t, 3JHH = 8.5 Hz, 1H, OCH2),
4.05 (t, 3JHH = 8.5 Hz, 1H, OCH2), 1.66–1.84 (m, 2H, CH2), 0.99 ppm (t, 3JHH = 7.5 Hz, 3H,
CH3); 13C{1H} NMR (100 MHz, CDCl3, 298 K): δ = 155.1, 78.0, 69.0, 27.0, 8.5 ppm.

1,2-Hexylene carbonate (3d). Obtained as a colorless liquid (225.0 mg, 94%); 1H NMR
(400 MHz, CDCl3, 298 K): δ = 4.67−4.74 (m, 1H, OCH), 4.53 (t, 3JHH = 8.0 Hz, 1H, OCH2),
4.07 (dd, 3JHH = 8.5, 7.0 Hz, 1H, OCH2), 1.76–1.86 (m, 1H, CH2), 1.63–1.73 (m, 1H, CH2),
1.31–1.49 (m, 4H, 2OCH2), 0.93 ppm (t, 3JHH = 7.0 Hz, 3H, CH3); 13C{1H} NMR (100 MHz,
CDCl3, 298 K): δ = 155.1, 77.1, 69.4, 33.6, 26.5, 22.3, 13.8 ppm.

Glycerol carbonate (3e). Obtained as a colorless liquid (176.4 mg, 90%); 1H NMR
(400 MHz, [D6]DMSO, 298 K): δ = 4.70–4.77 (m, 1H, OCH), 4.46 (t, 3JHH = 8.0 Hz, 1H,
OCH2), 4.38 (dd, 3JHH = 8.0, 5.5 Hz, 1H, OCH2), 3.89−3.96 (m, 1H, CH2OH), 3.61−3.69
ppm (m, 1H, CH2OH); 13C{1H} NMR (100 MHz, [D6]DMSO, 298 K): δ = 155.1, 77.4, 65.7,
61.7 ppm.

3-Phenoxyproplylene carbonate (3f). Obtained as a white solid (274.8 mg, 85%); 1H
NMR (400 MHz, CDCl3, 298 K): δ = 7.27–7.33 (m, 2H, 2OArH), 7.03 (t, 3JHH = 7.5 Hz,
1H, ArH), 6.90–6.96 (m, 2H, 2OArH), 4.99–5.08 (m, 1H, OCH), 4.62 (t, 3JHH = 8.5 Hz, 1H,
OCH2), 4.55 (dd, 3JHH = 9.0, 6.0 Hz, 1H, OCH2), 4.24 (dd, 3JHH = 10.5, 4.5 Hz, 1H, CH2OPh),
4.16 ppm (dd, 3JHH = 10.5, 3.5 Hz, 1H, CH2OPh); 13C{1H} NMR (100 MHz, CDCl3, 298 K):
δ = 157.8, 154.6, 129.7, 122.0, 114.6, 74.1, 66.9, 66.2 ppm.

3-Chloropropylene carbonate (3g). Obtained as a colorless liquid (210.8 mg, 93%);
1H NMR (400 MHz, CDCl3, 298 K): δ = 4.93−5.00 (m, 1H, OCH), 4.58 (t, 3JHH = 8.5 Hz,
1H, OCH2), 4.39 (dd, 3JHH = 8.5, 5.5 Hz, 1H, OCH2), 3.79 (dd, 3JHH = 12.0, 5.5 Hz, 1H,
CH2Cl), 3.71 ppm (dd, 3JHH = 12.5, 3.5 Hz, CH2Cl); 13C{1H} NMR (100 MHz, CDCl3,
298 K): δ = 154.2, 74.4, 67.0, 44.0 ppm

4-Chlorostyrene carbonate (3h). Obtained as a white solid (286.8 mg, 87%); 1H NMR
(400 MHz, CDCl3, 298 K): δ = 7.39−7.41 (m, 2H, ArH), 7.29−7.32 (m, 2H, ArH), 5.66 (t,
3JHH = 8.0 Hz, 1H, OCH), 4.80 (t, 3JHH = 8.0 Hz, 1H, OCH2), 4.30 ppm (t, 3JHH = 8.0 Hz, 1H,
OCH2); 13C{1H} NMR (100 MHz, CDCl3, 298 K): δ = 154.6, 135.7, 134.4, 129.5, 127.3, 77.3,
71.0 ppm.
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4-Bromostyrene carbonate (3i). Obtained as a white solid (360.5 mg, 89%) 1H NMR
(400 MHz, CDCl3, 298 K): δ = 7.51−7.57 (m, 2H, ArH), 7.19−7.24 (m, 2H, ArH), 5.62 (t,
3JHH = 8.0 Hz, 1H, OCH), 4.77 (t, 3JHH = 8.0 Hz, 1H, OCH), 4.27 ppm (dd, 3JHH = 8.8, 7.6 Hz,
1H, OCH2); 13C{1H} NMR (100 MHz, CDCl3, 298 K): δ = 154.2, 135.4, 134.0, 129.2, 127.0,
77.0, 70.7 ppm.

4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one (3j). Obtained as a color-
less liquid (354.4 mg, 92%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 5.83 (tt, 3JHH = 52.8,
4.8 Hz, 1H, CHCF2), 4.76−4.81 (m, 1H, OCH), 4.45 (t, 3JHH = 7.6 Hz, 1H, OCH2), 4.29
(dd, 3JHH = 7.6, 6.0 Hz, 1H, OCH2), 3.87 (dt, 3JHH = 12.8, 2.0 Hz, 2H OCH2CF2), 3.80 (dd,
3JHH = 11.2, 3,2 Hz, 1H, OCH2CH), 3.70 ppm (dd, 3JHH = 11.2, 4.0 Hz, 1H, OCH2CH);
13C{1H} NMR (100 MHz, CDCl3, 298 K): δ = 159.9 (C=O), 113.9 (tt, 3JCF = 994.0, 107.6 Hz,
CHCF2), 108.2 (tt, 3JCF = 991.6, 138.8 Hz, CF2), 77.4 (CH), 70,4 (CH2), 67.4 (t, 3JCF = 112.4
Hz, CF2CH2), 64.9 ppm (CH2). 19F NMR (400 MHz, CDCl3, 298 K): δ = (−139.3)–(−139.4)
(m, 2F), (−125.1)–(−125.0) ppm (m, 2F).

4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan-2-one (3k). Obtained
as a colorless liquid (512.8 mg, 93%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 6.01
(tt, 3JHH = 52.0, 5.6 Hz, 1H, CHF2), 4.75−4.83 (m, 1H, OCH), 4.46 (t, 3JHH = 8.8 Hz, 1H,
OCH2), 4.31 (dd, 3JHH = 8.4, 6.0 Hz, 1H, OCH2), 3.90−4.10 (m, 2H, OCH2CF2), 3.83 (dd,
3JHH = 11.2, 3,2 Hz, 1H, OCH2CH), 3.75 ppm (dd, 3JHH = 11.2, 3.6 Hz, 1H, OCH2CH);
13C{1H} NMR (100 MHz, CDCl3, 298 K): δ = 153.8 (C=O), 103.9−117.2 (m, 3 x CF2), 106.7
(tt, 3JCF = 1009.2, 123.2 Hz, CHCF2), 73.8 (CH), 70,6 (CH2), 67.3 (t, 3JCF = 102.8 Hz, CH2),
64.8 ppm (CH2). 19F NMR (400 MHz, CDCl3, 298 K): δ = (−137.6)–(−136.7) (m, 2F),
(−130.4)–(−129.5) (m, 2F), (−125.6)–(−125.7) (m, 2F), (−120.0)– (−120.1) ppm (m, 2F).

4-((allyloxy)methyl)-1,3-dioxolan-2-one (3l). Obtained as a colorless liquid (225.77 mg,
86%); 1H NMR (400 MHz, CDCl3, 298 K): δ = 5.77–5.91 (m, 1H, CH2=CH), 5.13–5.31 (m,
1H, CH2=CH), 4.73–4.84 (m, 1H, OCH), 4.44–4.49 (m, 1H, OCH2), 4.34–4.38 (m, 1H, OCH2),
3.96–4.07 (m, 1H, CH2OCH=CH2), 3.58–3.68 ppm (m, 2H, CH2OCH); 13C{1H} NMR (100
MHz, CDCl3, 298 K): δ = 154.9, 133.7, 118.0, 75.0, 72.7, 68.9, 66.3 ppm.

4-((benzyloxy)methyl)-1,3-dioxolan-2-one (3m). Obtained as a colorless liquid
(307.61 mg, 89%); 1H NMR (400 MHz, CDCl3, 298 K): δ = 7.27–7.40 (m, 5H, Ph), 4.76–
4.86 (m, 1H, OCH), 4.53–4.66 (m, 1H, OCH2Ph), 4.43–4.51 (m, 1H, OCH2), 4.36–4.41 (m,
1H, OCH2), 3.67–3.74 (m, 1H, CH2OCH) 3.59–3.64 ppm (m, 1H, CH2OCH); 13C{1H} NMR
(100 MHz, CDCl3, 298 K): δ 155.0, 137.1, 128.6, 128.1, 127.8, 75.1, 73.7, 68.9, 66.3 ppm.

4,4’-((butane-1,4-diylbis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (3n). Obtained
as a colorless liquid (390.30 mg, 81%); 1H NMR (400 MHz, CDCl3, 298 K): δ = 4.62–4.72
(m, 1H, OCH), 4.35 (t, 3JHH = 8.5 Hz, 1H, CH2O), 4.21–4.29 (m, 1H, OCH2), 3.50–3.57 (m,
1H, CH2OCH) 3.43–3.48 (m, 1H, CH2OCH) 3.30–3.39 (m, 1H, OCH2CH2) 1.44–1.55 ppm
(m, 1H, OCH2CH2); 13C{1H} NMR (100 MHz, CDCl3, 298 K): δ 154.5, 74.7, 71.2, 69.2, 65.7,
25.6 ppm.

1,2-Decylene carbonate (3o). Obtained as a colorless liquid (259.4 mg, 78%); 1H NMR
(400 MHz, CDCl3, 298 K): δ = 4.66–4.79 (1H, m, OCH), 4.51 (1H, t 3JHH = 8.5 Hz, OCH2), 4.04
(1H, 3JHH = 6.0, 2.0 Hz, OCH2), 1.61–1.83 (2H, m, CH2), 1.40–1.52 (2H, m, CH2), 1.20–1.37
(10H, m, CH2), 0.87 ppm (3H, 3JHH = 7.0 Hz, CH3); 13C{1H} NMR (100 MHz, CDCl3, 298 K):
δ = 154.8, 69.1, 33.6, 31.6, 29.2, 29.1, 29.0, 28.8, 24.1, 22.4, 13.8 ppm.

4. Conclusions

New tetranuclear alkyl aluminum adducts, 1 and 2, were synthesized from the reaction
between benzodiimidazole-diylidene ligands, L1 and L2, and Al(CH3)3 in a molar ratio
of 1:4. The characterization of 1 and 2 was carried out by NMR and FT-IR spectroscopy,
allowing the proposal of a structure in which the aluminum centers are coordinated through
a dative bond to the nitrogen atoms of the benzodiimidazole-diylidene moiety.

These adducts were shown to be effective catalysts for the preparation of cyclic carbon-
ates from terminal epoxides and CO2 using tetrabutylammonium iodide as a co-catalyst
under solvent-free conditions. Initially, the election of the co-catalyst was optimized and
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TBAI was selected as the best co-catalyst over TBAB, TBAC, and TBAF, probably due to the
ion pairing effect. It is important to mention that the incorporation of benzodiimidazole-
diylidene ligands with the Al(CH3)3 precursor significantly improved the catalytic activity
of the synthetized adducts compared to the adduct pyridine−Al(CH3)3. It is also remark-
able that the adducts prepared in this work (1, 2, and pyridine−Al(CH3)3) achieved higher
activity than the Al(CH3)3 precursor, which confirms that adduct preparation is beneficial
for the synthesis of cyclic carbonates. Adduct 1 displayed higher catalytic activity than 2
for the synthesis of styrene carbonate (3a), since the steric hindrance of isopropyl groups is
lower than that of cyclohexyl, which facilitates the approach of the epoxide to the catalyst.
Adduct 1 was able to prepare a wide variety of monosubstituted cyclic carbonates 3a–o
under relatively moderate reaction conditions (70 ◦C and 1 bar CO2 pressure for 24 h).

After analyzing the catalytic results for the preparation of cyclic carbonates between
1/TBAI and other previously reported aluminum catalysts, it can be concluded that the
catalytic system developed in this work was among the most active at 1 bar of CO2 pressure,
which confirms that the preparation of new adducts could be stimulating for this catalytic
process.

It is important to note that these compounds are the first alkyl aluminum adducts
supported by benzodiimidazole-diylidene ligands which have been used in the formation
of cyclic carbonates from epoxides and CO2. Further research will be directed toward
the development of novel ligands that allow the design of new multinuclear aluminum
adducts that could be utilized for the transformation of CO2 into cyclic carbonates.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/2/s1, Figure S1: 1H NMR spectrum for alkyl aluminum adduct 1 in C6D6; Figure S2:
13C{1H} NMR spectrum for alkyl aluminum adduct 1 in C6D6; Figure S3: 1H-1H COSY NMR
spectrum for alkyl aluminum adduct 1 in C6D6; Figure S4: 13C{1H}-HMQC NMR spectrum for
alkyl aluminum adduct 1 in C6D6; Figure S5: 13C{1H}-HMQC NMR spectrum for alkyl aluminum
adduct 1 in C6D6 (range (−1.1)−1.7 ppm in 1H-NMR and (−7.5)−42.0 ppm in 13C-NMR); Figure S6:
13C{1H}-HMQC NMR spectrum for alkyl aluminum adduct 1 in C6D6 (range 3.0–8.2 ppm in 1H-
NMR and 42.0–105.0 ppm in 13C-NMR); Figure S7: FT-IR spectrum for alkyl aluminum adduct 1
(red) versus benzodiimidazole-diylidene ligand L1 (black); Figure S8: 1H NMR spectrum for alkyl
aluminum adduct 2 in C6D6; Figure S9: 13C{1H} NMR spectrum for alkyl aluminum adduct 2 in
C6D6; Figure S10: 1H-1H COSY NMR spectrum for alkyl aluminum adduct 2 in C6D6; Figure S11:
13C{1H}-HMQC NMR spectrum for alkyl aluminum adduct 2 in C6D6; Figure S12: 13C{1H}-HMQC
NMR spectrum for alkyl aluminum adduct 2 in C6D6 (range (−0.8)−2.4 ppm in 1H-NMR and
(−12.0)−45.0 ppm in 13C-NMR); Figure S13: 13C{1H}-HMQC NMR spectrum for alkyl aluminum
adduct 2 in C6D6 (range 2.5–8.2 ppm in 1H-NMR and 53.0–103.0 ppm in 13C-NMR); Figure S14:
FT-IR spectrum for alkyl aluminum adduct 2 versus benzodiimidazole-diylidene ligand L2; Figure
S15: NMR spectra for styrene carbonate 3a in CDCl3; Figure S16: NMR spectra for propylene
carbonate 3b in CDCl3; Figure S17: NMR spectra for 1,2-butylene carbonate 3c in CDCl3; Figure
S18: NMR spectra for 1,2-hexylene carbonate 3d in CDCl3; Figure S19: NMR spectra for glycerol
carbonate 3e in [D6]DMSO; Figure S20: NMR spectra for 3-phenoxyproplylene carbonate 3f in CDCl3;
Figure S21: NMR spectra for 3-chloropropylene carbonate 3g in CDCl3; Figure S22: NMR spectra for
4-chlorostyrene carbonate 3h in CDCl3; Figure S23: NMR spectra for 4-bromostyrene carbonate 3i in
CDCl3; Figure S24: NMR spectra for 4-((2,2,3,3-tetrafluoropropoxy)methyl)-1,3-dioxolan-2-one 3j in
CDCl3; Figure S25: NMR spectra for 4-(((2,2,3,3,4,4,5,5-Octafluoropentyl)oxy)methyl)-1,3-dioxolan-2-
one 3h in CDCl3; Figure S26: NMR spectra for 4-((allyloxy)methyl)-1,3-dioxolan-2-one 3l in CDCl3;
Figure S27: NMR spectra for 4-((benzyloxy)methyl)-1,3-dioxolan-2-one 3m in CDCl3; Figure S28:
NMR spectra for 4,4’-((butane-1,4-diylbis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) 3n in CDCl3;
Figure S29: NMR spectra 1,2-decylene carbonate 3o in CDCl3.
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