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Abstract: In recent years, we have experienced extreme climate changes due to the global warming,
continuously impacting and changing our daily lives. To build a sustainable environment and
society, various energy technologies have been developed and introduced. Among them, energy
harvesting, converting ambient environmental energy into electrical energy, has emerged as one of the
promising technologies for a variety of energy applications. In particular, a photo (electro) catalytic
water splitting system, coupled with emerging energy harvesting technology, has demonstrated
high device performance, demonstrating its great social impact for the development of the new
water splitting system. In this review article, we introduce and discuss in detail the emerging
energy-harvesting technology for photo (electro) catalytic water splitting applications. The article
includes fundamentals of photocatalytic and electrocatalytic water splitting and water splitting
applications coupled with the emerging energy-harvesting technologies using piezoelectric, piezo-
phototronic, pyroelectric, triboelectric, and photovoltaic effects. We comprehensively deal with
different mechanisms in water splitting processes with respect to the energy harvesting processes and
their effect on the water splitting systems. Lastly, new opportunities in energy harvesting-assisted
water splitting are introduced together with future research directions that need to be investigated
for further development of new types of water splitting systems.

Keywords: energy harvesting; piezoelectricity; pyroelectricity; triboelectricity; photovoltaics; electro-
catalysis; photocatalysis; water splitting

1. Introduction

Energy and environment issues are the two critical challenges that we human beings
are currently confronting [1]. The fast depletion of fossil fuels and growing population
have brought up more concerns about energy crisis, and meanwhile increasing emissions
of greenhouse gases have resulted in accelerated global warming and climate changes over
the world [2,3]. At present, developing sustainable energy resources has emerged as the
main topic of interest around the world [1,4,5].

Hydrogen, as a clean, renewable, and high energy density fuel, is considered as
an ideal alternative to fossil fuels. Its easy storage and applications in fuel cells and
combustion engines have demonstrated the great potential of hydrogen as a promising
energy carrier [6,7]. Today, 95% of hydrogen is generated from fossil fuel-based products,
with 4% from electricity and 1% from biomass [8]. In the pursuit of a clean and carbon-free
energy resource, water splitting from renewable energy resources for hydrogen evolution
has gained increasing research attention over the years [1,8–11]. However, the practical
performance of industrial-scale hydrogen generation through two primary approaches of
water splitting, electrolysis, and photolysis, is less than satisfactory. Electrolysis consumes
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a tremendous amount of electricity, primarily generated from fossil fuels; photolysis
is severely restricted in efficiency by the rapid recombination of charge carriers within
photocatalysts [12,13]. Hence, developing highly efficient renewable energy systems is
crucial for sustainable hydrogen production.

Energy harvesting technology, which aims to supply power, primarily electricity, with
sustainable energy, can provide the ideal energy resources for hydrogen generation through
water splitting [14,15]. To date, energy harvesting of heat, solar power, and mechanical
energy has been intensively studied [9,16–19]. On the basis of piezoelectric, pyroelectric,
triboelectric, or photovoltaic effects, ambient energy present in the environment is col-
lected and converted into electrical energy through the energy harvester. For piezoelectric
and pyroelectric effects, electrical charges are generated from charge separation and po-
larization of the material induced by external vibration or heat, triboelectric charges are
induced on material surface through surface friction, and photovoltaic electricity origi-
nates from the separation of light-induced excitons. The generated electrical energy is
either directly coupled in the water splitting process or is transmitted from the energy
harvesting device to a photo (electro) catalytic water splitting system, i.e., electrolyzer,
to produce hydrogen. Compared to conventional electrocatalytic or photocatalytic ap-
proaches, water splitting coupled with energy harvesting technology exhibits the following
advantages: (i) utilization of ambient environmental energy demonstrating a sustainable
and carbon-free system, (ii) synergy effects between conventional photolysis or electrolysis
process and energy harvesting approaches such as piezoelectric effects leading to improved
hydrogen generation, and (iii) diversity and versatility of energy harvesting technology
enabling effective water splitting application under different conditions.

In this review, we summarize recent progress in energy harvesting technology coupled
with water splitting applications. To provide general ideas on energy harvesting technology-
assisted water splitting, we comprehensively discuss mechanical, thermal, and photon
energy harvesting in five different sub-chapters. First, fundamentals and mechanism of
photocatalytic and electrocatalytic water splitting are explained. Second, recent trends in
energy harvesting technologies, including piezoelectric, piezo-phototronic, pyroelectric,
triboelectric, and photovoltaic effects, are introduced. Water splitting systems coupled with
emerging energy harvesting technology are reviewed with particular emphasis. Finally,
we discuss new opportunities involving new materials regarding interaction for energy
harvesting with the water splitting process, as well as the outlook of potential research
directions of energy harvesting materials and devices for water splitting applications.

2. Fundamentals of Water Splitting

Photocatalysis and electrocatalysis are the two most frequently used means to achieve
renewable energy-driven water splitting. In this section, the fundamentals of photocatalytic
and electrocatalytic water splitting are introduced.

2.1. Photocatalytic Water Splitting

Photocatalytic water splitting utilizes solar energy from sun radiation and achieves
hydrogen production from water, during which solar energy is converted to chemical energy.
Currently, hydrogen production by a photocatalytic system can be achieved through two
primary approaches. In one approach, water is split into H2 and O2 on a single light-responsive
photocatalyst under the excitation of incident light [20]. The other approach is to set up a
two-step excitation process using two different photocatalysts, where H2 and O2 are formed
separately through the two processes. In this approach, a pair of redox mediators, composed of
an electron donor and an electron acceptor, are applied to connect two photocatalytic processes
together and transfer the electrons [21]. Through both approaches, water goes through redox
reaction, leading to the formation of H2 and O2.

As we can expect from the reaction scheme shown in Figure 1a, the electronic structure
of the semiconductor photocatalyst plays a key role in photocatalysis. Typically, the
semiconductor photocatalyst has a conduction band (CB), a valence band (VB), and a
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bandgap energy Eg—the energy difference between the CB and VB. Without excitation, both
the electrons and holes are in valence band. Photocatalytic water splitting originates with
an electron excitation process within such an electronic structure. When the semiconductor
photocatalyst is exposed to light with energy equal to or higher than its bandgap energy
Eg, the electrons in the VB are stimulated to the CB, leaving holes in the VB. This process
is regarded as the electron-hole generation and separation. The photo-induced electrons
and holes are relatively free to move within the semiconductor. Then, if the electrons and
holes could migrate to the surface of the photocatalyst, they would respectively oxidize or
reduce the reactants absorbed on the semiconductor, H2O and H+, respectively, in water
splitting. This process is denoted as the electron–hole transportation and surface catalytic
reactions. The following equations illustrates the general mechanism of photocatalytic
water splitting.

Catalyst hv→ Catalyst
(
e− + h+

)
(1)

H2O (l) + 2h+ → 2H+ +
1
2

O2(g) (2)

2H+(aq) + 2e− → H2(g) (3)

Catalyst
(
e− + h+

)
→ Catalyst (4)
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Figure 1. (a) Reaction scheme of one-step and two-step excitation process of photocatalytic water splitting. (b) The spectra
of solar irradiance, a fluorescent lamp (1000 lux), and examples of the external and internal quantum efficiency spectra
(1.24 eV lead sulphide quantum dots). Reproduced from [21], Copyright 2010, American Chemical Society. Reproduced
from [22], Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Equation (1) describes the process of electron-hole generation and separation.
Equations (2) and (3) correspond to the oxidation and reduction surface catalytic re-
action, respectively. However, the generated electrons and holes would not always
migrate to the surface of the photocatalyst and react ideally. The photo-generated
electrons and holes can also recombine in bulk or on the surface of the semiconduc-
tor within a very short time, releasing energy in the form of heat or photons. Such
process is electron–hole recombination, as is illustrated in Equation (4). This process
can lead to large amount of energy loss, resulting in low photocatalytic efficiency [23].
The fast recombination problem of electron–hole pair is a hot spot that attracts great
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research interest, and continuous efforts have been made to restrain the recombination
of charge carriers in photocatalysts and promote photocatalytic activity. On another
hand, efficiency of photocatalysts under sun light irradiation is largely affected by the
band gap and light wavelength. Figure 1b shows the spectra of solar irradiance. Visible
light and infrared radiation represent the majority solar radiation energy. Effective
photocatalysts generally have a band gap larger than 2 eV, which corresponds to light
wavelength of 620 nm; moreover, to utilize more energy from the solar radiation, the
band gap of photocatalyst should be lower than 3.1 eV to harvest visible light. At
present, many photocatalysts, such as TiO2, have a wide bandgap, which leads to low
light adsorption, with band gap narrowing through modifying the photocatalyst having
become as a topic of interest. Application of two-step excitation process as illustrated
above, addition of sacrificial reagent and electrolytes for improved electron transfer,
metal loading and doping for tuning electronic structure, emerging of hybrid energy
harvesting materials and devices, etc., have been widely investigated.

2.2. Electrocatalytic Water Splitting

Electrocatalytic water splitting ( H2O(l)→ H2(g) + 1
2O2(g) ) typically consists of two

half-reactions, the hydrogen evolution reaction (HER) which occurs on the cathode and
oxygen evolution reaction (OER) on the anode, as Equations (5)–(8) describe. Depending
on the pH, the two electrode reactions can have different expressions:

• Cathode reaction (HER):

Acid solution : 2H+(aq) + 2e− → H2(g) (5)

Neutral and alkaline solution : 2H2O(l) + 2e− → 2H2(g) + 2OH−(aq) (6)

• Anode reaction (OER):

Acid and neutral solution : 2H2O(l)→ 4H+(aq) + 4e− + O2(g) (7)

Alkaline solution : 2OH−(aq)→ H2O(l) + 2e− +
1
2

O2(g) (8)

In terms of electrocatalytic reaction mechanism, HER and OER can have different
reaction routes, yet share a similar underlying mechanism. In HER, the reaction starts from
electrochemical adsorption of H atoms, often called Volmer reaction, where proton sources
react with electrons on the catalyst surface (denoted as M) to generate adsorbed protons
H∗ in a M− H∗ form. Then, hydrogen gas may be formed via electrochemical desorption
(Heyrovsky reaction), where M− H∗ react with another proton diffused to the catalyst
surface, or chemical desorption (Tafel reaction), where two adjacent H∗ combine together
on the surface to generate H2, or both. In OER, the mechanism is not fully understood, yet
common points among the proposed mechanisms are present. Similar to HER, during OER,
the catalyst surface (M) adsorbs OH− or desorbs protons to form the reaction intermediates
in forms of M−OH, M−O, and M−OOH sequentially, leading to the final formation
of O2 (g). Through another proposed route, O2 (g) can also be produced via the direct
combination of two MO intermediates [24,25].

According to the mechanisms discussed above, for both HER and OER, the rate of
absorption and desorption of the catalyst surface plays a key role in determining the overall
reaction rate. This behavior is illustrated in the Sabatier principle, stating that the optimal
catalytic activity of electrocatalysis is achieved on a catalyst surface with an intermediate
bonding energy (or free adsorption energy) for the M− X reaction agents. To be specific,
if the interaction between catalysts and reaction intermediates is too strong, the products
cannot desorb fast and hence block the reaction by occupying active sites, and if it is too
weak, few reactive agents adsorb on the catalysts, slowing down the reaction [25]. This
can also be seen in a log j0 vs. ∆GH∗ volcano plot, where j0 is exchange current density and
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∆GH∗ is the Gibbs free adsorption energy (Figure 2). An ideal catalyst should have ∆G
equal or close to zero.
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Thermodynamic and kinetics view can reveal more about the electrocatalytic reac-
tion and its rate. The overall water splitting H2O(l) → H2(g) + 1

2 O2(g) has a positive
∆G0 = 237.13 kJ ·mol−1 and ∆E0 = 1.23 V. Under standard conditions, thermodynamic
potential of 1.23 V is required to achieve electrocatalytic water splitting. However, the
sluggish kinetics of HER and OER require additional over potential η to achieve specific
current density. The over potential η is defined as the difference between the applied
potential and the equilibrium potential, as Equation (9) shows below:

η = E− Eeq (9)

Equilibrium potential Eeq refers to the potential at which forward reaction and back-
ward reaction of the water splitting reaction are in an equilibrium state. Over potential η
reflects the energy required to overcome the kinetic energy barrier. As described in Equa-
tion (10), the current density increases exponentially as over potential increases, where b is
the Tafel slope.

η = b log(j/j0) (10)

The Tafel slope describes relationships between current density and over potential,
which is related with charge transfer between reactants and the catalyst. In HER, at 25 ◦C,
b = 29, 39, 116 mV decade−1 if the rate determining step is Tafel, Heyrovsky, and Volmer
reaction, respectively [26]. Apart from over potential, ohmic potential drop in external
circuits should also be considered in practical application.

3. Emerging Energy Harvesting Technology for Water Splitting
3.1. Piezoelectric Energy Harvesting-Assisted Water Splitting

Utilization of a piezoelectric effect for catalytic applications has attracted tremendous
attention since its breakthrough in the 1970s [27]. An induced electric field due to the
dipole polarization tuned the catalytic rate by effectively modulating barrier height at
a semiconductor interface and enhanced charge carrier separation, which resulted in
improved catalytic performance [28,29]. In addition, spatial separation of charge carriers led
to oxidation and reduction reactions preferred at different sites with respect to the direction
of dipole polarization [30]. This phenomenon was demonstrated by density functional
theory (DFT) simulations that the dipole polarization field is able to mediate the adsorption
and desorption of reactants and products on the surface of piezoelectric catalysts, which
suggests that it is possible to overcome fundamental limitations of catalysis, which was
theoretically estimated by the Sabatier principle [31]. Recently, the piezoelectric energy
harvesting coupled with electrochemical processes has demonstrated the modulation of
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charge-carrier conduction at the heterojunction between the piezoelectric material and
a chemical solution [32–35]. Piezoelectric energy harvesting introduced a new strategy
to enable and improve photo(electro)catalytic water splitting by harnessing mechanical
energy using various dimensional nanomaterials, such as zinc oxide (ZnO) and barium
titanium oxide (BaTiO3) one-dimensional (1D) nanomaterials, and molybdenum disulfide
(MoS2) two-dimensional (2D) nanomaterials. The basic mechanism of the piezoelectric
energy harvesting-driven water splitting is that the physical deformation induced by the
mechanical energy induces an electric field due to the polarized electric dipoles. Driven
by the induced electric potential, free electrons and holes or photo-generated charges
are separated and transferred to the opposite directions, prior to recombination. As a
result, more electrons and holes can be collected at the surface of catalysts for the redox
reaction. To induce a piezoelectric polarization or potential, mechanical strain needs
to be applied to the piezoelectric materials. Among various approaches to induce the
piezoelectric potential, one of the most practical ways is using ultrasound irradiation
because mechanical vibrations are the most available mechanical energy around us in our
daily lives [28,36–41].

In 2010, Hong et al. demonstrated enhanced HER and OER using piezoelectric ZnO
microfibers and BaTiO3 micro-dendrites by harvesting ultrasonic vibrations [33]. Figure 3a
shows underlying mechanisms for the piezoelectric energy harvesting-assisted water splitting.
Upon the application of ultrasonic vibrations, strain is induced to ZnO microfibers and BaTiO3
micro-dendrites, and therefore a piezoelectric potential is generated. Reduction and oxidation
reaction occur by this strain-induced electric potential over the standard redox potential of
water (1.23 eV). The piezoelectric potential-induced charges are transferred to species, for
example, water molecules adsorbed on the surface of the piezoelectric material, and thus
hydrogen and oxygen gases are generated. However, residual charges or potential lower
than the standard redox potential of water (1.23 eV) do not contribute to the generation of
hydrogen and oxygen from water. Figure 3b–d illustrates hydrogen and oxygen production
with and without the application of ultrasonic vibrations. When ultrasonic vibration was
applied (0−40 min), rapid hydrogen and oxygen production were obtained at an initial rate of
3.4 × 10−3 × 10−6 (ppm) per second and 1.7 × 10−3 × 10−6 (ppm) per second, respectively.
Similar to ZnO microfibers, H2 evolution of approximately 1.25 × 10−2 × 10−6 (ppm) per
second in the first vibration event (0−50 min) was observed using BaTiO3 micro-dendrites in
pure water. This result demonstrates that the electrocatalysts, i.e., ZnO and BaTiO3, partici-
pated in the direct water splitting reaction by providing electrons and holes induced by the
piezoelectric potential.

In the following work, Starr et al. employed piezoelectric Pb(Mg1/3Nb2/3)O3-32PbTiO3
(PMN-PT) film for the water splitting application [34]. First, the author provided a theo-
retical analysis that the induced piezo-potential through the material deformation creates
favorable electronic energy band alignments for promoting red-ox reactions of the wa-
ter. As shown in Figure 3e, when the potential of the cathode is higher than that of the
proton-reduction potential, electrons are transferred to protons and generate H2 gases.
Similarly, O2 gases are generated at the anode by receiving electrons transferred when
the energy levels of the anode are deep enough due to the induced piezoelectric potential.
These reactions will cease eventually when the piezoelectricity-induced surface charges
are depleted and thus electron energy levels are below the redox reaction potentials. In
addition to H2 generation measurement with respect to the time, in this work, the author
further demonstrated H2 production as a function of the piezoelectric potential. As the
induced piezoelectric potential increased, the rate of H2 production also increased, which
further demonstrated the role of the piezoelectric potential in redox reaction for water
splitting, as shown in Figure 3f.
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Other fascinating materials for piezoelectric energy harvesting-assisted water splitting
are a group of two-dimensional (2D) materials, in particular, layered transition metal
dichalcogenides (TMDs), for example, molybdenum disulfide (MoS2), tungsten disulfide
(WS2), and tungsten diselenide (WSe2) [42–46]. The group of 2D TMDs nanomaterials pos-
sess superior piezoelectricity with high flexibility due to the nature of the materials, which
provides an ability to withstand enormous strain/stress applied. Ever since the first demon-
stration of piezoelectricity in MoS2 experimentally, there have been significant research
on the piezoelectric effects of 2D TMD nanomaterials [47–52]. Among them, in particular,
TMDs have attracted tremendous attentions for photocatalysists and electrocatalysists,
attributed to rich edge active sites for hydrogen evolution reaction (HER) [42–44,53].

In 2019, Li et al. reported water splitting devices using various types of few-layer
TMDs, i.e., MoS2, WS2, and WSe2 [54]. Periodic mechanical strain is applied to the materials
by using ultrasonic vibration, which causes deformation of the materials. Consequently, the
mechanical deformation leads to the generation of piezoelectric field that enhances catalytic
water splitting processes. As shown in Figure 4a, hydrogen was not produced without a
catalyst, whereas all of the TMDs nanomaterials produced H2 from water under ultrasonic
vibration. The amount of H2 evolution showed the order of MoS2 > WS2 > WSe2 with
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the H2 evolution rate of approximately 29, 15, and 11 µmol·g−1·h−1 for MoS2, WS2, and
WSe2, respectively (Figure 4a,b). Interestingly, the catalytic performances of TMDs were
in good agreement with the intensity of the piezoresponse of each TMD materials, which
exhibited 4.04, 3.25, and 1.51 p.m. V−1 for MoS2, WS2, and WSe2, respectively. In addition,
negligible H2 evolution was observed when a bulk MoS2 sheet was employed for the
catalytic water splitting (Figure 4c). These combined results—piezoresponse of TMDs and
negligible H2 evolution from bulk MoS2—highlight that the piezoelectric potential in TMDs
materials indeed plays a crucial role in catalytic reactions. Furthermore, the author claimed
that the piezocatalytic performance of the TMD samples were significantly improved by
employing noble nanoparticles, for example, Pt and Au, demonstrating H2 production
rate of 82.4 and 53.8 µmol·g−1·h−1 for Pt–MoS2 and Au–MoS2, respectively. Finally,
the author proposed the underlying mechanism of enhanced catalytic water splitting
performance assisted by the piezoelectric effect. Figure 4d illustrates dipole polarization in
the piezoelectric 2D TMD materials under the external stress. Similar to the piezoelectric-
assisted water splitting mechanism in 1D nanostructures, the piezoelectric field generated
by the dipole polarization in 2D materials system facilitates transport of free electrons
and holes towards catalytic reaction sites where hydrogen and oxygen are produced by
reduction and oxidation processes.
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Figure 4. (a) Amounts of H2 production with respect to the different transition metal dichalcogenide (TMD) nanosheets.
(b) The corresponding H2 production rate and the e11 values calculated. (c) Amounts of H2 production with different
materials, namely, bulk MoS2, MoS2 nanosheets, MoS2 nanosheets/Pt, and MoS2 nanosheets/Au. (d) Schematics of the
piezoelectric potential induced catalytic reactions in 2D TMD nanomaterials under mechanical force. (e) Schematics of
piezoelectric effect driven H2 mechanism. Comparison of H2 production (f) with the bare N-doped graphene (NG) layer
and (g) with the MoC@NG. (a–d) Reproduced from [54], Copyright 2019, Elsevier. (e–g) Reproduced from [55], Copyright
2020, Elsevier.

Following this work, other interesting works using the strategy of employing nanopar-
ticles to enhance catalytic water splitting performances together with piezoelectric 2D
TMD materials have been introduced. For example, in 2020, Feng et al. demonstrated H2
production from pure water by employing a piezoelectric N-doped graphene (NG) with
molybdenum carbide (MoC) quantum dots [55]. Figure 4e illustrates a possible mecha-
nism of piezoelectric energy harvesting-driven H2 production from pure water by using
MoC@NG composite. When mechanical vibrations are triggered by ultrasonic irradia-
tion, a dipole polarization electric field is induced due to the mechanical deformation,
which results in the application of tensile and compress strain to the MoC@NG composite.
Under the strained conditions, the MoC@NG composite exhibits H2 evolution by reduc-
ing H2O at pyridinic and pyrrolic N–Mo–C sites and graphitic N–Mo–C sites in tensile
and compressive regions, respectively, whereas the oxidation of H2O was observed at
graphitic N sites and pyridinic and pyrrolic N sites on the graphene domain in tensile
and compressive regions, respectively, producing H2O2. Figure 4f shows experimental
results of H2 evolution with different material combinations and conditions. In the ab-
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sence of ultrasonic irradiation, no detectable level of H2 was produced by water itself
or MoC@NG composite (black and green bar, respectively). A small amount of H2, the
production rate of ≈0.052 µmol·h−1·mg−1, was detected in pure water under ultrasonic
irradiation. This is because pure water was cleaved to produce H and OH, and they were
dimerized to form H2 and H2O2, respectively, under ultrasonic vibrations [56,57]. As ex-
pected, MoC@NG generated the highest production rate of H2 up to 1.690 µmol·h−1·mg−1,
which is attributed to the piezoelectric field generated by the ultrasonic vibrations. In the
article, the author performed counter experiments to prove enhanced H2 evolution rate
assisted by the piezoelectric effect by harvesting mechanical energy. Notably, employment
of piezoelectric NG as an electrocatalyst exhibited higher H2 production rate compared to
the one without piezoelectric NG (black bar vs. purple, red, and blue bars), as shown in
Figure 4g. In particular, the piezoelectric effect with MoC exhibited superior water splitting
performance, which demonstrates the obvious synergistic effect of the piezoelectric field
and electrocatalytic behaviors.

In spite of its promising future, the development stage of piezoelectric effect on catalytic
water splitting is still premature. Furthermore, the piezoelectric potential generated by the
mechanical energy is relatively weak, which limits the potential water splitting application
comparing to the electrocatalytic or photocatalytic water splitting processes. For piezoelectric
energy harvesting-assisted water splitting alone, a balance between piezoelectric properties
and conductivity needs to be addressed to further enhance H2 evolution rate.

3.2. Piezo-Phototronic Energy Harvesting-Assisted Water Splitting

The further advanced concept of water splitting applications has been introduced by
utilizing piezo-phototronic effect. Piezo-phototronic effect is used to tune charge trans-
port mechanisms through a coupling of semiconducting, photoexciting, and piezoelectric
properties simultaneously [58–62]. In this sub-chapter, we will introduce the concept of
piezo-phototronic effect to enhance the production of H2 and O2 in water splitting ap-
plications. An employment of single-component narrow-bandgap photocatalysts offers
more benefits compared to the hybrid photocatalysts, which are a combination of a narrow
bandgap material with noble metals if photo-generated charges can be separated and
transferred prior to recombination. Therefore, the underlying motivation of using piezo-
phototronic effect in the water splitting application is to overcome inefficient charge transfer
caused by rapid recombination of photo-excited electron–hole pairs in a narrow-bandgap
photocatalysts by utilizing a piezo-phototronic effect [36,56,63,64].

Recently, Zhao et al. reported cadmium sulfide (CdS) nanorod (NR)-based piezo-
phototronic water splitting devices for H2 generation from pure water [56]. In spite of
disadvantages of charge transport with the narrow bandgap material, the author employed
CdS nanorods to harvest visible light ranging from 400 to 700 nm. In this work, the syner-
getic effects of photocatalytic and piezoelectric properties of CdS nanorod demonstrated
significant enhancement in H2 evolution rates, as shown in Figure 5a where L and S stand
for the application of visible light source and ultrasonic vibration, respectively. Under only
visible light irradiation, there was no observable amount of generated H2 gases, regardless
of the existence of CdS nanorods, indicating that photo-generated excitons were mostly
recombined. In contrast, when both light and sound were applied to the water splitting
system, CdS nanorods generated increased amount of H2 generation with the aid of the
piezo-photoelectric effect to efficiently separate and transport photo-generated charge car-
riers. However, the author could not observe a difference in H2 generation in both systems
without and with CdS nanorods under only ultrasonic, suggesting that CdS nanorods are
not a sonocatalyst. These processes are illustrated in Figure 5b, showing the mechanism
of piezo-phototronic effect—with the existence of both visible light irradiation and ultra-
sonic vibration, CdS nanorods produce increased amount of H2 without any sacrificial
agent compared to H2 generated by only light irradiation or ultrasonic vibration. This is
attributed to the separation of photo-excited electron and hole pairs, by the piezoelectric
field, which otherwise would be recombine prior to their dissociation. However, Cd used



Catalysts 2021, 11, 142 10 of 24

in this work is toxic and harmful to humans and nature, and it is desirable to substitute
harmful substances with environmentally friendly ones.
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Similarly, Wang et al. reported the piezoelectric-assisted photocatalytic effect in
ZnSnO3 nanowires (NW), as shown in Figure 5c [63]. In this article, nanowires composed
of environmentally friendly materials, such as zinc (Zn) and tin (Sn), were synthesized using
a hydrothermal method. The synthesized environmentally friendly ZnSnO3 nanowires
exhibited piezo-photoelectric effects that can utilize both mechanical vibrations and light
to produce higher volume of H2. The author systematically compared three possible
catalytic activities in ZnSnO3 nanowires with thermal annealing time ranging from 1 to 5 h.
Figure 5d–f illustrates the generated H2 production rate by (i) photocatalytic (Figure 5d), (ii)
piezocatalytic (Figure 5e), and (iii) piezo-photocatalytic behavior (Figure 5f). Through either
photocatalytic or piezocatalytic activity, a maximum amount of 3562.2 and 3453.1 µmol·g−1

of H2 was generated, respectively. The synergetic effect on generating H2 3882.5 µmol·g−1

was observed when both light irradiation and mechanical vibrations were present. This is
attributed to the separation of electron–hole pairs by the piezoelectric effect prior to their
recombination, demonstrating the synergistic piezo-phototronic effect. Equations (11)–(14)
illustrate the piezophotocatalytic processes. First, light-induced excitons are separated by
interband and intraband transitions, i.e., from the valence band to the conduction band
(Equation (11)). The separated electrons and holes are transferred to opposite directions
due to the piezoelectric field induced by the mechanical stress. Consequently, methanol
or water molecule receives a hole and generated a proton (H+), as Equations (12) and (13)
describe. Finally, the proton reacts with the electron, and through this, H2 gas is produced
(Equation (14)).

ZnSnO3 nanowires →
hv

h+ + e− (11)

C2H5OH + h+ → C2H5O• + H+ (12)
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H2O + h+ → H+ +
1
2

O2 (13)

2H+ + 2e− → H2(gas) (14)

In addition to ZnSnO3 nanowires, other nanomaterials without heavy metals have
demonstrated the piezo-phototronic effect for the water splitting applications, such as a
typical ferroelectric nanocrystal zinc oxide (ZnO) and metal niobate (e.g., KNbO3, NaNbO3,
and AgNbO3). Piezoelectric ZnO nanowires are one of the materials that have attained
tremendous attention [37,65–67]. Chen et al. reported a direct Z-scheme water split-
ting strategy using the piezo-phototronic effect in ZnO-WO3-x nanoarrays, as shown in
Figure 6a [65]. The piezoelectric effect significantly improved transport of photogenerated
charges between ZnO and WO3-x. Figure 6b illustrates the principal mechanism of the
piezo-phototronic effect in ZnO nanostructures, which modulate photo/electrocatalytic wa-
ter splitting performance. By the piezoelectric field, the junction barrier height is changed,
leading to efficient photo-generated charge transport to the electrodes [66]. Together
with ZnO nanorods/wires, KNbO3 and NaNbO3 are promising candidates for the piezo-
phototronic effect-assisted water splitting applications. In 2013, Singh and Khare employed
synthesized NaNbO3 to enhance the efficiency of photoelectrochemical water splitting
through the piezo-phototronic effect, as shown in Figure 6c [68]. Under mechanical strain,
NaNbO3 generated the built-in piezoelectric potential, which facilitated dissociation of pho-
togenerated charges. This led to enhanced photocurrent density from 0.78 to 1.02 mA·cm−2

compared to the NaNbO3 without mechanical strain. Recently, KNbO3 was employed for
the piezo-phototronic water splitting application by Yu et al., as shown in Figure 6d. At
the optimal poling configuration, the author demonstrated a significantly enhanced device
performance, attributed to the piezo-phototronic effect [69].
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3.3. Pyroelectric Energy Harvesting-Assisted Water Splitting

Heat is one of the attractive energy sources due to its omnipresence in the surround-
ing environment and the fact that it results from a variety of industrial applications [9].
Pyroelectric materials can generate usable electric charges with a high energy conversion
efficiency under repeated heating and cooling. In theory, pyroelectric materials could
deliver a higher energy conversion efficiency than photocatalytic materials do on the basis
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of the photovoltaic effect. A mechanism of pyroelectricity is that a change in temperature
induces the polarization of the material and consequently voltage is generated across the
crystal [70,71]. The intensity of dipole polarization decreases when the temperature of
the material is elevated. Consequently, electric charges are released on the surface of the
materials [72]. On the other hand, when temperature decreases, the intensity of dipole
polarization is increased, which results in reversed current flow as electric charges are
attracted to the surface with higher polarization. When it comes to a water splitting applica-
tion of the pyroelectric effect, the amount of charges (Q) generated by a temperature change
(∆T) in a pyroelectric material can be described by Equation (15), where p is the pyroelectric
coefficient (Cm−2·K−1) and A is the surface area (m2) of the material. In addition, the
potential (V) induced by the pyroelectric effect depends on thickness (h) of the material
used, as shown in Equation (16), where ε33 is the relative permittivity of the material and
ε0 is the permittivity of free space.

Q = p·A·∆T (15)

V =
p·h·∆T
ε0ε33

(16)

As shown in Equations (15) and (16), the amount of charges is proportional to the
surface area, and generated potential is proportional to thickness, suggesting that a ju-
dicious design of a device structure and pyroelectric elements are needed to optimize
electrolysis using the pyroelectric effect. For example, a sufficient potential to initiate a
water splitting process can be induced by adjusting the thickness of the material while
maximizing the surface charges through the surface area modifications. A theoretical
work on pyroelectric water splitting was performed by Fang et al. in 2010 using numer-
ical simulations on a 0.9PbMg1/3Nb2/3–0.1PbTiO3 thin film pyroelectric converter that
harvests nanoscale thermal radiation [73]. The simulations showed that an efficiency of
1.35% and an electrical power output of 6.5 mW·cm−2 were achieved for cold and hot
sources at 283 and 383 K, respectively. Following this work, in 2012, Huang et al. reported
an energy density of 128 mJ·cm−3 harvested in pyroelectric Ba1−xSrxTiO3 (x = 0.35) film
under thermal cycling between 2 and 77 ◦C [74]. Recently, Xie et al. reported pyro-driven
control of an electrochemical process and its application to water-splitting by using an
external pyroelectrically-induced charge source with lead zirconate titanate (PZT) and
polyvinylidene fluoride (PVDF) thin films [9]. To date, two types of pyroelectric energy
harvesting system have been employed for water splitting applications: (i) internally posi-
tioned pyroelectric (IPP) approach, and (ii) externally positioned pyro-electrolysis (EPP). In
this sub-section, we review the two types of water splitting systems on the basis of various
nanomaterial dimensions [31,75–78].

• Internally positioned pyroelectric (IPP) approach.

First of all, the IPP approach provides several benefits as follows: (i) using finely
dispersed pyroelectric particulates suspended in the electrolyte, it is possible to enable
the area of the pyroelectric to be increased, and therefore, (ii) more available charges
for hydrogen production. In simulation works on a pyroelectric induced water splitting
process, Kakekhani et al. developed a DFT model of a ferroelectric lead titanate (PbTiO3)
material and examined the impact of thermal cycling of the ferroelectric as it is heated
above and cooled below Curie temperature (TC) in the presence of water molecules [31].
The work showed that cycling between the low temperature ferroelectric state and high
temperature paraelectric state provides scope to harvest thermal fluctuations and produces
hydrogen. Theoretical studies have shown that it is possible to switch the ferroelectric
into paraelectric phase (and vice versa) of PbZrxTi1–xO3 (PZT) and BaTiO3 (BTO) by
modulating the temperature near the ferroelectric TC by using the pyroelectric effect [31].
Through the periodic temperature changes, H2O molecules are dissociated to produce
bound atomic hydrogen on the negatively charged surface, and hydrogen atoms form
H2 at low and high temperature. In addition to the theoretical and simulation works,
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there have been experimental demonstration on water splitting applications assisted by
the pyroelectric energy harvesting [76,77,79,80]. In particular, Xu et al. recently presented
experimental data of Ba0.7Sr0.3TiO3 (BST) powders suspended in an electrolyte, achieving
a hydrogen production of 46.89µmol per gram of the powder after 36 thermal cycles
above and below its TC [75]. Pyroelectric two-dimensional black phosphorene has also
been reported as a charge source under thermal cycling for both hydrogen generation and
dye decomposition [81]. We discuss more details on these two examples in the following
sections.

First, Xu et al. demonstrated the pyroelectric effect-assisted H2 generation using
BST nanoparticles. The temperature variations (∆T) in the pyroelectric BST generate
electrons and holes on each surface of the material. The pyroelectric-induced positive
charges oxidize H2O molecules adsorbed on the surface of BST nanoparticles, which
subsequently produces the hydrogen ion (H+) and oxygen O2. Then, the H+ ion reacts
with the pyroelectric-induced negative charge to form hydrogen (H2), as shown in the
Equations (17) and (18).

BST ∆T→ BST + h+ + e− (17)

2H+ + 2e− → H2 (18)

As shown in Figure 7a–c, the author demonstrated the pyroelectric assisted catalytic
water splitting performance of BST under two conditions: with and without the addition
of sacrificial methanol. The yield of pyroelectric-assisted hydrogen generation was a
negligibly small value of 0.75 µmol·g−1 after 36 thermal cycles without the addition of
methanol, whereas the rate of hydrogen evolution for BST with the addition of sacrificial
methanol is around 1.3 µmol·g−1 per thermal cycle (298–323 K, 10 min). In addition, Figure
7c shows the yield of H2 increased up to 46.89 µmol·g−1 as the number of thermal cycles
increased, suggesting the promising future of the pyroelectric assisted water splitting
applications. The mechanism of the IPP type of the pyroelectric assisted water splitting
involves two steps: (i) charge carriers are generated by the pyroelectric effect due to
temperature changes/fluctuation, and then (ii) the generated charge carriers participate in
redox reactions, resulting in generation of H2 gases. By harvesting thermal energy, in the
form of temperature fluctuation, through the pyroelectric effect, water splitting application
has been demonstrated, suggesting a significant impact to the field of renewable energy
and sustainable society.

Because ferroelectric materials are both piezoelectric and pyroelectric, 2D structured
ferroelectric materials can also be used for pyroelectric energy harvesting-assisted water
splitting applications [81,82]. Recently, You et al. employed a 2D few-layer black phospho-
rene (2D-BP) to harness temperature variation for water splitting applications where the
author adopted the IPP method [81]. As shown in Figure 7d, few-layer 2D-BP possesses
a suitable electronic band structure for pyroelectricity-assisted electrocatalytic hydrogen
generation. The conduction band minimum is higher, i.e., more negative, than the H+/H2
reduction potential, which is favorable for H2 generation from water [83,84]. Similar to
BST nanoparticles, the few-layer 2D-BP induces negative and positive charges at each side
of the material upon the cold–hot alternation excitation. These charges will be transferred
to the reactant molecules and induce the redox reaction. This process further demonstrates
that the pyroelectric assisted electrocatalytic water splitting is a viable method to harness
wasted heat energy to produce useful hydrogen gases regardless of material dimensions.
In the set of following experiments, the author demonstrated the rate of H2 production,
22.5µmol·g−1 per thermal cycle, and 0.54 mmol of the total H2 production per gram in 24
h with the temperature variation between 15 and 65 ◦C, as shown in Figure 7e.

• Externally positioned pyro-electrolysis (EPP):

Another approach to utilize pyroelectricity is through externally positioned pyro-
electrolysis (EPP). Different from the IPP method, which inevitably involves pH changes
and has low efficiency at the current stage [81,82], the EPP provides several advantages: (i)
The generation of H2 and O2 occurs at each electrode, which is spatially separated, and
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therefore there is no need for gas separation. (ii) The charges provided by the external
pyroelectric device can be readily collected compared to the IPP one, i.e., higher efficiency.
The first experimental demonstration of external water electrolysis using pyroelectricity
was carried out using thin layers of PZT, demonstrating its potential for H2 generation.
Figure 8a illustrates the experiment settings that the author used for the EPP approach and
Figure 8b demonstrates the generation of H2 gas in the EPP water splitting system [9]. In
the following work, Zhang et al. demonstrated the EPP method to generate H2 gas using
a PZT sheet, which directly provided charges for pyroelectric water splitting as shown
in Figure 8c [78]. The basic mechanism of the EPP involves three main steps: (i) by the
pyroelectric effect, positive and negative charges are generated at opposite side of surfaces
(bottom image of Figure 8c); (ii) the alternative current (AC) signal is changed to the direct
current (DC) signal using a rectifier; (iii) the charges provided by the pyroelectric device
then transferred to the cathode and anode to generate H2 and O2 gas, respectively. In the
experiment, the author used a 0.5 M of KOH to demonstrate the generation of hydrogen
and oxygen by the pyroelectric effect. Figure 8d shows the generated H2 as a function of
time (1–6 h), exhibiting an H2 evolution increase from 0.38 µmol to 3.93 µmol. The total
amount of H2 and O2 gas production after 6 h is shown in Figure 8e. The ratio of H2 and
O2 is approximately 2:1, which is reasonably predictable from the reaction 2H2O→ 2H2 +
O2. In this work, both H2 and O2 gases were simultaneously generated by utilizing charges
induced by the externally connected pyroelectric energy harvesting device. Despite a
nature of the bulk material employed in the work, i.e., much smaller surface area than that
of the nanomaterials, pyroelectric induced water splitting using the EPP method, overall
demonstrated promising results for future water splitting applications.
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3.4. Triboelectric Energy Harvesting-Assisted Water Splitting

The last type of the mechanical energy harvesting in water splitting applications
to introduce is a triboelectric energy harvester (often called triboelectric nanogenerator
(TENG)), which was invented by Wang et al. [85]. Similar to the piezoelectric energy
harvesting, the generator utilizes mechanical energy to induce charges on the surface of
the materials through the triboelectric effect. The biggest merits of the TENG are that (i)
it can generate high voltage, (ii) there are wider choices of materials as most of polymer
materials show triboelectricity, (iii) the device structure is simple, and (iv) it is easy and
cost-effective to fabricate. Therefore, TENGs have attracted significant research interest
ever since its invention [86–89].

The integration of triboelectric energy generator into the photoelectrochemical water
splitting system has been actively researched [90–94]. In this configuration, the energy
generator provides a necessary bias to activate the electrolysis process. For example, Wei
et al. demonstrated TENG-driven photoelectrochemical water splitting [90]. Figure 9a,b
shows the water splitting system with the TENG under light illumination, which followed
and promoted the previous work performed by Li et al. in Figure 9e,f. By harnessing
external mechanical energy, the TENG provided high enough potential and current to
anode and cathode, and therefore a photoelectrochemical cell generated H2 gas, as shown in
Figure 9c. In particular, when the plentiful of mechanical energy was provided to the TENG,
i.e., high rotation speed (over 120 rpm), the water splitting system exhibited the direct
electrolysis of water. The peak rate of H2 evolution was approximately 6.67 µL·min−1 with
the aid of the TENG, demonstrating the triboelectric energy harvesting as the potential
medium to facilitate water splitting processes. The TiO2 anode was decorated by Au
nanoparticles, which localized the optical energy by the surface plasmonic resonance effect.
By coupling with the TENG, the hot electrons injection from Au to TiO2 conduction band
was enhanced, which resulted in improved water splitting performance. Lastly, TENG-
driven water splitting was applied to a drug delivery system, which was demonstrated by
Song et al. The generated H2 and O2 through the water splitting process enable delivery of
a drug solution to the target, as shown in Figure 9g [94].
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(c) Digital images of the gas collection tube at different time. (d) Cathodic production rate as a function of rotation speeds
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3.5. Photovoltaic Energy Harvesting-Assisted Water Splitting

Solar energy, as the most abundant renewable source of energy, can also be harvested for
hydrogen production as well [95]. The photovoltaic device harvests solar power and converts
it to electrical energy, which is then transported to an electrolyzer to generate hydrogen
through water splitting. Such a photovoltaic (PV)–electrolysis system typically contains two
separate components, the light absorption PV component and the water splitting electrolysis
component wired to the PV component [96]. The efficiency of PV component and the coupling
effects between the two components are the keys in determining the solar-to-hydrogen (STH)
efficiency of the PV–electrolysis system [97]. Developments in highly efficient solar cells
have provided massive improvements in STH efficiencies. Luo et al. combined state-of-the
art perovskite tandem solar cell with NiFe-layered double hydroxide electrodes to form a
PV–electrolysis system with a 12.3% STH efficiency [98]. Bonke et al. reported a 22% solar
to hydrogen energy conversion efficiency using concentrator photovoltaic modules with
commercially available lnGaP/GaAs/Ge three-junction cells, which has a quoted 37% solar to
electrical power conversion efficiency (PCE) [99]. In theory, the solar-to-hydrogen efficiency of
PV–electrolysis system can reach up to 90–95% of the solar cell power conversion efficiency,
demonstrating significant improvement possibilities [100–102].

The efficiency loss between solar cell PV efficiency and the actual solar-to-hydrogen
efficiency is mainly attributed to the mismatch between electrolysis voltage and that of PV
cells [97,99]. The thermodynamics of water splitting requires a minimum applied voltage of
1.23 V (300K), and commercial electrolyzers generally operate at 1.5–1.9 V, which is incom-
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patible with state-of-the-art multi-junction solar cells. This requires the solar cells or the
electrolyzers to be series connected for their operation voltage to match. Recently, Jia et al.
reported a high STH efficiency PV–electrolysis system based on InGaP/GaAs/GaInNAsSb
three-junction solar cell. Through connecting two proton exchange membrane (PEM) elec-
trolyzers in series, the electrolyzer unit and photovoltaic unit are tuned to be well matched
near the maximum power point of the solar cell. The schematic of the PV–electrolysis
system is shown in Figure 10a [100]. Such optimally coupled system fully utilizes the high
efficiency three-junction solar cell, and achieves a STH efficiency of over 30%, which is
the highest reported to date. However, during 48 h continuous operation, the efficiency
drops to near 28%. The author attributed this decrease mostly to the decrease of the PEM
electrolyzer performance over time, yet using long-term stable commercial electrolyzers
might also lead to reduced efficiency due to their lower Faradaic efficiency. Despite the
remarkable solar-to-hydrogen efficiency, the system uses precious materials for the III-V PV
cell and electrocatalyst fabrication, making it difficult for commercial setups. The separate
configuration of solar cell and electrolyzer component in the PV–electrolysis setup endows
the system with better stability and allows the separated component to be optimized
for higher performances through series connections and solar concentration. The PV–
electrolysis system, in general, shows high STH conversion efficiency and is more mature
for industrial operations. However, to achieve large-scale H2 production, issues of system
complexity, high cost, and temperature regulation of PV cells must be considered [96,103].

Photoelectrochemical (PEC) cell is another system configuration for water photoelec-
trolysis, which combines the solar energy harvesting and water splitting process through
immersed semiconductor-based photoelectrodes [104–107]. The PEC system shows great
potential in low-cost, large-scale hydrogen production due to its high integration, yet
at present is still limited to academic research and lab tests. This is because the photo-
electrode materials should satisfy a number of requirements, including wide absorption
spectral range, appropriate band alignment, and stability in electrolyte solution [98]. To
compensate for the deficiency in materials, photoelectrodes can be coupled to PV cells that
provide sufficient voltage bias complementing the voltage shortage of photoelectrodes,
forming PV/PEC tandem structures [108,109]. Recently, Young et al. reported a PV/PEC
tandem cell with improved semiconductor architectures and reformed growth techniques,
achieving STH efficiency over 16% [110]. Through solar-to-hydrogen efficiency modelling
of PEC tandem devices, the author decided on the bandgap combination of 1.8/1.2 eV
GaInP/GaInAs absorber with a theoretical efficiency of 24%. Such bandgap combinations
are achieved via a novel metamorphic growth technique using a compositionally graded
buffer (CGB) layer between the junctions. The inverted growth technique and the CGB
layer allow the bandgaps of the two junctions to be independently variable, thus maxi-
mizing light harvesting by spreading the solar spectrum into the top and bottom sub-cells.
However, despite the remarkable efficiency, the system uses expensive III-V semiconductor
materials and yields poor long-term stability, with stable operation of only 20 min. Recent
research interests are also focused on low-cost and stable transition metal oxides such as
TiO2 and Fe2O3. Vilanova et al. reported a tandem PV/PEC cell with 50 cm2 of photoactive
area using hematite (α-Fe2O3) photoelectrode [111]. The author improved the PEC cell
structure, which features an open path for enhanced light harvesting and optimized fluid
flow for efficient electrolyte cycle, gas collection, and temperature maintenance under
concentrated sunlight. Owing to the compact and optimized design, the tandem PV/PEC
cell presented stable operation over 42 days. In a succeeding work, the author expanded
the photoactive area to 200 cm2 through integrating four hematite PEC cells, demonstrating
potentials in large-scale hydrogen production, as shown in Figure 10b [112]. Cuprous
oxide (Cu2O) is also reported as photocathode material in a dual absorber PV/PEC tan-
dem cell with perovskite PV. As is illustrated in Figure 10c, the dual absorbers of PV cell
and photocathode are placed back-to-back so that the solar spectrum can be separately
and broadly utilized. Particularly, the Au substrate of photocathode is discontinuously
deposited for transparency of the Cu2O absorber. The system demonstrates unbiased
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solar water splitting capability with STH efficiency of 2.5% and potential of performance
enhancement based on this configuration [113]. Photoelectrochemical water splitting is
still under development, and improvements in photoelectrode materials have become the
major challenges for its further development. Present research interests of photoelectrode
materials generally focus on the following aspects: (i) elevating visible light harvesting
through doping or self-defects, (ii) improving charge transport through structure and mor-
phology engineering, (iii) enhancing operation stability for long-term catalytic applications
by applying protective coatings, and (iv) reducing cost by using earth-abundant materials
such as transition metal oxides instead of expensive III-V materials.
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4. Perspectives

As we have discussed in the main body of this text, energy harvesting technology
leads to further improvements in the efficiency and performance of water splitting systems.
Because energy harvesting devices, such as piezoelectric, piezo-photoelectric, and pyroelec-
tric devices, are mainly based on ferroelectric properties, the synthesis and employment
of materials with appropriate properties are of great importance. Recently, there have
been two groups of fascinating materials introduced in the materials research community:
(i) metal halide perovskites and (ii) two-dimensional nanomaterials [54,55,82,83,114–116].
Both materials show ferroelectricity, which means that they possess both piezoelectricity
and pyroelectricity as well [117–121]. Furthermore, both materials exhibit high light sensi-
tivity and light absorption. These two properties of both materials, ferroelectricity and light
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absorption, make them promising candidates for future energy harvesting-assisted water
splitting applications. For example, metal halide perovskites can be employed in the water
splitting system to induce a piezo-phototronic effect. As the perovskites exhibit extremely
a long carrier lifetime and diffusion length, exciton dissociation by the additional electric
field by the piezoelectricity will enhance the charge carrier transport to electrodes, leading
to improved hydrogen evolution rate [122,123]. Furthermore, to achieve higher efficiency
in the water splitting system, utilization of a narrower bandgap is desirable because approx-
imately 50 and 40% of solar spectrum lies in visible and infrared ranges, respectively, which,
together with other materials characteristics, makes metal halide perovskites one of the
promising materials for energy harvesting-assisted water splitting applications. In terms
of 2D nanomaterials, their high surface to volume ratio together with their ferroelectricity
make them excellent candidates for water splitting applications [122,123]. Enabled by
its high surface to volume ratio together with piezoelectricity or pyroelectricity, a larger
amount of H2 gases can be generated at active sites. In addition, by utilizing Van der Waals
force, 2D nanomaterials can be transformed into multi-dimensional materials, such as 0D
decorated 2D materials or 3D through stacking of 2D materials, which provides additional
functionalities to the devices, such as, photo/electrocatalytic reaction sites by integrating
other catalytic materials [55].

Different from triboelectric and pyroelectric (EPP) energy harvesting technologies,
which are based on electrolysis of water, the core mechanism of the piezoelectric and
pyroelectric (IPP) energy harvesting-assisted water splitting mainly lies in modulating
the polarization-induced piezo-/pyro-electric potential to provide favorable energy band
bending, which leads to efficient charge carrier transport. Energy band bending mechanism
is controllable by adjusting the intensity of input mechanical vibrations or temperature
fluctuations, suggesting that we can actively control the amount of H2 evolution depending
on our needs. This controllability makes the energy harvesting technology a powerful
method to play a role to improve the water splitting systems. In spite of great potentials of
energy harvesting technology to boost water splitting performances, there are underlying
mechanisms that need thorough investigations: (i) Comprehensive studies on governing
factors of piezoelectric, piezo-phototronic, and pyroelectric effects on water splitting are
worth investigating, for example, polarization field versus thickness to determine the
optimum space charge region, and interface engineering to reduce charge trapping at the
heterojunction. (ii) Together with new materials, design of new device architecture is one of
the important factors to be determined. Evolution of 3D printing enables us to design vari-
ous device structures with enhanced contact areas and efficient charge transport paths in
multi-dimensional structures beyond 1D and 2D. (iii) It is timely to conduct experiments on
the practical models for mechanical vibration input for piezoelectric and piezo-phototronic
energy harvesting-assisted water splitting applications because mechanical vibrations from
the environment might have less power than that of the conditions used in simulated
situations in the lab environment. (iv) Lastly, we need to further expand these fascinating
phenomena to other applications, such as CO2 reduction and H2O2 production, which will
open up new opportunities in the environmental and energy fields.

5. Summary

This review has discussed the recent progresses in detail on water splitting systems
coupled with energy-harvesting technologies utilizing piezoelectric, piezo-phototronic,
pyroelectric, triboelectric, and photovoltaic effects. We summarized water splitting systems
with different physical effects in each sub-chapter with detailed examples. These systems
can be categorized into two main processes: (i) assisting photo(electro)catalytic reactions
through the piezoelectric, piezo-phototronic, and pyroelectric effects by inducing additional
potentials for charge separation and transport, or (ii) providing currents and potentials to
activate (photo) electrolysis of water through pyroelectric, triboelectric, and photovoltaic
effects. Both processes enabled by energy-harvesting technologies demonstrated their
promising futures for the future water splitting applications with significantly improved
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H2 and O2 evolution rates. Finally, in perspectives, we introduced new opportunities
from new materials as well as device structure and design. The confronting imminent
energy and environment issues need to be mitigated and resolved as soon as possible for
the future generations. As a clean and renewable energy source, hydrogen for a major
source of energy will realize sustainable society and open up new futures for human beings.
Therefore, developing highly efficient renewable energy systems coupled with energy
harvesting technology is crucial for sustainable hydrogen production.
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