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Abstract: Metal complexes are used in numerous chemical and photochemical processes in organic
chemistry. Metal complexes have not been excluded from the interest of polymerists to convert liquid
resins into solid materials. If iridium complexes have demonstrated their remarkable photochemical
reactivity in polymerization, their high costs and their attested toxicities have rapidly discarded
these complexes for further developments. Conversely, copper complexes are a blooming field of
research in (photo) polymerization due to their low cost, easy syntheses, long-living excited state
lifetimes, and their remarkable chemical and photochemical stabilities. Copper complexes can also
be synthesized in solution and by mechanochemistry, paving the way towards the synthesis of
photoinitiators by Green synthetic approaches. In this review, an overview of the different copper
complexes reported to date is presented. Copper complexes are versatile candidates for polymerization,
as these complexes are now widely used not only in photopolymerization, but also in redox and
photoassisted redox polymerization processes.

Keywords: copper complex; photoinitiator; photopolymerization; photosensitizer; photoredox
catalysis; TADF; redox polymerization; free radical polymerization; cationic polymerization

1. Introduction

Photopolymerization is an old polymerization technique that makes use of light to initiate a
polymerization reaction and convert a liquid monomer into a solid material. Photopolymerization offers
many attractive features compared to the traditional thermal polymerization such as a temporal and
a spatial control so that the polymerization process occurs only during the time for which the light
is switched on and within the irradiated zone [1–3]. With regards to the release of volatile organic
compounds (VOCs), the polymerization process can be carried out in solvent-free conditions, addressing
both the emission of volatiles but also waste treatment issues [4–6]. Therefore, photopolymerization can
be considered as a zero-VOC technology. Additionally, no work-up subsequent to the polymerization
process is required so that the polymer pieces obtained by photopolymerization are ready to use.
This unique ability to provide polymeric materials that can be immediately used after polymerization
is nowadays valuated in the emerging 3D and 4D printing technologies [7–10]. In contrast with the
traditional thermal polymerization, which require hours to form polymers, by photopolymerization,
not only high polymerization rates, but also high final monomer conversions can be obtained within
a few minutes. By use of this traceless reagent, which is light, photopolymerization can also be
considered as a Green approach to prepare polymers. However, at present, photopolymerization
suffers from a major drawback in industry i.e., the use of UV light which is at the origin of safety
concerns but also requires expensive and energy-consuming setups to be used [11–13]. Recently,
a breakthrough has been achieved with the development of compact, lightweight, and cheap light
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sources, namely, the light-emitting diodes (LEDs), whose emission spectra can be perfectly controlled
from the UV to the infrared region [14–17]. Considering that UV photopolymerization is more and
more contested due to the dangers posed by UV radiations [17–19], alternatives have been actively
researched, paving the way towards the development of safer polymerization processes done under
visible light and low-light intensity [20]. Beyond the simple safety brought by the use of visible light,
another major concern of photopolymerization is the light penetration inside the photocurable resin.
Indeed, as shown in Figure 1 for a polystyrene latex with an average diameter of 112 nm containing
fillers [21], light penetration can range from 600 µm at 400 nm up to 5 cm at 800 nm, enabling to
revolutionize the scope of application of photopolymerization from coatings to the elaboration of thick
samples [22]. At present, organic dyes used as visible light photosensitizers of polymerization have
been extensively studied [23–26]. Interest for metal-free photoinitiators is notably motivated by the high
costs of numerous metal precursors but also by the safety concerns raised by the use of transition metals.
Organic dyes and especially push–pull dyes are also characterized by an intense absorption band
located in the visible range corresponding to the intramolecular charge transfer band [27–36]. As a result
of this, the photoinitiator content can be drastically reduced, addressing the toxicity issue. However,
organic dyes are not the only ones capable to exhibit high molar extinction coefficients, and, in the
literature, highly efficient photoinitiators of polymerization based on iridium complexes have notably
been reported, outperforming benchmark photoinitiators such as phenyl bis(2,4,6-trimethylbenzoyl)
phosphine oxide (BAPO) or camphorquinone (CQ) [37–42]. Their remarkable efficiencies were notably
related to their long-living excited states, enabling the photosensitizers to react efficiently with the
different additives introduced into the photocurable resins. If the cost of IrCl3.xH2O is approximately
80 €/gram, several attempts were made to develop metal complexes with cheaper metal precursors
and complexes based on Zn (II) complexes or Fe (II)/Fe (III) complexes were notably proposed. In this
last two cases, metal precursors are really cheaper since the cost for zinc acetate dihydrate (Zn(OAc)2)
is reduced to 0.09 €/gram and 3.50 €/gram for iron (II) acetate (Fe(OAc)2).
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If the Zn precursor is approximately 900 times cheaper than the Ir one, the relatively short-lived
excited state of Zn (II) complexes (in the nanosecond scale) made these complexes poor candidates
for photoinitiation and only few complexes have been reported as photoinitiators [43–45]. The same
holds true for iron complexes bearing Schiff Base ligands [46–50]. Parallel to their short-lived excited
state lifetimes, the low photochemical stability of the Schiff Base ligands, their averred instability
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under acidic conditions also made this second family of complex a series of metal complexes of poor
interest for photoinitiation [51]. However, recently, stability of iron complexes was addressed with the
development of ferrocene derivatives, this metallocene being well-known for its remarkable thermal,
chemical, electrochemical, and photochemical stability [52,53]. Among metals that could be used to
design relatively cheap complexes with long-living excited states, copper can be cited as a relevant
example [54–61]. In this field, the pioneering works in photopolymerization have been developed
six years ago, in 2014, by the group of Lalevée et al. [62]. However, copper is not an unknown metal
in the polymerization field as numerous copper complexes have been developed for thermal atom
transfer radical polymerizations (ATRP) [63–65]. Prior to these works, the use of bis(amino)acid
copper (II) complexes to initiate the polymerization of acrylamide, the use of Cu (I) or Cu (II) salts to
photopolymerize tetrahydrofuran, or the use of borate salts to polymerize acrylates can be cited as
works reported decades ago [66]. Very recently, in 2018, copper complexes have been involved in a new
polymerization approach named metal acetylacetonate–bidentate ligand interaction (MABLI) enabling
the formation of acetylacetonate (acac•) radicals by redox reaction with a phosphine and capable to
initiate the free radical polymerization (FRP) of acrylates or to promote the free radical promoted
cationic polymerization (FRPCP) of epoxides [67–71]. Contrarily to the aforementioned photosensitive
complexes (i.e., Ir, Fe, and Zn) which are typically neutral complexes [72,73], copper complexes are
generally positively charged so that a counter-anion has to be used. Presence of this counterion ensuring
the electrical neutrality of the salt is not without influence on the photoinitiating ability. Indeed, in this
field, the role of the counterion on the photoinitiating ability of ionic photoinitiators was remarkably
evidenced with a series of iodonium salts differing by their counterions [74]. By using counterions
of bigger sizes, the final monomer conversion could be greatly improved, the nucleophilicity of the
anion decreasing with the size. Concerning copper complexes, it has to be noticed that in the literature,
numerous copper complexes have been reported as being phosphorescent compounds with regards
to their excited state lifetimes in the microsecond scale. However, as demonstrated by the extensive
works of Chihaya Adachi on the thermally activated delayed fluorescence (TADF) properties since
2012 [75,76], numerous copper complexes previously reported in the literature as phosphorescent
complexes are in fact TADF complexes, so that the literature concerning copper complexes has to be
considered carefully, in light of this recent discovery [17]. In fact, due to the small energy splitting
between the triplet and the singlet excited states, the singlet excited state can be repopulated from the
triplet state at room temperature, enabling the observation of an emission from the singlet excited state
(delayed fluorescence) and not from the triplet state as observed in the case of phosphorescent materials.

In this review, an overview of the different copper complexes reported to date in polymerization
processes is given. To evidence the remarkable initiating ability of these complexes in photochemical,
redox and photoredox processes, comparisons with benchmark photoinitiators are provided.

2. Copper Complexes as Visible Light Photoinitiators of Polymerization

2.1. Copper Complexes as Photoredox Catalysts

As discussed in the introduction section, the first report mentioning the use of photosensitive
copper complexes in photopolymerization have been reported in 2014 [62]. In this work, two different
bulky phosphorylated ligands were used, namely, bis(2-(diphenylphosphino)phenyl) ether (DPEPhos)
and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XantPhos) for the design of Cu-1-Cu-3
(See Figure 2).
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Figure 2. Chemical structures of Cu-1–Cu-3.

Concerning their syntheses, the three complexes (Cu-1–Cu-3) could be prepared in high yields
using a stepwise approach. By first complexing the bulky phosphorylated ligands (DPEPhos or
XantPhos) with one equivalent of tetrakis (acetonitrile)copper (I) tetrafluoroborate (Cu(CH3CN)4.BF4)
and then opposing the appropriate ancillary ligand to the intermediate complex, a ligand exchange
could occur, and the heteroleptic complexes Cu-1–Cu-3 could be prepared with reaction yields
ranging from 66% for Cu-1 to 86% for Cu-2 (See Scheme 1) [62]. Complexes could also be isolated by
precipitation, facilitating the purification process. The way how to recover these complexes is totally
different to that used for the previously mentioned iridium complexes that could only be synthesized
in low yields, but also required an extensive purification process to be obtained in pure form [37–42].
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As an interesting feature, the three complexes displayed a strong absorption in the near-visible
range, with absorption maxima at 380 nm for Cu-1 and Cu-2, and 383 nm for Cu-3 (See Figure 3).
Cu-1 showed the broadest absorption of the series, with an absorption extending until 550 nm.
Conversely, the absorption of Cu-2 and Cu-3 was more restricted, limited to 450 nm. In this context,
the photopolymerization tests could be carried out upon excitation with LEDs emitting at 405 nm
(110 mW/cm2) or at 455 nm (80 mW/cm2), but also with a halogen lamp emitting between 370 and
800 nm (12 mW/cm2).

Prior to the polymerization tests, examination of the photochemical stability of the different
complexes in solution revealed Cu-2 to be sensitive to the solvent polarity. Thus, irradiation at 405 nm
of an acetonitrile solution of Cu-2 revealed the appearance of a new band in the UV–visible absorption
spectrum, assigned to the formation of Cu(L2).BF4, consistent with the results previously reported
in the literature [77,78]. Indeed, ligand displacement is sometimes observed for sterically hindered
complexes upon photoexcitation, during the structural rearrangement from the initial octahedral
geometry to the square planar geometry. Conversely, in dichloromethane, no modification of the
absorption spectrum was found for Cu-2 even after 20 min of irradiation at 405 nm [79]. Examination of
the Cu-x (x = 1−3)/Iod interaction by ESR spin trapping experiments revealed the formation of Ph•
radicals, capable to initiate the FRP of acrylates [62]. Upon addition of NVK into the resin, Ph• radicals
generated within the resin can add onto the double bond of NVK and produced Ph-NVK• radicals that
can be easily oxidized by the iodonium salt, furnishing Ph-NVK+ cations capable to initiate the FRPCP
of epoxides (see Figure 4). Noticeably, use of NVK as an additive also allows an efficient regeneration
of the photosensitizer, rendering the photoinitiating system catalytic.
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The photoinitiating ability of the three complexes was also studied by examining the photolysis of
the Cu-x (x = 1–3)/Iod system in dichloromethane at 405 nm [62]. Surprisingly, if a very fast photolysis
was observed for the Cu-2/Iod and Cu-3/Iod systems, conversely, a slow bleaching was observed for the
Cu-1/Iod system. In fact, laser flash photolysis experiments revealed the excited state lifetime of Cu-1
to be relatively short (<6 ns), what is unfavorable for an efficient interaction between Cu-1 and Iod
and support the poor reactivity of the two-component Cu-1/Iod system. On the opposite, excited state
lifetimes in the microsecond scale were found for Cu-2 and Cu-3, supporting the fast photolysis in
solution. This order of reactivity was confirmed during the free radical polymerization (FRP) of
trimethylolpropane triacrylate (TMPTA) (See Figure 5). Thus, a final monomer conversion of 25% and
14% were found, respectively, at 405 nm and 457 nm for the two-component Cu-1/Iod (0.2%/2%, w/w)
system after 400 s of irradiation under air, whereas 41% of conversions were determined both at 405
and 457 nm for the two-component Cu-2/Iod (0.2%/2%, w/w) system. Interestingly, the lower monomer
conversion obtained with Cu-3 is directly related to its lower molar extinction coefficient both at 405
and 457 nm compared to that of Cu-2 (18 and 26% at 405 and 457 nm, respectively) [62]. While adding
NVK, the monomer conversion could be increased up to 63% at 405 nm, still upon irradiation for 400 s
under air. Comparison with the two-component camphorquinone/N-methyldiethanolamine (MDEA)
or camphorquinone/Iod systems or the benchmark phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide
(BAPO) revealed the three-component Cu-2/Iod/NVK (0.2%/2%/3%, w/w/w) system to outperform
the three references systems (63% monomer conversion with Cu-2 vs. 53% for BAPO at 405 nm).
While examining the free radical promoted cationic polymerization (FRPCP) of (3,4-epoxycyclohexane)
methyl 3,4-epoxy-cyclohexylcarboxylate (EPOX), nor Cu-1 or Cu-3 could initiate the FRPCP, irrespective
of the photoinitiating systems (two- or three-component systems). Conversely, the photoinitiating ability
of the two-component Cu-2/Iod (0.2%/2%, w/w) system remained low, peaking at 13%, upon irradiation
at 405 nm for 800 s. Only the three-component Cu-2/Iod/NVK (0.2%/2%/3%, w/w/w) system could
ensure a reasonable EPOX conversion, reaching 61% in the same conditions under air. The higher
reactivity of the three-component system can be assigned to the presence of NVK, generating the highly
reactive Ph-NVK+ cation, and the two reaction pathways enabling to form this cation, by reduction of
the oxidized form of the copper complex or by reaction of Ph-NVK•with Ph2I+ (See Figure 5) [62].
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Finally, by the simultaneous presence of Ph-NVK• and Ph-NVK+ within the resin, the formation
of interpenetrated polymer networks (IPNs) resulting from the concomitant polymerization of EPOX
and TMPTA could be prepared. Interestingly, two different situations could be evidenced, with a
higher monomer conversion of EPOX under air compared to that of TMPTA and the opposite situation
in laminate (See Figure 6). These results were assigned to the fact that the FRP of TMPTA was going
faster than the FRPCP of EPOX, but also to the fact that under air, part of the generated radicals are
consumed by oxygen, reducing the TMPTA conversion.
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Figure 6. Polymerization profiles of an EPOX/TMPTA blend (50%/50%, w/w) using the three-component
Cu-2/Iod/NVK (0.1%/3%/5%, w/w/w) system under air (A) and in laminate (B), irradiation with a
halogen lamp. Reproduced with permission from the authors of [62]. Copyright 2014 The American
Chemical Society.

Following these works, the same authors examined the ligand effects with a series of 23 different
Cu (I) complexes [80]. As observed for Cu-1–Cu-3, copper complexes could be clearly divided into
two distinct families with regards to their photoinitiating abilities. Thus, the first group of copper
complexes contains those bearing ancillary ligands with bulky groups at the inner position of the
bipyridine or the phenanthroline ligands such as Cu-4–Cu-9 (see Figure 7). However, among this series,
different behaviors were observed. Thus, if Cu-8 and Cu-9 proved to be unstable in solution upon
irradiation, Cu-7 was ineffective as photoinitiators of polymerization, irrespective of the conditions
used. When tested as photoinitiators in two-component Cu-x (x = 4–9)/Iod (0.2%/2% w/w) systems,
final monomer conversions ranging from 20 to 32% at 405 nm, 25 to 49% at 457 nm, and 22 to 46%
with a halogen lamp could be determined with the different systems. Comparison with the reference
two-component camphorquinone/Iod (0.2%/2% w/w) system revealed the aforementioned copper-based
systems to outperform this benchmark photoinitiator, the monomer conversion peaking only at 18%
upon a halogen lamp irradiation (See Table 1).
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Figure 7. Chemical structures of Cu-4–Cu-9.
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Table 1. TMPTA conversions determined in laminate for two-component systems Cu-x(x = 4–6)/Iod
(0.2%/2% w/w) upon irradiation at different wavelengths for 500 s and light absorption properties at the
emission wavelengths of the different light sources (extracted from the work in [80]).

Laser Diode
(405 nm)

Laser Diode
(457 nm) Halogen Lamp ε405nm

(M−1cm−1)
ε457nm

(M−1cm−1)

Cu-4/Iod 20% 25% 43% 1500 440
Cu-5/Iod 37% 49% 46% 3100 1000
Cu-6/Iod 32% 36% 22% 4000 1200
CQ/Iod 18% *

* 400 s of irradiation.

Parallel to this first group, a second group of copper complexes for which no substituent was
introduced in ortho-position of the pyridinic groups of the ancillary ligands could be identified,
comprising Cu-10–Cu20 (See Figure 8). Here, again, several complexes proved to be ineffective
candidates for photoinitiation, as exemplified by Cu-15 and Cu-16 that are unstable upon irradiation in
solution. Conversely, Cu-17 could not be used as photoinitiator, no photolysis being observed for the
Cu-17/Iod combination. Stability of the Cu-17/Iod combination was assigned to a back electron transfer
occurring between Iod and Cu-17. For all the other complexes and as shown in the Table 2, an improved
photoinitiating ability could be evidenced at 405 nm during the FRP of TMPTA in laminate (21–36%
monomer conversion) [80]. Increase of the monomer conversions is directly related to their higher
molar coefficients at 405 nm compared to that of the previous series. Conversely, at 457 nm and due to
a reduction of the absorption properties of all complexes, lower final monomer conversions could be
determined. In this second series of complex, Cu-18 proved to be the best candidate, even if its light
absorption properties were aside from that of Cu-19 and Cu-20. Superiority of Cu-18 can be confidently
attributed to its higher reactivity of Cu-18 towards the iodonium salt that was clearly demonstrated
during the photolysis experiments in solution (faster discoloration of the solution for Cu-18 vs. Cu-19
or Cu-20). Comparison with Cu-2 and Cu-3 previously reported revealed Cu-18–Cu-20 to outperform
these two complexes.

Table 2. TMPTA conversions determined in laminate for two-component systems Cu-x(x = 11–20)/Iod
(0.2%/2% w/w) and three-component systems Cu-x(x = 2,3,18)/Iod/NVK (0.2%/2%/3% w/w/w) upon
irradiation at different wavelengths for 500 s and light absorption properties at the emission wavelength
of the light sources (extracted from the work in [80]).

Laser Diode
(405 nm)

Laser Diode
(457 nm) Halogen Lamp ε405nm

(M−1cm−1)
ε457nm

(M−1cm−1)

Cu-10/Iod 30% 42% 25% 3100 400
Cu-11/Iod 21% 38% 21% 2500 350
Cu-12/Iod 32% <5% 19% 2600 150
Cu-13/Iod 36% 18% 8% 2000 120
Cu-14/Iod 33% 15% 16% 2500 180
Cu-18/Iod 36% 51% 50% 5500 1200
Cu-19/Iod 34% 52% 49% 4800 2000
Cu-20/Iod 30% 48% 46% 6300 2600

Cu-18/Iod/NVK 59% 57%
Cu-2/Iod 41% 41% 48%

Cu-2/Iod/NVK 56%
Cu-3/Iod 21% 38% 38%

Cu-3/Iod/NVK 41% 42%

Finally, the high monomer conversion achieved with the three-component Cu-18/Iod/NVK
(0.2%/2%/3% w/w/w) upon introduction of NVK in the photocurable resin can be assigned to the
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regeneration of the photosensitizer in this case, rendering the photoinitiating system catalytic
(See Figure 4) [80].

Here again, superiority of Cu-18 over Cu-2 and Cu-3 was demonstrated in the three-component
system Cu-x/Iod/NVK (0.2%/2%/3% w/w/w), an enhancement of the monomer conversion by ca. 20%
being compared to that of Cu-3. As interesting feature, Cu-18 proved not only to be an efficient
photoinitiator in an oxidative mechanism but also a reductive one when opposed to an amine (methyl
diethanolamine (MDEA). Upon excitation by light, a photoinduced electron transfer between Cu-18
and MDEA occurs, producing radicals by hydrogen abstraction. In the presence of an oxidation
agent, Cu-18 can be reoxidized by the oxidizing agent (R-Br), providing a second source of radicals
(See Figure 9). In this context of dual source of radicals, final monomer conversions comparable to that
obtained with the oxidative mechanism could be determined with Cu-18 as the sensitizer (See Table 3).
Here, again, Cu-18 proved to be a better photoinitiator than benchmark photoinitiators such as BAPO
or camphorquinone [80].
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Table 3. TMPTA conversions determined in laminate upon irradiation at different wavelengths of
the three-component system Cu-18/R-Br/MDEA (0.2%/2%/3% w/w/w) for 500 s and light absorption
properties at the emission wavelength of the light sources (extracted from the work in [80]).

LED
(405 nm)

LED
(455 nm)

Halogen
Lamp

ε405 nm
(M−1cm−1)

ε457 nm
(M−1cm−1)

Cu-18/R-Br/MDEA 59% * 55% * 49% * 5500 1200
BAPO 53% *

CQ/MDEA 35% *

* 400 s of irradiation.

Finally, an examination of homoleptic complexes such as Cu-21–Cu-26 as photoinitiators revealed
their poor ability in the visible range, with only Cu-25 being capable to initiate the FRP of TMPTA
at 457 nm (38% conversion with the three-component Cu-25/Iod/NVK (0.2%/2%/3% w/w/w) system
(see Figure 10). For the other complexes, their lack of absorption in the visible range makes these
complexes unsuitable candidates for visible light photopolymerization. It has to be noticed that if
no efficient TMPTA polymerization could be achieved with Cu-24 in this work, recent works have
nonetheless demonstrated the possibility to photocatalyze an atom transfer radical polymerization
under visible light, upon irradiation at 405 nm [81].

Returning to Cu-18, the same authors also demonstrated the possibility for this complex
to act as a photoredox catalyst for the thiol-ene polymerization of a tris(3-mercaptopropionate)
(trithiol)-triethyleneglycol divinyl ether (DVE-3) blend (57%/43%, w/w) (see Figure 11). Upon irradiation
with a laser diode at 457 nm, final monomer conversions of 57 and 85% could be, respectively,
determined for trithiol and DVE-3, following the mechanism depicted in Equations (1)–(3) [80].

Ar• + RSH→ ArH + RS• (1)

RS• + DVE-3→ RS-DVE-3• (2)

RS-DVE-3• + RSH→ RS-DVE-3-H + RS• (3)
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In 2017, a series of homoleptic and heteroleptic complexes Cu-27–Cu-33 based on pyridine-pyrazole
ligands was evaluated as photoredox catalysts for the FRP of acrylates and the FRPCP of epoxides
(see Figure 12) [82]. As interesting features, the charge transfer occurring from the copper center to the
diimine ligand in the excited state was highly dependent of the substitution pattern of the diimine
ligand, which was confirmed by examining the absorption spectra of Cu-27–Cu-31 [83,84]. Thus,
introduction of an electron-withdrawing group onto the ancillary ligand red-shifted the absorption
towards the visible range so that the nitro-substituted complex Cu-31 showed the most red-shifted
absorption of the series (λmax = 450 nm). Examining the free energy change ∆Get for the electron
transfer reaction between the Cu(I) complexes and Iod determined by using the classical Rehm–Weller
equation revealed the electron transfer to be highly favorable for Cu-27–Cu-31 [85]. Conversely,
the same values determined for Cu-32 and Cu-33 made these two complexes unfavorable candidates
for photoinitiation. Final monomer conversions determined for the cationic polymerization of EPOX
with the two-component Cu-x/Iod (0.5%/1% w/w) systems followed the order of their absorption
abilities at 405 nm and decreased from 48% for Cu-30 to 45% for Cu-29, 18% for Cu-28, and 6% for
Cu-27 for an irradiation done at 405 nm during 800 s [82]. Interestingly, no polymerization could be
initiated with Cu-31 in these conditions, Cu-31 nevertheless exhibiting the most red-shifted absorption
of the series and being the complex the most adapted for an irradiation at 405 nm. By adding
9H-carbazole-9-ethanol (CARET) as an additive, a behavior similar to that observed with NVK was
observed, significantly improving the monomer conversion [86]. Thus, a final monomer conversion of
63% was obtained after 800 s of irradiation at 405 nm with the three-component Cu-30/Iod/CARET
(0.5%/1%/1% w/w) system, increased by ~15% compared that obtained with the two-component
Cu-30/Iod (0.5%/1% w/w) system. This enhancement can be assigned to the efficient regeneration
of Cu-30 by CARET, avoiding the consumption of the photosensitizer during the polymerization
process. Noticeably, a similar enhancement could be obtained with the two-component Cu-x/Iod
(0.5%/1% w/w) systems by modifying the counter-anion. Thus, exchange of the BF4

− anion for the
less nucleophilic PF6

- anion enabled to get comparable enhancements, the monomer conversion
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for EPOX increasing from 45% to 63% with Cu-29. This trend is consistent with that observed in
previous works reported in the literature [87–89]. The order of reactivity determined for the CP of
EPOX was confirmed during the FRP of acrylates (TMPTA) or during the FRP of methacrylates while
using a dental resin consisting in a bisphenol A-glycidyl methacrylate (BisGMA)/triethyleneglycol
dimethacrylate (TEGDMA) (70%/30% w/w) blend [90–92]. Remarkably, colorless coatings could be
obtained with Cu-30, as shown in Figure 13.

Considering the high reactivity of the three-component system Cu-30/Iod/ethyl 4-(dimethylamino)
benzoate (EDB) (0.5%/1%/1% w/w/w) for the photopolymerization of the methacrylate
(BisGMA/TEGDMA) resin, surface patterning experiments could be carried out and letters, numbers or
figures could be produced with a high precision using a 1951 US Air Force (USAF) resolution calculator
(See Figure 14).
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photopolymerization of a thick sample (1.4 mm) under air. Reproduced with permission from the
authors of [82]. Copyright 2017 The Royal Society of Chemistry.
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In 2019, Cu-32 was revisited in the context of the development of antibacterial coatings [93].
A remarkable antibacterial activity against two bacteria i.e., Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus) was demonstrated, with a reduction of the proliferation by approximately 99.9 and
96% for the two bacteria, respectively. Especially, the antibacterial activity of the polymer films was
determined as originating from the release of Cu2+ cations within the polymer films.

2.2. Copper Complexes as Photoinitiators for Polymerization Processes in Shadowed Area

Photopolymerization is a technique widely used to initiate free radical polymerization reactions and
exposure of the surface to light is required to generate the reactive species. Besides, photopolymerization
is not limited to the polymerization of coatings on planar surfaces and objects with complex structures
requiring their surfaces to be coated with a polymer film are more representative of the real applications
of photopolymerization in industry. In this context, the development of photocurable resins in which
radicals can diffuse until regions that will not be exposed to light is an important challenge. By contrast
to the traditional formulations for which a perfect spatial control is required, notably for 3D-printing
applications, a totally different approach should be used in the context of polymerization in shadowed
area. This phenomenon is named dark polymerization. Among the different approaches reported in
the literature, one of the most convenient ways to initiate a dark polymerization consists in generating
latent species that will react in the zones not exposed to light. To illustrate this, photoinitiation
of a polymerization process with the three-component rose Bengal/ferrocenium salt/amine system
comprising a fourth component, i.e., an initiating species (hydroperoxide), constitutes a first approach for
the polymerization of thick pigmented films [94,95]. More recently, an elegant strategy was developed
with the methylene blue/amine combination with which light irradiation formed a metastable leuco
form of methylene blue that could react with an iodonium salt and generate initiating radicals Ar• [96].
A propagation of the polymerization until 3.5 mm from the irradiated zone could be obtained. However,
one drawback of this approach was the toxicity of the dye [97–99]. In 2017, an unprecedented strategy
was proposed with Cu-4 [28]. Considering that in the previous photopolymerization experiments done
under air with Cu-4, an induction period corresponding to the consumption of oxygen by the initiating
R’• radicals was typically observed on the polymerization profiles while using the two-component
Cu-4/Iod system (see Equation (4)), an original strategy consisted in taking advantage of the dissolved
oxygen in resins to generate latent species. Indeed, peroxyl radicals R’OO• formed by reaction of R’•



Catalysts 2020, 10, 953 14 of 37

with oxygen can constitute latent species for polymerization processes in shadowed areas by hydrogen
abstraction, following the mechanism proposed in Equation (5).

R’• + O2→ R’OO• (4)

R’OO• + R-H→ R’OOH + R• (5)

Parallel to the photoinitiated process, redox potentials of Cu-4 are also adapted to induce redox
reactions with peroxides such as R’OOH so that R’O• and R’OO• radicals can be simultaneously
generated in situ by redox reactions with Cu-4 (II) and Cu-4 (I) (see Equations (6) and (7)).

Cu (I) + ROOH→ Cu (II) + RO• + OH (6)

Cu (II) + ROOH→ Cu (I) + ROO• + H+ (7)

To avoid the formation of the less reactive ROO• radicals, introduction of a reductant that could
reduce Cu (II) into Cu (I) was introduced, favoring Equation (6) over Equation (7). To optimize the
initiating system and mutualize as much as possible the different additives used for both the redox and
the photochemical mechanisms, the reductant used for the redox system can also be the same as that used
in the photochemical mechanism. This goal was achieved by using Tin (II) 2-ethylhexanoate (Tin (II))
that could be simultaneously used for the photochemical and the redox polymerizations (see Figure 15).
To favor the diffusion of radicals within the resin as well as oxygen diffusion, a resin of low viscosity
was employed, composed of a mixture of three monomers, namely 1,4-butanediol-dimethacrylate
(1,4-BDMA) (33 wt%), hydroxypropyl methacrylate (HPMA) (33 wt%) and urethanedimethacrylate
(UDMA) (33 wt%). To evidence the reactivity of these hydroxyl radicals, a comparison with cumene
hydroperoxide R”OOH was established [28].
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Figure 15. Concomitant photo and redox mechanisms involved in the polymerization in irradiated and
shadowed areas. Chemical structures of the reducing agents and monomers used in this study.

As the first finding, the final monomer conversion could be finely tuned by mean of the light
intensity. Thus, by maintaining the light irradiation at 35 mW/cm2, the monomer conversion could
be drastically increased by replacing the two-component system Cu-4/Iod (0.3%/0.85% w/w) by the
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three-component system Cu-4/Iod/Tin (II) (0.3%/0.85%/6% w/w/w). Therefore, an enhancement of the
final monomer conversion from 60 to 84% could be obtained within 150 s while regenerating the
photosensitizer (see Figure 16) [28].
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Figure 16. Polymerization profiles of the mixture of monomers by varying the light intensity upon
irradiation with a LED@405 nm under air, 1.4 mm thick samples. Reproduced with permission from
the authors of [28]. Copyright 2017 American Chemical Society.

Examination of the ability of the three-component system to initiate a polymerization far from the
irradiation point was realized by using a Pasteur pipette filled with the resin and by only irradiating
the extremity of the Pasteur pipette. Using this strategy, a polymerization extending until 9 cm from
the irradiation point could be observed, by breaking the Pasteur pipette and by measuring the length
of the resulting polymer (see Figure 17) [28]. To monitor the polymerization process, a thermal imaging
camera was utilized. This approach is relatively new in photopolymerization and can be assigned to
the recent availability of cheap, easy-to-handle, and precise thermal imaging cameras on the market.
As a result of this, thermal imaging can now be used to follow numerous chemical transformations.
Indeed, the polymerization of acrylates and methacrylate is known to be exothermic [100,101] so that
the polymerization process could be monitored by measuring the variation of temperature during the
polymerization reaction.
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Figure 17. (A) Experimental set-up used to examine the polymerization in shadowed areas. (B) The
Pasteur pipette with the resin before irradiation. (C) The resulting polymer obtained after polymerization.
(D) Final monomer conversion vs. the distance of the irradiation point. Reproduced with permission
from the authors of [28]. Copyright 2017 American Chemical Society.

Considering the high reactivity of the three-component system Cu-4/Iod/Tin (II) (0.3%/0.85%/6%
w/w/w), polymerization of filled samples was examined (See Figure 18). Despites the presence of
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fillers, only a minor reduction in the polymer length was found, decreasing from 0.5 cm. Finally,
comparison of the ability of the three-component system Cu-4/Iod/Tin (II) (0.3%/0.85%/6% w/w/w)
with systems previously reported in the literature and examined in the same irradiation conditions
revealed the three-component system Cu-4/Iod/Tin (II) (0.3%/0.85%/6% w/w/w) to outperform these
reported systems (see Figure 19) [28] Thus, if the polymerization reaction could propagate until
3 mm from the irradiated zone with the MB+/DIPEA/DPI+ (0.4%/0.2%/0.04% w/w/w) [96], a ten-fold
enhancement of the length could be obtained with the three-component system Cu-4/Iod/Tin (II)
(0.3%/0.85%/8% w/w/w), reaching 32 mm. Concentration of the copper complex was determined as
being the key-parameter governing the lateral polymerization, a 6-fold increase of the concentration
resulting in a 4-fold enhancement of the polymer length.
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Figure 18. Pasteur pipette containing the resin before (A) and after (B) breaking the pipette; (C) monomer
conversion as a function of the distance; (D) evolution of the temperature as a function of the reaction
time followed by infrared thermal imaging camera. Reproduced with permission from the authors
of [28]. Copyright 2017 American Chemical Society.
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Figure 19. Determination of the polymerization length beyond the irradiated area using different systems
previously reported in the literature (camphorquinone/amine: 0.4%/2% w/w and MB+/DIPEA/DPI+:
0.4%/0.2%/0.04% w/w/w) and Cu (I)/Iod/Tin (II) 0.17%/2%/1.3 w/w/w and Cu (I)/Iod/Tin (II) 0.17%/2%/8
w/w/w examined in this study. Reproduced with permission from the authors of [28]. Copyright 2017
American Chemical Society.

Finally, in light of the exceptional reactivity of the three-component system Cu-4/Iod/Tin (II)
(0.2%/1%/5% w/w/w), the possibility to use sunlight to initiate the polymerization was examined [28].
If the Sun delivers only a limited irradiance (6 mW/cm2), it constitutes however an interesting light
source. Using sunlight, a final monomer conversion of 70% for the methacrylate resin could be
obtained within 100 s during a sunny day (see Figure 20). If a reduction of the monomer conversion is
observed with sunlight compared to that obtained with a LED at 405 nm (82% monomer conversion,
see Figure 17), the decrease remains however limited.
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An interesting finding was the ability of Cu-4 to give rise to a dark polymerization process, 
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2.3. Copper Complexes as Photoinitiators for Dark Polymerization Processes

Cu-4 is a promising photosensitizer for future industrial developments and several studies were
devoted to examine its photoinitiating ability with industrial resins (see chemical structures of the
model resin in Figure 21) [102,103]. For comparison, BAPO, which is also widely used in industry,
was used for comparison.
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An interesting finding was the ability of Cu-4 to give rise to a dark polymerization process,
even after irradiation of the photocurable resin during a short time. As shown in the Figure 22,
after 60 s of irradiation and by switching the light off, an increase of 22% of the monomer conversion
could be monitored by FTIR, whereas the dark polymerization with BAPO was more limited, increase
of the monomer conversion being only of 12% [102]. To explain this, the high reactivity of Cu-4 in
three-component systems and thus its ability to generate numerous radicals without a short reaction
time but also the higher molar extinction coefficient of Cu-4 compared to BAPO at 405 nm were
suggested as parameters supporting the remarkable dark polymerization observed with Cu-4.
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at 405 nm for 400 s. Reproduced with permission from the authors of [102]. Copyright 2017The Royal
Society of Chemistry.

2.4. Green Approach towards the Synthesis of Copper-Based Photoinitiators of Polymerization

Synthesis of photoinitiators by Green synthetic routes is an active research field, and, in 2018,
the synthesis of Cu-2 was newly examined in the context of mechanochemistry [104]. Indeed, the synthesis
of photoinitiators in solution and the associate waste treatment can constitute a major obstacle for further
developments and commercialization of photoinitiators. Mechanosynthesis underwent a revival of
interest approximately ten years ago [105–111], by offering a unique opportunity to produce molecules
by mean of safer, cleaner, and faster transformations than that proposed by the traditional solution-phase
chemistry [112–114]. Mechanochemistry can also give access to molecules that are impossible to reach
in solution phase chemistry [115–119] and a relevant example of this was provided Cu-2 bearing an
iodide counteranion. Indeed, due to the low ionicity of the Cu–I bond (~12%), this bond cannot be
dissociated in solution. On the opposite, forces brought by mechanochemistry are different from those
obtained by heating in solution phase chemistry so that Cu-2.I could be obtained in 70–72% yield with a
purity higher than 95% (See Scheme 2).
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However, grinding of the powder for 30 min was necessary to produce the complex. Conversely,
reduced reaction times were required to prepare Cu-2.PF6 and Cu-2.BF4 as the two complexes Cu-2.PF6
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and Cu-2.BF4 could be prepared in quantitative yields within 5 min with purities comparable to that
obtained in solution (See Figure 23). This corresponds to a 170-fold reduction of the reaction time
compared to that required in solution (5 min against 14 h) [104].
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Figure 23. Mechanosynthesis of Cu-2.BF4 (A) and Cu-2.I (B). Reproduced with permission from the
authors of [104]. Copyright 2018 American Chemical Society.

While using the two-component Cu-2.PF6/(tert-Bu)Ph2I+ (0.3%/0.8%, w/w) system for the
polymerization of a methacrylate resin of low viscosity (see chemical structures in Figure 15),
comparison of the polymerization profiles obtained for the photosensitizer prepared in solution
or by mechanochemistry revealed similar polymerization rates and similar final monomer conversions,
evidencing the pertinence of the approach (See Figure 24a) [104]. Here, again, by increasing the light
intensity from 35 mW/cm2 to 110 mw/cm2, a 20-fold reduction of the reaction time was required to get
60% monomer conversion with the mechanosynthesized Cu-2.PF6 (See Figure 24a,b).
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Figure 24. (a) Comparison of the polymerization profiles obtained for the FRP of the methacrylates
resin using Cu-2.PF6 prepared by mechanochemistry (1) and Cu-2.BF4 in solution (2) in two-component
Cu-2/(tert-Bu)Ph2I+ (0.3%/0.8% w/w) systems upon exposure to a LED at 405 nm (35 mW/cm2).
(b) Comparison of the polymerization profiles obtained with two-component Cu-2.PF6/(tert-Bu)Ph2I+

(0.3%/0.8% w/w) systems upon exposure to a LED at 405 nm (110 mW/cm2) using (1) mechanosynthesized
Cu-2.PF6, (2) solution-synthesized Cu-2.BF4, (3) using the three-component mechanosynthesized
Cu-2.I/(tert-Bu)Ph2I+/Tin (II) (0.3%/0.8%/5% w/w/w) Reproduced with permission from the work in [104].
Copyright 2018 American Chemical Society.

Due to the strong ion pair interaction existing within Cu-2.I, this photoinitiator showed a lower
photoinitiating ability than the two others (Cu-2.PF6 or Cu-2.BF4) so that its incorporation of Cu-2.I in
the three-component system Cu-2.I/(tert-Bu)Ph2I+/Tin (II) (0.3%/0.8%/5% w/w/w) was required to reach
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a final monomer conversion comparable to that obtained with Cu-2.PF6 or Cu-2.BF4 in two-component
systems. Order of reactivity determined during the FRP of methacrylates was confirmed during the
FRPCP of epoxides [104].

2.5. Green Approach towards the Synthesis of Copper-Based Redox and Photoredox Initiators of Polymerization

In 2018, mechanosynthesis was applied to the synthesis of photoinitiators activatable under
near infrared light [69]. Indeed, on the basis of an interesting reaction discovered in 2016, where the
grinding of copper (II) acetylacetonate (Cu(acac)2 with 2-diphenylphosphinobenzoic acid (2-dppba)
could give rise to a ligand exchange combined with a modification of the oxidation degree of Cu and
the release of an acac• radical (see Figure 25) [70,71,120–122], this approach based on a redox reaction
was named metal acetylacetonate–bidentate ligand interaction (MABLI). Optically, reaction between
Cu(acac)2 can be easily detected in solution, the initial blue solution turning green upon addition of
2-dppba. If originally, MABLI was developed to initiate redox polymerization, in 2018, this reaction
was extended to photoactivated redox processes [67].

First, examination of the redox FRP of the UDMA/1,4-HPMA/1,4-BDMA blend with eight different
complexes (Cu-34–Cu-41) (See Figures 26 and 27) revealed the Cu-x (x = 34–41)/2-dppba combinations
to produce exothermic reactions. By monitoring the reaction process with a thermal imaging camera,
an exothermicity ranging from 53 ◦C with Cu-38 until 115 ◦C with Cu-40 could be determined.
Conversely, no reaction was observed with Cu-41 [67]. Compared to the reference system 4-N,
N-trimethylaniline (4-N,N-TMA)/benzoylperoxide (BPO), a significant reduction of the induction time
could be observed with all complexes, corresponding to a 2-fold reduction (See Figure 27). However,
based on the exothermicity of the reaction, similar monomer conversions can be expected with
all systems.
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Figure 25. (A) Chemical mechanism involved in the metal acetylacetonate–bidentate ligand interaction
(MABLI) process. (B) Evidence of the MABLI process in tetrahydrofuran (THF) solution. (C) Color of the
solution after addition of 2-dppba to a Cu(acac)2. (D) The same solution before addition. Reproduced
with permission from the authors of [120]. Copyright 2016 American Chemical Society.

Interestingly, a marked chemical bleaching of the resins could be detected with five complexes
(Cu-34–Cu-37 and Cu-40). Coatings that were totally colorless could be obtained with Cu-37 and
Cu-40; these coatings are actively researched by industrials [123–125]. In fact, the higher the reactivity
of the redox system was, the less colored the coating was. In light of the absorption spectra recorded
in dichloromethane (see Figure 28), all complexes showed a broad absorption band extending over
the visible range so that a photoactivation of the polymerization can also be obtained, upon addition
of an iodonium salt to the initiating system. In this case, the coexistence of the redox and the
photochemical mechanisms allow an efficient production of radicals, according to the mechanisms
depicted in the Figure 29. Parallel to the formation of acac• radicals by ligand exchange with 2-dppba
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(redox mechanism), the copper complex can also act as a photosensitizer, inducing the release of Ph•
radicals by photodecomposition of the iodonium salt. As a result of this, the simultaneous formation
of Ph• radicals and acac• radicals can efficiently accelerate the polymerization reaction. In the case of
Cu-35–Cu-38 and Cu-41, broad absorptions of the Cu (II) complexes enable these compounds to be
activated at 405 or at 785 nm.Catalysts 2020, 10, x FOR PEER REVIEW 21 of 38 
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Figure 28. UV–visible absorption spectra of (1) Cu-37 (2) Cu-35 (3) Cu-36 (4) Cu-41 (5) Cu-38 (6)
Cu(acac)2. Reproduced with permission from the authors of [67] Copyright 2018The Royal Society
of Chemistry.
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Figure 29. The dual source of radicals upon photoactivation of the redox process.

To evidence the advantages of light activation on the polymerization, tempol, which is a radical
trapping agent, was added into the resins. As shown in Figure 30, benefits of the light activation for
Cu-37 (at 785 nm) or for Cu-35 (at 405 nm or at 785 nm) could be clearly demonstrated, inducing a clear
reduction of the reaction time while improving the final monomer conversions. Four-hundred-and-five
nanometers and 785 nm were selected as the irradiation wavelengths in this study due to the
panchromatic absorptions of Cu-35–Cu-38 and Cu-41, so that photoactivation of the polymerization
process is possible from the near-UV to the near-infrared range. Precisely, 405 nm was chosen as the first
irradiation wavelength as this wavelength is currently under use in dentistry, notably for tooth filling
and restoration. However, dental cements used to glue tooth structures such as crowns or bridges
requires redox processes to be used as the light irradiation is not possible to chemically bond the
different elements. To speed up the polymerization reaction, the redox process can be accelerated “on
demand” by light irradiation, supporting the interest for (photo) redox polymerization processes. As far
as the irradiation at 785 nm was concerned, a good light penetration can be obtained at long wavelength,
as shown in the diagram presented in the Figure 1. The exceptional light penetration achievable at
785 nm can also be of interest for dental applications (filling of premolars and molars), but also for the
polymerization of resins containing fillers [126–128]. By monitoring the C=C double bond conversion by
Fourier transform infrared spectroscopy (FTIR), a two-fold reduction of the reaction time was obtained
with Cu-37 (37 s vs. 55 s without NIR light activation) with the two-component Cu-37/2-dppba/Iod
(0.7%/1.5%/1.5% w/w/w) system. The most representative example of the light activation was obtained
with Cu-35. Indeed, if no polymerization was detected with the two-component Cu-37/2-dppba/Iod
(0.7%/1.5%/1.5% w/w/w) system in the presence of tempol (0.117 wt%), a monomer conversion of
40% could be obtained upon irradiation at 785 nm for 300 s and 62% upon irradiation at 405 nm
(See Figure 29).

In fact, enhancement of the monomer conversion upon irradiation can be assigned to the
coexistence of two initiating systems (the redox and the photochemical ones), generating a dual source
of radicals upon photoexcitation (See Figure 28). However, as evidenced in the mechanism and as main
drawback of this approach, the consumption of the copper complexes was irreversible [67].

Influence of the phosphine ligand used to release in situ acac• radicals by ligand exchange with
Cu(acac)2 was also examined and, in this aim, a series of nine phosphines was tested (see Figure 31) [120].
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Figure 30. Final monomer conversions determined by real-time Fourier Transform Infrared Spectroscopy
(RT-FTIR) measurements during the redox and redox photoactivated FRP under air. (a) With the
two-component Cu-37/2-dppba/Iod (0.7%/1.5%/1.5% w/w/w) upon irradiation with a LED@785 nm
(400 mW/cm2) with 0.085 wt% tempol in the resin. (b) With the two-component Cu-35/2-dppba/Iod
(0.7%/1.5%/1.5% w/w/w) upon irradiation with a LED@785 nm (400 mW/cm2) or LED@405 nm
(110 mW/cm2) with 0.117 wt% tempol in the resin. Reproduced with permission from the authors
of [67]. Copyright 2018 The Royal Society of Chemistry.Catalysts 2020, 10, x FOR PEER REVIEW 24 of 38 
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Figure 31. Chemical structures of phosphines used to initiate a ligand exchange with Cu(acac)2.

In this work, the specific interaction existing between 2-dppba and Cu(acac)2 was clearly evidenced.
Indeed, neither 2-dppbald nor Trost ligand could induce a ligand exchange reaction, despite the presence
of carbonyl groups in ortho-position of the phosphorus atom. A similar behavior was also observed
with 4-dppba which is only an isomer of position of 2-dppba. While getting a deeper insight into the
ligand exchange process occurring between 2-dppba and Cu(acac)2, high-resolution mass spectrometry
experiments revealed the formation of numerous products, some of them resulting from the oxidation
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of the phosphine ligand by oxygen (see Figure 32) [120]. However, as previously mentioned during
the FRP of the UDMA/1,4-HPMA/1,4-BDMA blend, a clear discoloration of the polymers during redox
polymerization was observed. By analyzing the bulk polymer by TEM and SEM-EDX, formation of
Cu(0) nanorods resulting from ligand decoordination could be demonstrated (see Figure 33). Especially,
ligand release and reduction of Cu (II) to Cu (I) and then Cu(0) is facilitated by the exothermicity of the
redox process.
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Figure 33. (A) SEM micrograph of the colorless polymer obtained by polymerization
with the two-component system (Cu(acac)2/2-dppba (2.2%/5.0% w/w) during the FRP of the
UDMA/1,4-HPMA/1,4-BDMA blend. (B) Mechanism supporting the release of Cu(O) particles.
(C) Monitoring the color change by UV-visible absorption spectroscopy (D) Color changes observed
during the redox polymerizations of of the UDMA/1,4-HPMA/1,4-BDMA blend under air with the
two-component system (Cu(acac)2/2-dppba (0.32%/1.7% w/w). Reproduced with permission from the
authors of [120]. Copyright 2016 The Royal Society of Chemistry.
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In 2018, a breakthrough was achieved concerning the MABLI process [68]. Indeed, one of the major
drawbacks of the initial concept of MABLI was the release of acac• radicals resulting in an irreversible
consumption of the copper complex. In the updated version proposed in 2018, all components
were changed. Thus, the three components of the initial initiating system (Cu(acac)2/2-dppba/Ph2I+)
were replaced by the following system (Cu(Oct)2/Vit-C/BPO) where Cu(Oct)2 stands for copper (II)
2-ethylhexanoate, Vit-C for vitamin-C and BPO for benzoyl peroxide. Using this approach, chemical
integrity of the copper complex could be maintained during the redox polymerization, Ph(C = O)O•
radicals being generated by decomposition of BPO. By means of vitamin C, the Cu (II) complex can also
be regenerated so that the copper complex can be introduced in catalytic amount. By the appropriate
choice of the reducing agent (i.e., vitamin C), this additive could also be used for the regeneration of
the copper complex when engaged in a photochemical initiating system in the following combination
Cu(Oct)2/Vit-C/Iod. Therefore, a mechanism supporting the polymerization enhancement could be
proposed for the photo (redox) polymerization with the four-component (Cu(Oct)2/Vit-C/BPO/Iod)
system (see Figure 34) [68].
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Figure 34. The two concomitant mechanisms involved in the photo (redox) polymerization with the
four-component (Cu(Oct)2/Vit-C/BPO/Iod) system upon photoexcitation of the curable resin.

The possibility to prepare interpenetrated polymer networks by copolymerization of a
methacrylate/EPOX blend (50/50 w/w) was demonstrated, extending the scope of applicability of
these redox processes to the CP of epoxides. If no improvement of the monomer conversion upon light
activation was demonstrated, nevertheless, a significant enhancement of the final monomer conversion
was observed, increasing from 75 to 95% for the methacrylate monomer while irradiating under at
405 nm (See Figure 35). The possibility to replace vitamin C by another reducing agent, i.e., tin (II)
2-ethylhexanoate was also demonstrated [68].

One of the key elements of the MABLI process is the generation of acac• radicals by successive
ligand exchange with 2-dppba, resulting in turn in colorless coating due to Cu(0) nanoparticles
precipitation (See Scheme 3) [68].

In 2017, mechanosynthesis of (Cu(acac) (2dppba)) Cu-42 was reported and a comparison of
the photoinitiation ability between the mechanosynthesized Cu-42, the solution-synthesized Cu-42
and the two-component system Cu(acac)2/2-dppba was established [69]. Interestingly, the grinding
time was determined as being highly dependent of the quantities of reactant used. Thus, a grinding
time varying between 2 min and 30 min was required to maximize the conversion of Cu(acac)2

into Cu-42 (see Figure 36), depending of the initial amount of the different reagents. By UV–visible
absorption spectroscopy, a reduction of the molar extinction coefficient by ~30% compared to the
solution, processes Cu-42 was found, indicating the formation of byproducts by mechanochemistry.
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Notably, due to an incomplete consumption of Cu(acac)2, an influence on the polymerization profile of
the (1,4-BDMA/HPMA/UDMA) blend could be detected (See Figure 37) [69].
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Figure 35. RT-FTIR monitoring of the polymerization of an EPOX/methacrylate mixture
(1,4-BDMA/HPMA/UDMA) blend under air using the four component system (Cu(Oct)2/BPO/Vit-C/Iod
(0.75%/1.1%/1.5%/1%, w/w/w/w) with and without light irradiation at 405 nm. Reproduced with
permission from the authors of [68]. Copyright 2018 The American Chemical Society.Catalysts 2020, 10, x FOR PEER REVIEW 27 of 38 
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conversions (81%) could be found with the two-component Cu-42/2-dppba (1%/1.5% w/w) systems, 
irrespective of the method used to prepare Cu-42. Conversely, due to the low solubility of Cu(acac)2 
in methacrylate resins, a lower final monomer conversion was determined, peaking at 68% after 120 
s of reaction. Therefore, in light of the difference of solubility, Cu-42 is from this point of view more 
interesting than Cu(acac)2. As another topic of interest, almost colorless coatings could be obtained 
with Cu-42, whereas a marked color could be detected for the polymer films prepared starting from 
Cu(acac)2 [69].  
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Indeed, as shown in Figure 37, a faster polymerization process was found with the
mechanosynthesized Cu-42 during the FRP of the (1,4-BDMA/HPMA/UDMA) blend under air. Due to
the presence of unreacted Cu(acac)2 within the powder, a parallel reaction between Cu(acac)2 and
2-dppba could occur, speeding up the polymerization kinetic [69]. Besides, similar final monomer
conversions (81%) could be found with the two-component Cu-42/2-dppba (1%/1.5% w/w) systems,
irrespective of the method used to prepare Cu-42. Conversely, due to the low solubility of Cu(acac)2 in
methacrylate resins, a lower final monomer conversion was determined, peaking at 68% after 120 s
of reaction. Therefore, in light of the difference of solubility, Cu-42 is from this point of view more
interesting than Cu(acac)2. As another topic of interest, almost colorless coatings could be obtained



Catalysts 2020, 10, 953 27 of 37

with Cu-42, whereas a marked color could be detected for the polymer films prepared starting from
Cu(acac)2 [69].
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under air with the two-component Cu-42/2-dppba (1%/1.5% w/w) systems with Cu-42 prepared (1)by
mechanosynthesis (2)in solution (3)starting from Cu(acac)2 and 2-dppba. Inset: pictures of the polymer
films after polymerization. Reproduced with permission from the authors of [69]. Copyright 2017 John
Wiley & Sons Ltd.

Finally, benefits of the photoactivation on the polymerization profiles of the three-component
systems Cu-42/2-dppba/Iod (1%/1.8%/1.9% w/w/w) in the presence of 0.022 wt% tempol was clearly
evidenced both at 405 and 785 nm (See Figure 38).

Thus, an increase of the monomer conversion from 20 to 60% within 100 s was obtained upon
irradiation at 405 nm. A higher enhancement was determined at 785 nm since the monomer conversion
increased from 23 to 70% upon light irradiation [69]. Additionally, due to a better light penetration
within the resin at 785 nm, a complete bleaching of the polymer film was obtained. Technically,
the combination of a redox and a photoactivated polymerization process is of crucial importance to get
a homogeneous polymerization of the sample. Indeed, one advantage of photopolymerization process
is its fast kinetics, enabling rapid polymerization of the surface of the sample and thus avoid oxygen
diffusion. Conversely, due to the limited light penetration, the bottom part of the sample is always
less polymerized than the top part. By contrast, redox polymerization allows an efficient curing of
the bottom part of the sample, but oxygen inhibition adversely affect the monomer conversion at the
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surface of the sample. Therefore, by combining the two approaches, a homogeneous polymerization
over the whole sample can be expected (See Figure 39). In the present case, upon photoactivation
of the polymerization process with the three-component system Cu-42/2-dppba/Iod (1%/1.8%/1.9%
w/w/w) at 405 nm, the inhibition layer could be reduced from 23 to 15 µm during the FRP of the
(1,4-BDMA/HPMA/UDMA) blend [69].
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Reproduced with permission from the authors of [69]. Copyright 2017 John Wiley & Sons Ltd.
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2.6. Complexes with Elongated Excited State Lifetimes: The Basis of Chemical Engineering

As mentioned in the introduction section, a great deal of effort has been devoted to finely tune
the excited state lifetimes of metal complexes. In this field, works of Chihaya Adachi on complexes
exhibiting a Thermally Activated Delayed Fluorescence (TADF) property are remarkable and were
mostly devoted to develop what can be called the third generation of emitters for Organic Light-Emitting
Diodes [129–133]. The TADF property is not new; this property was reported for the first time in
1961 [134]. However, discrimination between a delayed fluorescence and a phosphorescence process
could only be determined with accuracy in recent decades. To get such a property, an efficient strategy
consists for purely organic compounds to isolate the electron-donating part from the electron-accepting
part so that the electronic delocalization is drastically limited. A relevant example of this concerns 4-CzIPN,
in which carbazole moieties have been introduced perpendicularly to the central core [135]. A few
examples of such derivatives have notably been tested as photoinitiators of polymerization [136,137].
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As far as metal complexes are concerned, the strategy is relatively similar, as substituents should be
introduced so that the structural rearrangement in this excited state is not possible. As a result of
this, an enhancement of the photoluminescence quantum yield combined with an elongation of the
excited state lifetime can be obtained. With regards to photopolymerization, only the elongation of the
excited state lifetime is of interest, as it ensures the photosensitizer to have more time to react in the
excited state with the different additives. If the superiority of Cu-4 over the other heteroleptic copper
complexes was suspected to arise from this TADF property, no measurements evidencing that Cu-4
was a TADF compound was provided. Benefits of the TADF property on the polymerization efficiency
were given in 2018, with the comparison of Cu-43 and Cu-44 (see Figure 40) [138]. It has to be noticed
that the photophysical properties of these two complexes have been examined prior to their uses in
photopolymerization [139] As the main structural difference, Cu-44 comprises two methyl groups at the
inner position of phenanthroline ligand whereas no substituents are present on the ancillary ligand of
Cu-43. From the absorption viewpoint, the absorption spectra of the two complexes are relatively similar
in terms of molar extinction coefficients but also of absorption maxima (See Figure 41) [138]. Therefore,
difference of photoinitiating ability could not originate from drastic difference of molar extinction
coefficients. Conversely, drastic differences were found concerning their excited state lifetimes. Indeed,
an enhancement from 0.02 µs for Cu-43 to 2.5 µs for the sterically hindered Cu-44 was determined,
corresponding to a 100-fold elongation. Benefits of this elongation were immediately detected during
the FRP of methacrylates or the FRPCP of epoxides upon irradiation with a LED at 405 nm under
air. As shown in Figure 42 on the polymerization profiles of the BisGMA/TEGDMA blend or during
the polymerization of EPOX, faster polymerization kinetics associated with higher final monomer
conversions could be determined, evidencing the pertinence of the approach.
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Reproduced with permission from the authors of [138]. Copyright 2018 The Royal Society of Chemistry.
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3. Conclusions 

In this review, approximately 50 different copper complexes have been reported for their 
photoinitiating ability. As the initial uses of copper complexes for thermal atom transfer radical 
polymerizations (ATRP), great achievements have been obtained in photopolymerization. 
Concerning the milestones, the development of TADF-based photoinitiators has enabled to greatly 
improve the monomer conversion both during FRP and FRPCP processes due to the significant 
elongation of the excited state lifetime. In this field, by chemical engineering, Cu-4 has been 
designed and synthesized and to the best of our knowledge can be cited as the most efficient 
copper-based photoinitiators at present. The number of publications only devoted to examine its 
photoinitiating ability attest of this. Parallel to photoassisted polymerization, copper complexes 
have been at the origin of a new redox polymerization technique named MABLI. Since the initial 
works in 2018, the photoassisted version or the catalytic version of MABLI has been proposed, 
paving the way towards future developments in this field. Another advantage of copper complexes 
relies in the possibility to prepare these complexes by mechanochemistry and copper complexes are 
at the forefront of the research concerning the mechanosynthesis of (photo) initiators of 
polymerization. In light of these three axes of research, the development of novel copper-based 
photoinitiators is ensured in the Future.  
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Figure 42. (a) Polymerization profiles obtained during the FRP of a BisGMA/TEGDMA blend in
the presence of the two-component systems (1) Cu-43/Iod (0.5/1% w/w) and (2) Cu-44/Iod (0.5/1%
w/w); (b) Photopolymerization profiles obtained during the FRPCP of EPOX in the presence of the
three-component systems (1) Cu-43/Iod/NVK (0.5/1/1% w/w/w) and (2) Cu-44/Iod/NVK (0.5/1/1% w/w/w)
upon irradiation with a LED at 405 nm (110 mW/cm2). Reproduced with permission from the authors
of [138], Copyright 2018 The Royal Society of Chemistry.

3. Conclusions

In this review, approximately 50 different copper complexes have been reported for their
photoinitiating ability. As the initial uses of copper complexes for thermal atom transfer
radical polymerizations (ATRP), great achievements have been obtained in photopolymerization.
Concerning the milestones, the development of TADF-based photoinitiators has enabled to greatly
improve the monomer conversion both during FRP and FRPCP processes due to the significant
elongation of the excited state lifetime. In this field, by chemical engineering, Cu-4 has been designed
and synthesized and to the best of our knowledge can be cited as the most efficient copper-based
photoinitiators at present. The number of publications only devoted to examine its photoinitiating
ability attest of this. Parallel to photoassisted polymerization, copper complexes have been at the
origin of a new redox polymerization technique named MABLI. Since the initial works in 2018,
the photoassisted version or the catalytic version of MABLI has been proposed, paving the way towards
future developments in this field. Another advantage of copper complexes relies in the possibility
to prepare these complexes by mechanochemistry and copper complexes are at the forefront of the
research concerning the mechanosynthesis of (photo) initiators of polymerization. In light of these
three axes of research, the development of novel copper-based photoinitiators is ensured in the Future.
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