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Abstract: The demand for 1,3-butadiene, one of the most important raw materials in the rubber
industry, is constantly increasing. The Lebedev process is a classical method of producing 1,3-butadiene
from ethanol, which is to be optimized with regard to the mixed oxide catalysts used. In this work,
the binary MgO/SiO2 solid system was tested with regard to its optimum chemical composition for the
catalytic conversion of ethanol to 1,3-butadiene. Furthermore, novel mesoporous mixed oxides were
prepared to investigate their textural, structural, and surface chemical properties as well as the catalytic
activity. Nitrogen physisorption, scanning electron microscopy (SEM), and temperature-programmed
ammonia desorption (NH3-TPD) measurements were carried out and evaluated. It was shown
that the optimum yield of 1,3-butadiene is achieved by using MgO/SiO2 mixed oxide catalysts with
85–95 mol% MgO and not, as suggested by Lebedev, with 75 mol% MgO. The NH3-TPD measurements
revealed that the maximum acid-site density is achieved with an equimolar up to magnesium-rich
composition. During the synthesis of binary MgO/SiO2 solid systems based on mesoporous MgO,
a thermally stable and ordered structure was formed in the autoclave, depending on the carbonate
used and on the duration of the treatment.

Keywords: butadiene; characterization; heterogeneous catalysis; mesoporous materials; mixed
oxide catalyst

1. Introduction

Fossil raw materials such as petrol, natural gas, and coal are important sources for fuel production
and the chemical industry [1,2]. In recent years, complex mining methods such as the MultiFrac
method (fracking) have been increasingly used [3]. This has an impact on the availability and price of
one of the most important raw materials in the rubber industry, namely 1,3-butadiene [4].

The large number of polymers synthesized from 1,3-butadiene provides a diverse range of products,
with more than half of the end products found in the tire and seal industries [4]. The consumption of
synthetically produced rubber in 2018 was about 15.4 million tons [5]. An overview of the processing
of 1,3-butadiene and the application of the end products is given in the Appendix A (see Table A1).

Around 95% of the 1,3-butadiene demand is currently covered by steam cracking for the production
of short-chain olefins [4]. However, the amount of 1,3-butadiene recovered depends strongly on the
petrochemical raw material used. Utilizing the petroleum fractions naphtha or gas oil, the product
stream contains about 9 vol% C4 hydrocarbons with a 1,3-butadiene content of 30–60% [6,7]. However,
the use of shale gas with a high ethane content as a feedstock for steam cracking results in a lower
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1,3-butadiene content in the product stream [8]. A production based on renewable raw materials and
independent of fossil raw materials is therefore desirable [9].

An interesting alternative to the petrochemical production of 1,3-butadiene is the Lebedev process,
as it is based on the use of ethanol obtained from fermentation as a biobased raw material [10].
This process has been known since the 1930s [11], but lost importance due to the development of
petrochemistry and the relatively inexpensive production by steam cracking.

The total reaction equation of the conversion of ethanol to 1,3-butadiene is shown in Scheme 1.
The generally accepted scheme of the reaction process is shown in Scheme 2 [12–16].

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 19 

 

results in a lower 1,3-butadiene content in the product stream [8]. A production based on renewable 
raw materials and independent of fossil raw materials is therefore desirable [9]. 

An interesting alternative to the petrochemical production of 1,3-butadiene is the Lebedev 
process, as it is based on the use of ethanol obtained from fermentation as a biobased raw material 
[10]. This process has been known since the 1930s [11], but lost importance due to the development 
of petrochemistry and the relatively inexpensive production by steam cracking. 

The total reaction equation of the conversion of ethanol to 1,3-butadiene is shown in Scheme 1. 
The generally accepted scheme of the reaction process is shown in Scheme 2 [12–16]. 

 
Scheme 1. Total reaction equation of the conversion of ethanol to 1,3-butadiene. 

 

Scheme 2. Reaction scheme of the conversion of ethanol to 1,3-butadiene. Blue arrows: basic catalyzed 
reaction. Red arrows: acidic catalyzed reaction. Violet arrows: acidic and/or basic catalyzed reaction. 

In the first step, ethanol is dehydrated to acetaldehyde. This requires a catalyst with active basic 
sites. The intermediate product acetaldol is then formed by the aldol addition of two acetaldehyde 
molecules. It is known from homogeneously catalyzed liquid-phase reactions that this reaction can 
take place with both basic and acidic catalysts [17]. Therefore, the same is assumed for the 
heterogeneous catalyzed gas-phase reaction [18] presented in this paper. The subsequent 
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with hydrogen, but via a Meerwein-Ponndorf-Verley reduction with simultaneous dehydrogenation 
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In the first step, ethanol is dehydrated to acetaldehyde. This requires a catalyst with active basic
sites. The intermediate product acetaldol is then formed by the aldol addition of two acetaldehyde
molecules. It is known from homogeneously catalyzed liquid-phase reactions that this reaction
can take place with both basic and acidic catalysts [17]. Therefore, the same is assumed for the
heterogeneous catalyzed gas-phase reaction [18] presented in this paper. The subsequent dehydration
to crotonaldehyde takes place at acid sites. The mono-unsaturated crotonaldehyde is reduced to
alcohol in the next step. In this case, however, hydrogenation is not carried out directly with hydrogen,
but via a Meerwein-Ponndorf-Verley reduction with simultaneous dehydrogenation of ethanol to
acetaldehyde at the adjacent strongly basic and weakly acid surface sites [19,20]. In the last step,
the desired product 1,3-butadiene is formed from crotyl alcohol by further dehydration at acid sites of
the catalyst.

In the literature, different statements can be found regarding the rate-determining step in this
multi-step reaction scheme to the formation of 1,3-butadiene. On the one hand, the dehydrogenation of
ethanol to acetaldehyde is mentioned as the limiting reaction step [21] and, on the other hand, the aldol
reaction to build up the C4 chain [19].

In view of the large number of basic and acidic catalyzed reactions during the conversion of
ethanol to 1,3-butadiene, the necessity of using a multifunctional catalyst with very defined properties
in this case becomes clear. The Lebedev process uses heterogeneous mixed oxide catalysts with the
basic and acidic surface properties required for the conversion of ethanol [14]. The quantity and
strength of the basic and acid sites can be controlled by selecting the oxidic compounds. The ratio
of these active sites can be adjusted by the proportions of the respective components in the mixed
oxide [16].

According to Lebedev, a mixed oxide catalyst consisting of 75 mol% dehydrogenation (basic)
and 25 mol% dehydration (acidic) components should be used for the selective formation of
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1,3-butadiene [11]. In the early 1930s, Lebedev patented the combination of magnesium oxide
and silicon dioxide as a catalyst system for the production of 1,3-butadiene in a single-step process [22].
To date, MgO/SiO2 is the most promising binary mixed oxide for 1,3-butadiene synthesis from
ethanol [12,15,16,23–28]. The yield of 1,3-butadiene depends strongly on the chosen reaction conditions.
The most frequent by-product is ethene formed at the acid sites. With regard to the yield of 1,3-butadiene,
different data can be found on the optimum Mg/Si ratio of the binary catalyst. However, a high MgO
content of 75 to 85 mol% is often recommended [21,27,29], even though lower MgO contents of 65 mol%
have also been reported [30]. In recent times, the role of the multifunctionality of the catalyst systems
used separately has also been studied more closely [31–33].

In the present study, the molar composition of the binary MgO/SiO2 mixed oxides was investigated
and confirmed or optimized to achieve high 1,3-butadiene yields. New mixed oxide systems with
an optimal MgO/SiO2 ratio were produced with mesoporous MgO. Special emphasis was placed on
an extensive variation of the precipitation reagents and the duration of hydrothermal treatment during
the production of mesoporous magnesium oxides. The obtained systems were subjected to systematic
textural, structural, and surface chemical characterization. Their suitability as effective catalysts for the
heterogeneous catalyzed conversion of ethanol to 1,3-butadiene was demonstrated.

2. Results and Discussion

2.1. Binary MgO/SiO2 Mixed Oxides from Commercially Available Precursors

2.1.1. Characterization

The adsorption isotherms for the precursors M1 and SiO2 treated according to Section 3.2. and for
the correspondingly prepared binary mixed oxides are shown in Figures 1 and 2.
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Figure 1. Nitrogen adsorption and desorption at 77 K on (a) M1 and (b) SiO2.

Both adsorption isotherms in Figure 1, i.e., the type IV(a) isotherm of M1 and the type II isotherm
of SiO2 according to IUPAC [34], exhibit a small hysteresis in the relative pressure range from 0.8 to 1.0,
which is probably more a result of the intermediate particle volume than of the presence of a mesopore
system. M1 can therefore be regarded as slightly mesoporous and SiO2 as macroporous as well
as nonporous.

The isotherms of the mixed oxides in Figure 2 are of type IV(a) with an adsorption hysteresis,
whereby the adsorption capacity decreases with increasing MgO content. The hysteresis of type
H2(b) [34] indicates a broad, heterogeneous pore-size distribution. For the mixed oxides M1/SiO2 25:75
and M1/SiO2 50:50, the adsorbed volume increases strongly at low relative pressures. This points to
a certain content of micropores in addition to mesopores.
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Figure 2. Nitrogen adsorption and desorption at 77 K on M1/SiO2 mixed oxide samples with
various compositions.

The textural parameters determined from the adsorption isotherms are listed in Table 1. In order
to calculate the specific surface area SBET, the Brunauer-Emmett-Teller (BET) equation was linearized
in the relative pressure range from 0.05 to 0.25. The specific pore volume Vp was calculated from the
adsorbed amount of nitrogen at a relative pressure of 0.95, using the molar volume of gaseous and
liquid nitrogen [34].

Table 1. Textural properties of binary M1/SiO2 mixed oxides and of the precursors M1 and SiO2.

MgO Content (mol%) 0 25 50 75 85 90 100

SBET (m2/g) 185 432 391 90 143 98 174
Vp (cm3/g) 0.31 0.67 0.49 0.20 0.20 0.16 0.29

While the precursors M1 and SiO2 exhibit comparable textural parameters, SBET and Vp of the
mixed oxides sensitively depend on the MgO content. By far, the highest values are found for M1/SiO2

25:75 and M1/SiO2 50:50. Surprisingly, mixed oxides with high MgO contents show significantly
smaller BET surface areas than the pure oxides.

The scanning electron microscopy (SEM) images of the precursors M1 and SiO2 as well as the
mixed oxide M1/SiO2 90:10 are presented in Figures 3 and 4. M1 is characterized by platelet-shaped
structures aligned with each other. A pore system forms between the platelets. SiO2, however, consists
of many small spherical particles with a diameter of about 20 to 30 nm, which agglomerates together.

In contrast to the pure oxide M1, the mixed oxide M1/SiO2 90:10 (see Figure 4) is composed of
rounded platelets. The significantly lower pore volume of M1/SiO2 90:10 compared to M1 (see Table 1)
may be caused by its changed morphology. In contrast to Figure 3b, no small spherical SiO2 particles
can be identified in Figure 4. The SiO2 particles are probably distributed homogeneously over the
MgO surface.

In Figure 5, the BET surface areas SBET, ammonia loadings NNH3 , and acid-site densities ρas of the
oxide samples are presented as a function of the molar MgO content. The exact values are given in the
Appendix A (see Table A2). The temperature-programmed ammonia desorption (NH3-TPD) profiles
as basis for calculating the ammonia loading are shown in Figure A1 in the Appendix A. M1 and SiO2

show a lower ammonia loading NNH3 and acid-site density ρas compared to the binary mixed oxides.
However, NNH3 of M1 is not zero, which indicates that the dehydrogenation component of the mixed
oxide already has a few acid sites. The greater number of acid sites on the surface of the mixed oxides
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may be explained by (i) the higher specific surface area generated as a result of the interaction of the
two compounds that facilitates accessibility of acid sites and (ii) additional acid sites that are formed at
the contact points of the two oxides.Catalysts 2020, 10, x FOR PEER REVIEW 5 of 19 
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Figure 5. Characterization results of the textural and surface acid investigations on the binary M1/SiO2

mixed oxides and the precursors M1 and SiO2.

For the mixed oxides, NNH3 and SBET correlate, while the acid-site density ρas is slightly shifted
in the direction of higher MgO contents.
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2.1.2. Catalytic Testing

The results of the catalytic testing of the precursors M1 and SiO2 as well as of the binary
mixed oxides are illustrated in Figure 6. The conversion X of ethanol and the selectivities Si to the
respective product i (main product 1,3-butadiene, by-products, and intermediates) were calculated by
the following:

X =
nC,total − nC,EtOH

nC,total
·100%, (1)

Si =
nC,i

nC,total − nC,EtOH
·100%. (2)

Depending on the MgO content in the mixed oxide, the product distribution clearly shows two
areas in the product spectrum, namely the formation of by-product ethene at low MgO contents and the
formation of 1,3-butadiene at high MgO contents. The optimum yield of 1,3-butadiene was achieved
with the mixed oxide M1/SiO2 92.5:7.5, whereas Lebedev recommends a catalyst composition of
75 mol% dehydrogenation and 25 mol% dehydration components [11]. The recommended composition
of M1/SiO2 75:25 also produced 1,3-butadiene as main product, but the yield is significantly lower.
At least Figure 6 confirms that the basic component in the mixed oxide must be present in excess.
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Figure 6. Results of catalytic testing of precursors M1 and SiO2 and binary M1/SiO2 mixed oxides with
different molar composition; each produced according to Section 3.2. (mcat = 500 mg; weight hourly
space velocity (WHSV) = 1.2–1.8 h−1; T = 450 ◦C; p = 5.5 bar(a);

.
VN2 = 5 L/h). Error bars have been

omitted in favor of clarity.

The ratios of the selectivities Sethene:Sacetaldehyde and S1,3-butadiene:S1-butanol are closely related to
the ratio of acid to basic sites on the solid surface (see Scheme 2). Looking at the selectivities shown
in Figure 6, the silicon-rich to equimolar mixed oxides show a ratio of acid to basic sites that is too high
for an optimal 1,3-butadiene yield. However, the ratio for the samples with 75 mol% and 100 mol%
MgO is too low. In the catalyst samples with 90 to 95 mol% MgO, the ratio of active sites seems to be
very favorable for the 1,3-butadiene formation.

The presence of acid and basic sites on the catalyst surface is also necessary for the C4 buildup by
aldol condensation during the conversion of ethanol to 1,3-butadiene (see Scheme 2). Thus, both too
low and too high ratios of acid to basic sites are disadvantageous for the C4 buildup, as is the case with
pure oxide M1 and binary mixed oxides with a high SiO2 content.

A comparison of Figures 5 and 6 for the mixed oxides reveals a correlation between the BET
surface area and the conversion. Only the sample M1/SiO2 90:10 deviates from this trend with a high
ethanol conversion, although it has a comparatively small BET surface area.

The low catalytic activity of pure SiO2 with a conversion of ethanol of only 1 mol% is due to
the comparatively small number of acid surface sites. Blank tests have shown that small amounts of
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acetaldehyde are formed even without the presence of a catalyst (see Figure A2). Thus, the formation
of ethene, but not the formation of acetaldehyde can be attributed to SiO2. In contrast, pure M1
leads to the formation of acetaldehyde, ethene, and even C4 products. This confirms the result of the
temperature-programmed ammonia desorption (NH3-TPD) measurements, according to which both
basic and acid sites are present on the surface of M1.

2.2. Binary MgO/SiO2 Mixed Oxides with Mesoporous MgO

2.2.1. Characterization

MgO precursors of the M2 series (synthesis according to Section 3.3, molar Mg/Si ratio of 90:10,
precipitation with Na2CO3) were hydrothermally treated for either 0, 5, 12, or 24 h and then were
used for the production of the mixed oxides. Figure 7a shows nitrogen adsorption at M2(0)/SiO2 and
Figure 7b shows it at M2(12)/SiO2, which is similar to M2(5)/SiO2 and M2(24)/SiO2.
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Figure 7. Nitrogen adsorption and desorption at 77 K on (a) M2(0)/SiO2 90:10 and (b) M2(12)/SiO2 90:10.

The adsorption isotherms of type IV(a) show a clear adsorption hysteresis, i.e., a mesoporous
magnesium oxide is present in all samples as intended. For M2(0)/SiO2, the hysteresis is almost
a one-step, whereas for M2(5)/SiO2, M2(12)/SiO2, and M2(24)/SiO2 it is rather two-step. The hysteresis
curve indicates that M2(0)/SiO2 has a larger amount of larger mesopores than the other samples.

In Table 2, the calculated specific BET surface areas and specific pore volumes are listed. The values
are comparable, whereby SBET increases slightly with the duration of the autoclave treatment.

Table 2. Textural properties of binary M2/SiO2 90:10 mixed oxides.

Duration of Autoclave Treatment (h) 0 5 12 24

SBET (m2/g) 210 216 222 234
Vp (cm3/g) 0.32 0.29 0.34 0.31

The SEM image of the M2(0)/SiO2 sample is given in Figure 8. Disordered, platelet-shaped
structures are visible. Accumulations of spherical SiO2 particles are not visible. Again, it can be
assumed that SiO2 is distributed homogeneously in the mixed oxide.

The SEM images of the mixed oxides M2(5)/SiO2 and M2(12)/SiO2 are shown in Figure 9.
A more ordered, platelet-shaped structure is formed, whereby the SiO2 again appears to be distributed
homogeneously over the structure. M2(12)/SiO2 shows larger platelets than M2(5)/SiO2, which indicates
that the magnesium carbonate platelets continue growing during autoclave treatment at 180 ◦C.
The treatment in the autoclave produces an increasingly ordered and stable structure, which is
responsible for the mesoporous structure of the magnesium oxide M2 formed after calcination.
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Figure 8. SEM image of M2(0)/SiO2 90:10 at 50,000×magnification.Catalysts 2020, 10, x FOR PEER REVIEW 9 of 19 
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Figure 9. SEM images of (a) M2(5)/SiO2 90:10 and (b) M2(12)/SiO2 90:10 at 50,000×magnification.

MgO precursors of the M3 series (synthesis according to Section 3.3., molar Mg/Si ratio of 90:10,
precipitation with K2CO3) were hydrothermally treated for either 0, 5, 9, 12, 24, or 48 h before using
them for the production of the mixed oxides. In Figure 10a, the nitrogen adsorption isotherm of
M3(0)/SiO2 is presented as being very similar to those of M3(5)/SiO2 and M3(9)/SiO2. Figure 10b shows
nitrogen adsorption at M3(12)/SiO2 similar to that at M3(24)/SiO2 and M3(48)/SiO2.
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Figure 10. Nitrogen adsorption and desorption at 77 K on (a) M3(0)/SiO2 90:10 and (b) M3(12)/SiO2 90:10.

The two isotherms in Figure 10 differ significantly. While the type II isotherm in Figure 10a
indicates a rather macroporous to nonporous material with a certain intermediate particle volume,
a type IV(a) isotherm characteristic for mesoporous materials can be found from a hydrothermal
treatment of the MgO precursor of 12 h or longer. To illustrate the gain in mesopores, the calculated
Barrett-Joyner-Halenda (BJH) pore radius distributions of the different M3/SiO2 samples are shown
in Figure A3.
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Table 3 contains the calculated textural parameters of the M3/SiO2 samples. In contrast to M2/SiO2

(see Table 2), there is a significant increase in the BET surface areas of the mixed oxides with the
duration of the autoclave treatment. A more ordered structure of MgCO3 and thus of the resulting
mixed oxide is presumably formed only after a treatment period of 12 h or longer.

Table 3. Textural properties of binary M3/SiO2 90:10 mixed oxides.

Duration of Autoclave Treatment (h) 0 5 9 12 24 48

SBET (m2/g) 99 105 73 245 247 235
Vp (cm3/g) 0.33 0.28 0.25 0.28 0.28 0.32

The SEM images in Figure 11 confirm this assumption. After autoclave treatment up to 9 h
during the production of M3, a disordered platelet structure can be seen in the resulting mixed oxide.
Treatment times of 12 h or longer lead to a defined order of the MgO platelets in the resulting mixed
oxide, whereby in this case smaller SiO2 accumulations are formed. With increasing duration of the
autoclave treatment, the MgO platelets become larger and the order increases.
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2.2.2. Catalytic Testing

The results of the catalytic testing of the M2/SiO2 and M3/SiO2 mixed oxides are presented
in Figure 12. In both series, the conversion of ethanol and the selectivity to 1,3-butadiene are higher for
samples whose MgO precursor was treated for at least 12 h in an autoclave.Catalysts 2020, 10, x FOR PEER REVIEW 11 of 19 
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produced according to Section 3.3. with different autoclave treatment durations (mcat = 500 mg;
WHSV = 4.6–5.0 h−1; T = 450 ◦C; p = 5.5 bar(a);

.
VN2 = 5 L/h). Error bars have been omitted in favor

of clarity.

The samples of the M3/SiO2 series, whose MgO precursor was treated up to 9 h in an autoclave,
show conversions of ethanol of less than 20 mol% and selectivities to 1,3-butadiene between 25 and
35 mol%. Corresponding mixed oxides of the M2/SiO2 series provide higher conversions of ethanol
and slightly higher selectivities to 1,3-butadiene. Starting from an autoclave treatment time of MgCO3

of 12 h, the corresponding mixed oxides of the M3/SiO2 series cause significantly higher conversions
of ethanol of about 40 mol% with simultaneously higher selectivities to 1,3-butadiene of more than
50 mol%. The mixed oxides of the M2/SiO2 series show slightly less catalytic activity during the
conversion of ethanol to 1,3-butadiene.

From the sum of the selectivities to 1,3-butadiene and 1-butanol in the M2/SiO2 and M3/SiO2

series, it becomes clear that the C4 buildup on the mixed oxides is intensified if their MgO precursor
has been treated for at least 12 h in the autoclave.

Figures 11 and 12 underline the conclusion that the mixed oxides with a more ordered structure
and larger BET surface area cause a significantly greater conversion of ethanol and a higher selectivity to
1,3-butadiene. This is probably the result of a higher number of active sites on the larger MgO surface.

Tables 2 and 3 and Figure 12 illustrate that, in addition to the autoclave treatment time, the counter
ion of the carbonate source in the precipitation suspension also influences the texture of the resulting
MgO precursor and the formation of the catalytically active sites. In the presence of potassium
ions, the formation of the stable MgCO3 structure takes significantly longer than in the presence of
sodium ions.

Differences in catalytic activity may also be caused by contamination of the mixed oxide with
Na2O or K2O if the corresponding nitrate solution could not be completely removed in the preparation
process by washing the MgCO3 precipitate.
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3. Materials and Methods

3.1. Chemicals Used

Table 4 lists the chemicals used to produce the mixed oxides. The MgO precursors synthesized
in different ways are named M1, M2, and M3.

Table 4. Chemicals for the synthesis of mixed oxides.

Substance Producer/Supplier
(Product Number) Application

Mg(OH)2 Sigma-Aldrich, Taufkirchen, Germany (310093) Synthesis of M1
Mg(NO3)2·6H2O Grüssing, Filsum, Germany (12091250) Synthesis of M2 and M3
Na2CO3 Grüssing, Filsum, Germany (12117) Synthesis of M2
K2CO3 Grüssing, Filsum, Germany (12005) Synthesis of M3
SiO2 Wacker Silicones, Burghausen, Germany (HDK N20) SiO2 precursor

The deionized water, which was used both in the production of the MgO precursors or mixed
oxides for the suspension and in the educt mixture for catalytic testing, was provided by the
GENO-OSMO WK 1–50 reverse osmosis plant from Grünbeck (Hoechstaedt a. d. Donau, Germany).
Non-denatured ethanol (purity: >99.5 vol%) from Berkel AHK (Ludwigshafen, Germany), was used
for the catalytic tests.

3.2. Preparation of Binary MgO/SiO2 Mixed Oxides from Commercially Available Precursors

Initially, binary mixtures of MgO and SiO2 with various molar compositions were produced.
The MgO precursor M1 was obtained by calcination for 4 h at 900 ◦C from Mg(OH)2. Highly disperse
silica (Wacker Silicones, HDK N20) was used as SiO2 precursor.

A total mass of 10 g of the oxidic precursors was weighed into a 500 mL round flask and suspended
with deionized water at 2.5 times the volume of the bulk volume of the solids. The suspension was
homogenized at 70 ◦C and 800 mbar for 30 min in a rotary evaporator and then concentrated at
170 mbar. After drying overnight at 70 ◦C in the drying chamber, calcination was carried out at 500 ◦C
for 6 h in an air stream (heating rate 1.2 K/min). The powder obtained was pressed into tablets under
15–20 bar, then mortarized and classified. For the catalytic tests, the particle fraction of 200 to 400 µm
was used.

3.3. Preparation of Binary MgO/SiO2 Mixed Oxides with Mesoporous MgO

The mesoporous MgO precursors M2 and M3 were produced according to the method presented
by Cui et al. [35]. First, 500 mL of a Mg(NO3)2 solution (0.624 mol/L) were placed in a 1 L round
flask. Then, 250 mL of a carbonate solution (Na2CO3 or K2CO3, each 1.248 mol/L) were added via
a dropping funnel at a rate of two drops per second using a magnetic stirrer. Precipitation and
subsequent homogenization for 30 min took place at room temperature. The precipitation suspension
was then hydrothermally treated at 180 ◦C in an autoclave (2 L capacity). The duration of the autoclave
treatment was varied (0 h, 5 h, 9 h, 12 h, 24 h, and 48 h) and is indicated in brackets behind the precursor
name in Section 2.2. The aged precipitated suspension was filtered, washed with deionized water, and
dried overnight at 70 ◦C. The precipitated MgCO3 was converted to MgO by calcination at 600 ◦C
for 2 h (heating rate 5 K/min). The MgO precursor M2 was prepared with Na2CO3, the precursor M3
with K2CO3.

To produce the mixed oxide, the respective mesoporous MgO precursor was mixed with SiO2

using the mechanical stirrer FL-300 MS (FLUID Misch- und Dispergiertechnik GmbH, Loerrach,
Germany). For this purpose, 4.282 g M2 or M3 and 0.718 g SiO2 (molar Mg/Si ratio of 90:10) were
suspended with 200 mL deionized water. The aqueous suspension was homogenized at 400 rpm and
70 ◦C for 30 min. The temperature was then raised to 95 ◦C, the stirring speed was reduced to 300 rpm,
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and the suspension was concentrated for about 30 min. The further preparation steps of drying,
calcination, pressing, and classification were carried out in the same way as described in Section 3.2.

3.4. Characterization of MgO/SiO2 Mixed Oxides and Precursors

The prepared mixed oxides and the respective precursors were characterized texturally by the
specific BET surface areas SBET and pore volumes Vp calculated from nitrogen physisorption at 77 K
(Sorptomatik 1990, Carlo Erba Instruments, Egelsbach, Germany). Prior to the adsorption experiment,
the solid samples were treated under standard conditions by heating to 250 ◦C under high vacuum
with a heating rate of 1 K/min and maintaining at this temperature for 8 h.

The surface acidity of the mixed oxides and the corresponding precursors was determined
using temperature-programmed ammonia desorption (NH3-TPD) (TPDRO 1100, Thermo Scientific,
Milan, Italy). During the analysis, the samples were heated to 450 ◦C at 10 K/min in a helium stream.
The desorbed ammonia was detected with a thermal conductivity detector. Assuming that the ammonia
load NNH3 corresponds to the number of acid sites on the solid surface, the acid-site density ρas follows
from the quotient of the specific ammonia load NNH3 and the specific surface area SBET.

The morphology of the solid samples was examined by scanning electron microscopy (DSM 982
GEMINI, Carl Zeiss, Jena, Germany).

3.5. Catalytic Testing

The activity and selectivity during the conversion of ethanol were determined for the prepared
MgO/SiO2 mixed oxides. A multiple reactor plant consisting of six identically constructed reactor lines
was used [36]. The sample was taken from one of the six product streams via a multi-position valve
and then automatically injected into the gas chromatograph. The flow diagram of one of the six reactor
lines is shown in Figure A4.

The liquid educt mixture of 94 wt% ethanol and 6 wt% deionized water was placed in a reservoir.
The volume flows of the liquid educt mixture and the carrier gas were controlled by two mass flow
controllers and fed through a flow tube reactor (Bergmann RST, Dresden, Germany, stainless steel,
14 mm inner diameter) filled with 500 mg of the mixed oxide catalyst (particle size 200–400 µm)
between two layers of quartz glass wool. The catalyst load (weight hourly space velocity (WHSV))
during the test results from the ratio of the educt mass flow to the catalyst mass.

An electric heating element was used to heat the reactor, whereby the temperature was measured
directly above the catalyst sample. Temperature programs of different durations were used for catalytic
testing. After 8.75 h at 400 ◦C, the reactor was heated up to 450 ◦C within 15 min and then maintained
at this temperature for 8 to 17 h. Finally, a temperature of 400 ◦C was set again for 7 h (see Figure A5).
Each catalyst was only tested once. All lines upstream of the reactor were heated to 120 ◦C, and those
between the reactor outlet and the gas chromatograph to 200 ◦C.

The qualitative and quantitative analysis of the reaction products was performed by means of
a 7820A gas chromatograph (Agilent, Santa Clara, CA, USA) with a flame ionization detector and
a non-polar J&W HP-1 19091Z-530 separation column (Agilent, Santa Clara, CA, USA). The gas
chromatographic analyses of the product flow at 450 ◦C reactor temperature were carried out between
1 and 17 h after reaching 450 ◦C. The obtained conversions and selectivities represent average values
from several gas chromatographic measurements.

4. Conclusions

In the present work, binary MgO/SiO2 mixed oxides were prepared in different ways and
characterized by means of N2-adsorption, SEM, and NH3-TPD. Their catalytic activity during the
conversion of ethanol to 1,3-butadiene was evaluated. The molar composition and the carbonate source
as well as the duration of the hydrothermal treatment during the preparation of the MgO precursors
for the synthesis of the mixed oxides were varied.
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It was shown that binary MgO/SiO2 mixed oxides from commercially available precursors exhibit
an optimum yield of 1,3-butadiene at a MgO content of 85–95 mol%. This confirms qualitatively the
necessary excess of the basic component in the mixture described in the literature.

The pure oxides MgO and SiO2 showed only a very small number of active acid sites and thus
only a low catalytic activity. The number of active sites increased only when both components were
mixed in aqueous suspension, while at the same time the surface texture was changed. More acid
sites were formed as the specific surface area of the structure-determining magnesium oxide increased.
A maximum value of the acid-site density was obtained with equimolar to magnesium-rich MgO/SiO2

mixed oxides.
The precipitation of MgCO3 and subsequent hydrothermal treatment of the precipitated suspension

successfully produced mesoporous magnesium oxide with comparatively large specific BET surface
areas. The MgCO3 platelets grew with increasing treatment time in the autoclave and formed
a secondary pore system, as confirmed by SEM images. Different carbonate sources influenced the
textural and surface chemical properties of the MgO precursor and the resulting mixed oxide.

The temperature influence of the hydrothermal treatment on the MgCO3 structure and thus the
catalytic activity of the resulting mixed oxide during the conversion of ethanol to 1,3-butadiene is the
subject of later investigations.
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Appendix A

Table A1. Processing of 1,3-butadiene, its end products, and their use [4].

Processing End Product Use

Polymerization Polybutadiene (PBR) Tires

Copolymerization with styrene Styrene-butadiene rubber (SBR) Tires
Styrene-butadiene latex (SBL) Paper coating

Copolymerization with acrylonitrile Nitrile-butadiene rubber (NBR) Seals, gloves

Copolymerization with acrylonitrile and styrene Acrylonitrile butadiene styrene plastics (ABS) Components in the electronics
and automotive industries

Conversion with prussic acid to adiponitrile and
subsequent hydrogenation Hexamethylene diamine Nylon-6,6

Conversion with chlorine to chloroprene and
subsequent polymerization Polychloroprene (neoprene) Clothes

Table A2. Characterization results of the textural and surface acid investigations on the binary M1/SiO2

mixed oxides and the precursors M1 and SiO2, shown in Figure 5.

MgO Content (mol%) 0 25 50 75 85 90 100

SBET (m2/g) 185 432 391 90 143 98 174
NNH3 (µmol/g) 39 739 843 196 225 153 7
ρas (nmol/m2) 211 1711 2156 2178 1573 1561 40
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The catalyst showed only very little deactivation.
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