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Abstract: Tunable photoluminescent-functionalized carbon quantum dots CQDs@Ln (TFA)3 (Ln = Eu,
Tb; TFA: trifluoroacetylacetone) were designed and synthesized by introducing lanthanide complexes
into the modified CQDs surface through the carboxyl group. The as-prepared CQDs@Ln (TFA)3 emit
strong blue–green light with the peak at 435 nm and simultaneously show the characteristic emission
of Ln3+ under irradiation of 365 nm light in aqueous solution. Moreover, these functionalized
CQDs exhibit excellent photoluminescence properties. In addition, a white luminescent solution
CQDs@Eu/Tb (TFA)3 was obtained by adjusting the ratio of Eu3+/Tb3+ and the excitation wavelengths.
Moreover, CQDs@Tb (TFA)3 can be utilized as a fluorescent probe for the sensitive and selective
detection of MnO4

− without interference from other ions in aqueous solution. These results provide
the meaningful data for the multicomponent assembly and the photoluminescent-functionalized
materials based on the modified CQDs and lanthanide, which can be expected to have potential
application in photocatalytic or sensors.
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1. Introduction

As a new member of carbonaceous nanomaterials including carbon nanotubes, graphene
and carbon quantum dots (CQDs), owing to the superior chemical and electrical properties,
high photostability, as well as excellent biocompatibility, CQDs have attracted broad interest from
scientific and industrial community [1–5]. In the past few years, CQDs have been used as a green
alternative to organic dyes and conventional semiconductor quantum dots due to their applications in
versatile fields, such as bioimaging [6–10], drug delivery [11–13], optronics [14–16], catalysis [17–19],
photocatalytic [20], chemical sensors [21–24] and other aspects [25–27]. In recent years, research on
CQDs with single excitation wavelength has gradually matured. In particular, blue carbon quantum
dots have been prepared in large quantities—and can even be produced in batches—of which the
quantum yield is even higher than 75% [28–30]. Research on different photoluminescence and
photocatalysis property of carbon quantum dots has also matured and stabilized [31–39]. Even the
micromorphology control of carbon quantum dots has made great progress, such as triangular carbon
quantum dots [40–42]. However, the quantification of determining the detection object by only the
intensity change of a single peak will be affected by the surrounding environment and the instrument
itself. Carbon quantum dot-based proportional dual-emission fluorescence can not only improve its
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sensitivity, but also avoid interference from the detection background. Therefore, it is more interesting
to explore the application of quantum dots in proportional dual-emission fluorescence. Since non-single
fluorescence color changes are more perceptible by the naked eye, they are useful for semi-quantitative
monitoring of substances [43–45].

It is well known that lanthanide (III) β-diketonate complexes are excellent luminescent materials
with distinct emission bands, long lifetime as well as high quantum efficiency. The Ln3+ emission arises
from 4f–4f electronic transition. Among these, Eu3+ and Tb3+ can, respectively, emit pure red and green
light in almost any environment, free of the influence of external factors due to their light emission
originating from the electron redistribution of the 4f orbital, which is effectively shielded by the
overlying 5s2 and 5p6 orbital. Therefore, modification of CQDs with a high-luminescence lanthanide
complex is an important method to fabricate excellent composites that exhibit superior properties to the
individual components. CQDs contain many carboxylic acid moieties at their surface that may combine
with the lanthanide ions. In addition, whether white emission can be achieved by taking CQDs as
blue emitter and incorporating with lanthanide complexes is worth to be further studied. Lanthanide
ions can be introduced into the surface of CQDs to obtain a dual-emission fluorescent composite
material due to the tunable fluorescence wavelength, excellent light absorption and light emission
capabilities of CQDs. In addition, the excellent dual-emission fluorescent performance depends on
the effective photoelectron energy transfer (PET) progress from organic ligand to the central ions,
which can reduce the errors caused by spectral overlap between each other. Actually, CQDs can
be used as both a photocatalysis material and a photosensitizer for the lanthanide element in the
lanthanide-functionalized carbon quantum dot dual-emission fluorescent composite material. In recent
years, designing lanthanide complex functionalized carbon quantum dots has been an important
direction in chemistry research and photocatalytic fields; it is also an extension of the properties
of lanthanide complexes and monofunctional carbon nanomaterials. Furthermore, the tunable
photoluminescent and photocatalytic properties of the functionalized CQD have drawn increased
attention to carbon nanomaterials and the methods of modifying CQDS for photocatalytic applications
mainly include surface functionalization, passivation, element doping and composite synthesis.

Herein, we have developed a simple and an effective strategy to design a novel
lanthanide functionalized dual-emission fluorescent material CQDs@Ln(TFA)3 (Ln = Eu, Tb; TFA:
trifluoroacetylacetone) via introducing Ln (TFA)3 into the surface of CQDs with the carboxyl group.
(Scheme 1) The obtained CQDs@Ln (TFA)3 exhibited great photoluminescent and chemical-sensing
properties. It is because of the characteristic emission of CQDs@Eu/Tb(TFA)3, the intense white
emission with the chromaticity diagram coordinates (CIE = (0.32,0.27)) can be obtained by adjusting
the ratio of Eu3+/Tb3+. On account of the strong green light intensity of CQDs@Tb(TFA)3, it can
be used to selectively and sensitively detect MnO4

− in aqueous solution. The results show that
CQDs@Ln(TFA)3 have potential applications in environmental and photocatalytic chemistry fields.
The effects of CQDs size and functionalization on photocatalytic properties are the important factors
on the photocatalytic applications of CQDs in water splitting, hydrogen evolution, water treatment
and chemical degradation, etc.
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Scheme 1. Schematic representation and diagram of CQDs@Ln (TFA)3. 
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Scheme 1. Schematic representation and diagram of CQDs@Ln (TFA)3.

2. Results and Discussion

2.1. Preparation and Structural Characterization of CQDs and CQDs@Ln (TFA)3 (Ln = Eu,Tb)

CQDs were successful prepared by a hydrothermal method and confirmed by the TEM images
(Figure 1a), which revealed that the CQDs were uniform nanoparticles with an average size about
2.5 nm with a standard deviation of ±0.45 nm. Furthermore, HRTEM image (Figure 1b) shows that the
CQDs have certain crystal structure with average lattices spacing about 0.23 nm and there is a uniform
dispersion without apparent aggregation.

The fluorescence spectrum displays the emission of CQDs at different excitation wavelengths
ranging from 340 to 500 nm and the observation reveals that the CQDs show typical
wavelength-dependent photoluminescence behavior in aqueous solution (Figure 2a). It can be obviously
observed the changes in emission wavelength and intensity with respect to the excitation wavelength
due to the different surface states and size dispersion of the carbon nanoparticles. The strongest
fluorescence emission band, located at 448 nm is also observed under 365 nm excitation, which shows
blue–green fluorescence under UV light (Figure 2b). In addition, the aqueous solution of CQDs presents
bright yellow photoluminescence centered at 540 nm in the emission spectrum under the excitation
wavelength of 450 nm in Figure S1.
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Figure 1. (a) TEM and (b) HRTEM images of carbon quantum dots (CQDs); (c) particle-size distribution
of CQDs.
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Figure 2. (a) PL emission spectrum of CQDs with different wavelengths; (b) Excitation (EX) and
emission (EM) spectrum of CQDs in aqueous solution.

CQDs@Ln (TFA)3 were successfully synthesized by introducing the unsaturated lanthanide
complex Ln (TFA)3 (Ln = Tb, Eu) into the surface of CQDs via coordinated band (Scheme 1).
The characteristic peaks of FTIR spectroscopy (Figure 3) disappeared at about 1643 cm−1 (–C=O),
indicating the CQDs had combined with the Ln (TFA)3 (Ln = Tb, Eu). Compared with CQDs@Tb
(TFA)3, it can be clearly seen that the blue-shift from 315 nm to 343 nm, attributing to n–π* transition
of–C=O. The blue-shift increases the π* energy of the whole system due to the coordination between
CQDs and lanthanide complexes. (Figure 4) In addition, the characteristic peaks of Eu3d (1135.68 ev)
and Tb3d (1242.46 ev) can be observed in the XPS spectrum. (Figure S2a). Compared to the pure CQDs
(531.5 ev), the O1 s (Figure S2b) of CQDs@Tb (TFA)3 composite (532.4 ev) has a higher binding energy,
which can be attributed to the formation of ground state complexes between carboxyl groups on the
surface of CQDs and rare earth ions, resulting in a decrease in the electron density of O atoms [46].
In order to further confirm the crystal structure of the composite material, we made Raman spectra
of CQDs and CQDs@Tb (TFA)3 (Figure S3). It can also be observed that the D peak disappeared in
CQDs@Tb (TFA)3 and the G peak becomes sharp after the carboxyl coordination, indicating CQDs@Tb
(TFA)3 still has a crystalline structure. All the above experimental results confirmed the successful
synthesis of CQD@Ln (TFA)3, and the surface functionalization did not change the crystal structure
of CQDs.
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2.2. Photoluminescence Properties and Chemical Sensing Performance of CQDs@Ln (TFA)3

The luminescence properties of CQDs@Ln (TFA)3 were measured at room temperature in detail.
The emission spectra of CQDs@Eu (TFA)3 (a) and CQDs@Tb (TFA)3 (b) are mainly obtained to display
the corresponding characteristic peaks in Figure 5. In the CQDs@Eu (TFA)3 (Figure 5a), the emission
spectrum shows four sharp peaks located at 580, 591, 613 and 652 nm, which can be assigned to
5D0→

7FJ (J = 0–3) transitions of Eu3+, respectively [47,48]. As can be clearly seen that the emission
spectra of CQDs@Eu (TFA)3 are dominated by the intense 5D0→

7 F2 transition at 613 nm and the
peak centered at 544 nm comes from 5D4→

7F5 of Tb3+ in CQDs@Tb (TFA)3. The peak in the range of
380–500 nm originated from the CQDs and the emission band of CQDs in the CQDs@Ln (TFA)3 is
centered at about 435 nm.The dual-emitting fluorescent composite is not only a change from “one” to
“two”, but simplifies the design of CQDs proportional sensing and expands corresponding applications.
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Figure 5. The emission spectra of CQDs@Eu(TFA)3 (a) and CQDs@Tb(TFA)3 (b).

MnO4
− is commonly used as a disinfectant in agricultural and plays an important role in medicine

and health. However, MnO4
− with high concentration will increase the ecological risk [49]. Therefore,

identifications of these solution and ions are of great importance in the life. To identify the selective
fluorescence sensing of anion ions by the CQDs@Tb (TFA)3, the quenching performance was carried out
in the presence of different anion ions with a concentration of 10−3 M at 365 nm excitation wavelength.
Figure 6 shows PL emission spectra of CQDs@Tb (TFA)3 in the presence of various anion ions including
CO3

2−, NO3
−, S2O8

2−, SO4
2−, I−, Br−, Cl−, CrO4

2−, Cr2O7
2− and MnO4

− under λex = 365 nm and
the corresponding anion bar graph (ICQDs/ITb) are shown in illustration. The luminescent intensity
of the characterization of Tb3+ can clarify the effect of the chemical-sensing. The peak centered at
545 nm is ascribed to the 5D4→

7F5 of Tb3+ ions and the green emission is weakened with different
anions (Figure 6) Furthermore, it is obviously observed that MnO4

− quenches the intensity notably.
Comparing the fluorescence intensity ratio (ICQDs/ITb) of the double emission peaks of each anion,
it was observed that the value of ICQDs/ITb was the lowest when MnO4

− present. Therefore, it can
be vividly demonstrated that the CQDs@Tb (TFA)3 fluorescent sensor was highly selective towards
MnO4

− over the other anion ions.
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Similarly, in order to explore whether other anions would interfere with the detected CrO4
2−,

Cr2O7
2− and MnO4

−, we also conducted fluorescence interference experiments on the CrO4
2−,

Cr2O7
2− and MnO4

− anions. The experimental results are shown in Figure S4. The results show that
the other anions have almost no interference with the change of the fluorescence intensity of CrO4

2−,
Cr2O7

2− and MnO4
− anions, indicating that the CQDs@Tb (TFA)3 composite will be a valuable tool for

the detection of MnO4
−.

To further explore the sensitivity of CrO4
2−, Cr2O7

2− and MnO4
−, we studied the fluorescence

intensity changes of CQDs@Tb (TFA)3 in the presence of different concentrations of CrO4
2−, Cr2O7

2− and
MnO4

− ions. The luminescent intensity of CQDs@Tb(TFA)3 can be obtained with the concentration
range of anion from 0 to 50 µM. (Figure 7a) As shown in Figure 7b, the ratio (ICQDs/ITb) of the CQDs@Tb
(TFA)3 gradually decreases with increasing the MnO4

− ion concentration in solution. Meanwhile,
Figures 8a and 9a display the emission spectrum of CrO4

2− and Cr2O7
2− in the concentration 0–50 µM.

Furthermore, the value of ICQDs/ITb is linearly related to the concentration of MnO4
− in the range of

0–50 µM and the limit of detection (LOD) was determined to be as low as 0.55 µM, implying that
CQDs@Tb (TFA)3 composite can be used for selective detection of MnO4

− ion as a ratiometric fluorescent
molecular probe. In addition, the results of comparison with some other methods for the detection of
MnO4

− are listed in Table 1. It can be seen that the LOD of this method is comparable or lower than
some other reported methods [50,51]. The LOD of CrO4

2−, Cr2O7
2− and MnO4

− can be calculated
as follows:

σ =

√
Σ(I0 − I1)

2

n− 1
(1)

LOD = 3σ/S (2)

where σ is the standard deviation of the repeated detection blank solution (N = 30); I1 is the dual
fluorescence intensity ratio (ICQDs/ITb) of CQDs@Tb (TFA)3 in water; I0 is the average value of ICQDs/ITb;
S is slope of the linear curve [49]. Moreover, CQDs@Eu (TFA)3 has the same fluorescence properties as
CQDs@Tb (TFA)3. As shown in Figure S5, CQDs@Eu (TFA)3 was used as a fluorescent probe to detect
MnO4
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Figure 7. (a)The luminescent intensity of CQDs@Tb(TFA)3 with the different concentration of MnO4
−

(b) ICQDs/ITb of CQDs@Tb(TFA)3 with the solution concentration of MnO4
−.
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Figure 8. (a)The luminescent intensity of CQDs@Tb(TFA)3 with the different concentration of CrO4
2−

(b) ICQDs/IEu of CQDs@Eu (TFA)3 with the solution concentration of CrO4
2−.
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Figure 9. (a)The luminescent intensity of CQDs@Tb(TFA)3 with the different concentration ofCr2O7
2−;

(b) ICQDs/IEu of CQDs@Eu (TFA)3 with the solution concentration of Cr2O7
2−.

Table 1. Sensing properties of different types of MnO4
− detection.

Detection Method Linear Range (µM) Detection Limit Ref.

n-MOF-Eu 0–500 1.47µM [49]
Cd(HL)(4,4′-bipy) 40–100 0.647 µM [50]

I [Eu(DLDA)(DMF)(H2O)(COO)] n 0–200 10.8µM [51]
A dual-responsive Luminescent Terbium(III) Chain 0–476 1.43 µM [52]

CQDs@Tb(TFA)3 0–50 0.55 µM This work

There are two possible reasons for the quenching mechanism of CQDs@Ln (TFA)3 (Ln = Eu, Tb)
by MnO4

−: First, there is overlap between the excitation of the composite material and the absorption
of MnO4

−. That is, the excitation and adsorption energy competition between Tb3+ and MnO4
− may

cause fluorescence quenching, and CQDs accelerate the energy competition process [49] and further
lead to the fluorescence quenching of CQDs@Ln (TFA)3. Second, we suspect that MnO4

− initially
reacted with CQDs, resulting in the formation of MnO2, and Mn element adhered to the surface of the
composite to form a ground state complex, which accelerated the interaction between MnO4

− and
Ln3+, which ultimately led to fluorescence quenched of CQDs@Ln (TFA)3. This result will provide a
new possibility to be applied in the photocatalysis field.

2.3. White-Light Tuning of CQDs@Eu/Tb (TFA)3

Considering that the blue–green light of CQDs, red light of Eu3+ and green light of Tb3+ as light
emission centers, respectively, the tunable white emission in CQDs@Eu/Tb (TFA)3 can be obtained
by adjusting the proportion of Eu3+/Tb3+. The emission spectrum of CQDs@Eu/Tb (TFA)3 and the
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corresponding CIE chromaticity diagram under the excitation wavelengths (340–365 nm)was given in
Figure 10. The photoluminescence color of CQDs@Eu/Tb (TFA)3(Eu3+:Tb3+ = 1:1) can be tuned from
white to blue by changing the excitation wavelength from 340 nm to 365 nm. In addition, Figure 11
shows the emission spectrum of CQDs@Eu/Tb (TFA)3 in different ratios of Eu(TFA)3:Tb (TFA)3 at
the same excitation wavelength of 350 nm. It is interesting that the white emission is located at CIE
region (x = 0.32 and y = 0.27) when excited with the same 350 nm laser. In summary, we can obtain
white luminescence by adjusting the fluorescence emission spectra of CQDs@Eu/Tb (TFA)3 at different
excitation wavelengths when the ratio of lanthanide ions fixed and when the ratio of lanthanide ions
different at the same excitation wavelength.
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3. Materials and Methods

3.1. Materials

Citric acid, urea, NaOH and HCl all the other reagents purchased from Aladdin Industrial
Corporation (Shanghai, China), were all used directly in the as-received condition without
further purification.

3.2. Characterization

Photoluminescence (PL) emission measurements were performed using RF-5301 PC
spectrophotometer with 450 W xenon lamp as the excitation source. The FTIR spectra were recorded
on a Nexus 912 AO446 spectrophotometer. The morphology and microstructure of the CQDs were
examined by high-resolution transmission electron microscopy (HRTEM) on a Philips Tecnai G2 F30
microscope (Philips, The Netherlands) with an accelerating voltage of 200 kV. The UV absorption of the
samples was measured with UV−vis spectrophotometer Lambda 750 from PerkinElmer. The interaction
between the elements of the CQDs were determined with PHI-5000 X-ray photoelectric spectrometry
(XPS). 1H NMR spectra of the samples were measured with Ascend 400 spectrometer with D2O and
deuterated chloroform as solvent.

3.3. Experimental Methods

3.3.1. Synthesis of CQDs and CQDs@Ln (TFA)3

The CQDs are synthesized according to the reported procedure [12,33] as follows: citric acid (1.0 g)
and urea (2.0 g) is reacted at 160 ◦C for 6 h in DMF (10 mL). NaOH aqueous solution (50 mg·mL−1,
20 mL) is mixed with the obtained solution when cooling to room temperature, and then centrifuged
for 15 min. Immediately after the precipitate is dissolved in dilute HCl aqueous solution (5%, 20 mL)
and stirred for 10 min, and then centrifuged again at 16,000 r min−1 for 15 min. The precipitate is
collected, dissolved in water and centrifuged (16,000 r min−1, 15 min) twice.

CQDs@Ln (TFA)3 is obtained based on the combination of covalent bonds in Scheme 1.
CQDs powder 50 mg obtained above, trifluoroacetylacetone (TFA) (1.5 mmol) and NaOH (1.5 mmol)
were dissolved in 15 mL of absolute ethanol, reacted at 60 ◦C for 2 h. Then added LnCl3·6H2O
(Ln = Eu, Tb) 0.5 mmol to continue the reaction for 3 h. The mixture solution is cooled with ice water
and suction filtered, and then the product was dried in an oven at 50 ◦C for 12 h.

3.3.2. Preparation of White-Light CQDs@Eu/Tb (TFA)3

Typically, white light source is composed of red, green and blue primary colors. Herein, CQDs@Eu/Tb
(TFA)3 hybrid material with three luminous centers was successfully prepared via introducing Ln (TFA)3

(Eu3+:Tb3+ = 1:1) into the aqueous solution of CQDs. Subsequently, a mixed solution with white light
emission is obtained by adjusting the emission spectrum of the hybrid material at different excitation
wavelengths. Moreover, white light can be obtained by adjusting the ratio of different lanthanide
complexes at the same excitation wavelength.

3.3.3. Chemical Sensing Experiment of CQDs@Tb (TFA)3

CQDs@Tb (TFA)3 used to detect a series of metal anions (CO3
2−, NO3

−, S2O8
2−, SO4

2−, I−,
Br−, CL−, CrO4

2−, Cr2O7
2−, MnO4

−) at room temperature. CQDs@Tb (TFA)3 powders (3.0 mg)
were dissolved in different anionic aqueous solutions (3 mL). Then, the mixtures were dispersed by
ultrasound system, and then fluorescence measurements taken.

Measure the different concentration of Cr2O7
2−, CrO4

2− and MnO4
− was similar to the ways

described above. Configure different concentrations of Cr2O7
2−, CrO4

2− and MnO4
− aqueous solution:

0–50 µM.
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4. Conclusions

In summary, we have successfully synthesized a novel lanthanide functional carbon quantum dots
dual emission fluorescent composite CQDs@Ln (TFA)3 (Ln = Eu, Tb) by introducing the lanthanide
complex Ln (TFA)3 into the surface of CQDs with the carboxyl group. The as-synthesized hybrids
showed excellent photoluminescence properties with the application in the chemical-sensing and
photocatalytic field. The intense white emission can be obtained with the excitation wavelength at
350 nm. Moreover, CQDs@Tb (TFA)3 can be used to selectively detect MnO4

− in aqueous solution
with the linear range from 0–50 µM. It can be drawn a conclusion that the lanthanide functionalized
CQDs have potential application in photocatalytic water decomposition and further detect the
residue of photocatalytic materials in water due to the special photoluminescence properties and
sensing performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/833/s1.
Figure S1 PL spectra of the CQDs: (a) different excitation wavelengths in ethanol solution (b) optimal excitation
and emission spectra; Figure S2 (a) XPS spectra (b) O1 s of CQDs and CQDs@Ln (TFA)3; Figure S3 Raman spectra
of CQDs and CQDs@Tb (TFA)3; Figure S4 Interference experiment: MnO4−, CrO42− and Cr2O72− of CQDs@Tb
(TFA)3; Figure S5 The emission spectrum of CQDs@Eu (TFA)3 at different concentrations of MnO4

−.
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