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Abstract: Coupling of CO2 with epoxides is a green emerging alternative for the synthesis of cyclic
organic carbonates (COC) and aliphatic polycarbonates (APC). The scope of this work is to provide
a comprehensive overview of metal complexes having sulfur-containing ligands as homogeneous
catalytic systems able to efficiently promote this transformation with a concise discussion of the most
significant results. The crucial role of sulfur as the hemilabile ligand and its influence on the catalytic
activity are highlighted as well.
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1. Introduction

Homogeneous catalysis is one of the most fast-developing areas of chemistry because of
the possibility to finely tune the course of a given reaction by rational design of the catalyst
architecture. Indeed, compared to heterogeneous catalysis, mechanisms governing the activity and
selectivity are easier to be understood and therefore the overall performances can be consequentially
greatly improved. In particular, the use of soluble transition-metal complexes in catalysis opened
unprecedented possibilities to control the product features by a judicious modification of the electronic
and steric properties of the ancillary ligand. Inspired by this simple concept, chemists have
unfolded countless stereoselective reactions encompassing all families of chemical transformations
(oxidations, cross-coupling reactions, polymerizations, etc.) [1–3].

Parallel to this trend, in the last two decades, the use of renewable feedstocks has gained
momentum because of the growing demand for more sustainable chemical processes. In particular,
carbon dioxide utilization (CDU) has emerged as an important tool for the transition to a carbon-neutral
society because of the possibility to close, through the use of renewable energies, an anthropogenic
carbon cycle avoiding net emission of greenhouse gases. Besides, CO2 displays evident advantages
in terms of toxicity, flammability, and the possibility of storage with respect to other C1 feedstocks
(such as phosgene and carbon monoxide) that render the implementation of industrial processes based
on this molecule quite promising [4–9].

Among the possible products obtainable from CO2, cyclic organic carbonates (COCs) and aliphatic
polycarbonates (APCs) have received considerable attention because of their wide range of application
and straightforward synthetic pathway starting from the corresponding epoxides [10–19]. The coupling
between CO2 and an epoxide can result in the formation of the cyclic product or of the polymeric one
depending on many factors such as the nature of the substrate, the reaction conditions, and the catalytic
system. Notwithstanding the efforts to develop efficient metal-free catalysts, most of the active systems
are based on the combination of a metal complex activated by a suitable nucleophile, often added as
ammonium or phosphonium salt. The basic reaction mechanism can be exemplified following the
steps depicted in Scheme 1: (i) The coordination of the epoxide to the metal center; (ii) the ring-opening
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of the activated epoxide by the nucleophilic attack and the formation of the metal-alkoxo bond; (iii) the
insertion of CO2. At this stage, the intermediate can give an intramolecular ring-closing with the
formation of the COC (path A) or the alternating insertion of epoxide and CO2 with the formation of
the APC (path B). Since two consecutive insertions of the epoxide are possible as well (path C), often
the resulting polymer also contains some polyether linkages [20].
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Scheme 1. Mechanism of the coupling of CO2 with epoxides [20].

The metal complexes successfully employed as catalysts in this reaction can be based both on main
group metals such as Al, Mg, Ca [21–23] and on transition metals such as Ti, Cr, Fe, Co, Nb, La, and
Zn [17,18,20,24–28]. Some examples of highly active catalysts for the formation of cyclic carbonates are
given in Figure 1 [22,25,29,30].
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As for other metal-mediated catalytic transformations, also in this case the Lewis acidic metal
center requires to be wrapped by a suitable ligand environment in order to reach good performances
in terms of activity and selectivity. Indeed, the most active catalysts developed for the alternating
copolymerization of CO2 with epoxides bear well-known structural motifs as the ligand framework,
modified, in some cases, to allow obtaining binuclear complexes [31–37]. Some of the most efficient
systems are reported in Figure 2.
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Figure 2. Representative catalytic systems for the synthesis of aliphatic polycarbonates (APC) from
CO2 and epoxides [33–37].

At first glance, it is evident that the nitrogen-based macrocycles, multidentate nitrogen framework,
and Salen-type ligands, or in general, combination of phenoxo units with neutral nitrogen donors have
played the main role in this kind of catalysis. In most cases, these ligands had been already developed
to promote other catalytic transformations (polymerizations, oxidations, etc.,) and therefore offer the
possibility to be easily synthesized and modified. Salen ligands, for example, represent one of the most
successful examples, owing to the possibility to finely tune the steric and electronic properties of the
aromatic substituents and modify the bridge between the two imino nitrogen atoms. This also provided
the opportunity to obtain chiral, enantiopure ligands for asymmetric transformations (Figure 3) [38].



Catalysts 2020, 10, 825 4 of 20
Catalysts 2020, 10, x FOR PEER REVIEW 4 of 20 

 

 

Figure 3. Selected examples of metal complexes containing a chiral Salen ligand and their applications [38]. 

However, in these species, the strength of the interaction between the metal center and the donor 

atoms can be scarcely modulated because of the hard nature of nitrogen as a Lewis base. On this 

basis, it was thought that the introduction in the ligand of a soft donor, such as sulfur, can be 

advantageous because of the possibility to tune the Lewis acidity of the metal center by using the 

weaker metal–donor interaction. Indeed, many successful examples of catalysts having sulfur-

containing ligands have been reported to date in the field of olefin polymerization [39–46], ring-

opening polymerization of cyclic esters [47–49], hydroamination [50] and hydrosilylation [51] with 

various metal centers (Figure 4). In this context, theoretical and experimental studies have shown the 

crucial role of the hemilabile sulfur atom in determining the catalytic activity and selectivity [52,53]. 

 

Figure 4. Representative examples of complexes bearing [OSO], [OSSO], or [OS]-ligands 

[39,41,43,47,49–51]. 

Despite these findings, the use of sulfur-based ligands in the CO2/epoxide coupling has been 

neglected until recently. In this review, we cover the recent progress in the use of the corresponding 

metal complexes in the cycloaddition and copolymerization of CO2 and epoxides, evidencing the 

fundamental role played by the ligand framework in modulating the catalytic efficiency. 

Figure 3. Selected examples of metal complexes containing a chiral Salen ligand and their applications [38].

However, in these species, the strength of the interaction between the metal center and the donor
atoms can be scarcely modulated because of the hard nature of nitrogen as a Lewis base. On this basis,
it was thought that the introduction in the ligand of a soft donor, such as sulfur, can be advantageous
because of the possibility to tune the Lewis acidity of the metal center by using the weaker metal–donor
interaction. Indeed, many successful examples of catalysts having sulfur-containing ligands have been
reported to date in the field of olefin polymerization [39–46], ring-opening polymerization of cyclic
esters [47–49], hydroamination [50] and hydrosilylation [51] with various metal centers (Figure 4).
In this context, theoretical and experimental studies have shown the crucial role of the hemilabile
sulfur atom in determining the catalytic activity and selectivity [52,53].

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 20 

 

 

Figure 3. Selected examples of metal complexes containing a chiral Salen ligand and their applications [38]. 

However, in these species, the strength of the interaction between the metal center and the donor 

atoms can be scarcely modulated because of the hard nature of nitrogen as a Lewis base. On this 

basis, it was thought that the introduction in the ligand of a soft donor, such as sulfur, can be 

advantageous because of the possibility to tune the Lewis acidity of the metal center by using the 

weaker metal–donor interaction. Indeed, many successful examples of catalysts having sulfur-

containing ligands have been reported to date in the field of olefin polymerization [39–46], ring-

opening polymerization of cyclic esters [47–49], hydroamination [50] and hydrosilylation [51] with 

various metal centers (Figure 4). In this context, theoretical and experimental studies have shown the 

crucial role of the hemilabile sulfur atom in determining the catalytic activity and selectivity [52,53]. 

 

Figure 4. Representative examples of complexes bearing [OSO], [OSSO], or [OS]-ligands 

[39,41,43,47,49–51]. 

Despite these findings, the use of sulfur-based ligands in the CO2/epoxide coupling has been 

neglected until recently. In this review, we cover the recent progress in the use of the corresponding 

metal complexes in the cycloaddition and copolymerization of CO2 and epoxides, evidencing the 

fundamental role played by the ligand framework in modulating the catalytic efficiency. 

Figure 4. Representative examples of complexes bearing [OSO], [OSSO], or [OS]-ligands [39,41,43,47,49–51].

Despite these findings, the use of sulfur-based ligands in the CO2/epoxide coupling has been
neglected until recently. In this review, we cover the recent progress in the use of the corresponding
metal complexes in the cycloaddition and copolymerization of CO2 and epoxides, evidencing the
fundamental role played by the ligand framework in modulating the catalytic efficiency.
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2. Metal Complexes Bearing Sulfur-Containing Ligands Active in the Coupling of CO2
and Epoxides

2.1. Chromium-Based Systems

Chromium Salen complexes are among the most studied coordination compounds in catalysis.
Indeed, in the last years, their chemistry had been deeply investigated because of their unique properties
in the oxidation, even in the enantioselective version, of various substrates [38]. The easy synthesis
and the possibility to design chiral metal species sparked the interest in using these complexes also
in the CO2/epoxide coupling. In this context, Darensbourg and Nguyen separately reported the use
of chromium Salen complexes for the coupling of cyclohexene oxide (CHO) or propylene oxide (PO)
with CO2 for the formation of polycyclohexene carbonate (PCHC) and propylene carbonate (PC),
respectively (Figure 5) [54,55].
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After these first reports, many mononuclear and dinuclear chromium Salen complexes have been
developed for the copolymerization of epoxides with CO2 allowing the synthesis, with high activity, of
new copolymer microstructures (Figure 6) [56,57].
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Figure 6. Bimetallic chromium(III) Salen complex developed by Rieger for the coupling of CO2 with PO [56].

In the search of alternative ligands for the CO2/epoxide chemistry, the first example of chromium
catalysts bearing a soft donor atom in the ligand skeleton was reported by Duchateau and coworkers only
in 2014 and regarded the utilization of two chromium(III) complexes having an aminophosphine bidentate
ligand (Figure 7) [58]. These catalysts showed moderate catalytic activity in the copolymerization of CO2

with CHO affording low molecular weight PCHC (Mn up to 1930 g mol−1).
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Figure 7. Chromium(III)-Aminophosphine complexes developed by Duchateau for the coupling of
CO2 with CHO [58].

In this field, the choice of sulfur as the soft Lewis base is even more recent. In 2015, the tetradentate
[OSSO]-type chromium complexes (1–4) were developed by Liu and coworkers for the copolymerization
of various epoxides with phthalic anhydride and subsequently used for the copolymerization of CO2

with vinylcyclohexeneoxide (VCHO) (Figure 8) [59].
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Figure 8. Chromium(III)-[OSSO] catalysts 1–4 [59].

Complexes 1–4, activated by bis(triphenylphosphoranylidene) ammonium chloride (PPNCl) are
all active catalysts in the CO2/VCHO coupling by using a [VCHO]/[[OSSO]CrX]/[PPNCl] ratio of
1000/1/2 at 90 ◦C and high pressure (pCO2 = 3.0 MPa). Activity and chemoselectivity toward the APC
vis a vis COC depended on the catalyst structure. Indeed, the complexes 1–3 with a cyclohexyl or an
ethyl carbon bridge showed better performances compared to the phenylene analogue 4. Selected
results are reported in Table 1.

Table 1. Complexes 1–4 in the copolymerization of vinylcyclohexeneoxide (VCHO) and CO2 [59].

Complex TOF a (h−1) Selectivity b (%) (Polymer-Carbonate Linkages) Mn
c (KDa) Ð c

1 74 73–97.5 15 1.30
2 82 68–98.0 20 1.35
3 78 71–99.0 19 1.27
4 13 44–95.5 6 1.26

Reaction conditions: [VCHO]/[[OSSO]CrX]/[PPNCl] = 1000/1/2; T = 90 ◦C, pCO2 = 3.0 MPa; time = 6 h. a Turnover
frequency (TOF) for the copolymer calculated as mole of VCHO consumed per mole of catalyst per hour. b Selectivity
of PVCHC estimated by IR spectroscopy; selectivity toward polycarbonate linkages calculated through 1H NMR
spectroscopy. c Determined by GPC.

In addition, 4 also produced a low molecular weight polymer, in comparison to the other complexes,
albeit with a narrow dispersity (Ð = 1.24–1.49). For the most active catalyst 1, the authors also explored
the use of different co-catalysts, such as bis(triphenylphosphoranylidene)ammonium azide, (PPNN3),
tetrabutylammonium chloride (TBAC), and 4-dimethylaminopyridine (DMAP) obtaining the best
compromise between activity and selectivity toward the polymeric product by using 2 equivalents,
with respect to the metal, of PPNCl. Notably, by adjusting the [VCHO]/[1]/[PPNCl] ratio to 500/1/2,
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the activity reached the value of 134 h−1 with 76% of selectivity for the polymeric product at 90 ◦C and
with a CO2 pressure of 3.0 MPa. 13C NMR analysis showed that the resulting polymer is atactic in all
cases. The reaction of terminal epoxides such as PO or epichlorohydrine (EPC) invariably resulted in
the formation of the corresponding COC.

Starting from the observation that 2 equivalents of cocatalyst (PPNCl or PPNN3) are needed to
reach the best catalytic performances, the authors speculated about interaction of the onium salt with
the metal center enhancing the catalytic performance. This idea was supported by IR experiments
that revealed an interaction between the N−3 anion or DMAP with the metal center that leads to
the formation of a six-coordinated chromium atom. Based on these experiments, it was proposed a
mechanism in which the true catalytic species was formed by the interaction of the nucleophile with the
precatalyst. The presence of a protic compound such H2O lead to a chain transfer with the formation
of hydroxyl-terminated polymeric chains that were observed in the 1H NMR spectrum (Scheme 2).
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Almost simultaneously, Darensbourg and coworkers reported the synthesis of four new
imine-thioether-bridged bis(phenolate) [ONSO]-type chromium(III) complexes 5–8 and their use
as catalysts for the CO2/CHO copolymerization (Figure 9) [60].
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Figure 9. Chromium(III)-[ONSO] catalysts 5–8 [60].

Also in this case, in analogy with the abovementioned [OSSO]-type chromium complexes reported
by Liu, the best cocatalysts are PPNCl and PPNN3 in a 2/1 molar ratio with respect to the chromium
complex. These nucleophile sources performed better than the more hygroscopic TBAC giving the
polymeric product with good selectivity (72–77%) at 80 ◦C and with a CO2 pressure of 3.0 MPa.
Complexes 7 and 8 bearing a phenylene-bridged ligand were the most active catalysts reaching a TOF
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up to 71 h−1 with the azide-derivative 8 slightly better performing with respect to the chloro-derivative
7. The PCHC obtained was atactic in nature under all the reaction conditions explored and displayed
narrow dispersity (Ð = 1.23–1.28). As expected, the selectivity toward the polymer is negatively
affected by an increase of the reaction temperature although the catalytic activity increased (TOF up to
100 h−1 at 110 ◦C). An in situ IR spectroscopy study showed that, in the early stages, only the COC was
formed by complexes 5 and 6, whereas the production of the APC started after 50 min. These results
were rationalized proposing a mechanism in which the backbiting reaction initially predominated,
leading to the COC. However, once the alternating CHO/CO2 insertion began, the backbiting of the
alkyl carbonate became less favored with respect to the polymerization process. Differently, by using
the less electron-rich Cr(III) complex 7 the production of the polymer immediately started.

Liu and Darensbourg both explained the observed lower activity and selectivity for the formation of
the polymeric product of the sulfur-containing Cr(III) complexes when compared to the corresponding
Salan analogues by the fact that the electron-releasing sulfur atoms in the ligand skeleton render the
chromium atom more electron-rich, thus favoring the displacement of the growing polymeric chain
from the metal center and the formation of the cyclic product.

Recently, our group reported the synthesis of the new [OSSO]-type Cr(III) complex 9 (Figure 10) [61].
This complex contained the ligand developed by Okuda and coworkers for group 4-based complexes
which differed from the ligands used for the foregoing complexes 1–8 for the absence of the methylene
spacer between the sulfur atoms and the aromatic rings. It was expected that this design would
render the sulfur atoms electron poorer, weakening their electron-releasing character and consequently
enhancing the Lewis acidity of the metal center. When activated by TBAC, complex 9 under 1.0 MPa
of CO2 pressure produced a mixture of polymeric and cyclic products by using PO as the substrate
([PO]/[9]]/[TBAC] ratio of 1000/1/1). The selectivity strongly depends on the reaction temperature
with a maximum (45%) for the polypropylene carbonate (PPC) at 45 ◦C and with the almost exclusive
formation of the PC at higher temperatures (80 ◦C) (Figure 10).

Changing the onium salt to PPNCl, reducing the [9]/[PPNCl] ratio to 1/0.5, and increasing the
CO2 pressure to 2.0 MPa, both the activity and the selectivity increased, reaching a TOF of 35 h−1 and a
selectivity of 93% for the polymer. The PPC produced was atactic but highly regioregular (up to 90%
of head to tail enchainment) with no polyether linkages detectable. The molecular weight was high
(Mn up to 36 kDa) with a bimodal distribution due to the presence of traces of water that acted as a
chain transfer agent. The same system also promoted the copolymerization of CO2 with CHO, 1-hexene
oxide (HO) and styrene oxide (SO). In the case of CHO, activity was lower to those observed by using
PO (TOF up to 19 h−1) but the selectivity reached the value of 99%. Notably, HO was copolymerized
with good selectivity (up to 92%) albeit with low activity (TOF up to 16 h−1). Moreover even SO that,
because of its electronic features, it is usually less prone to copolymerize, giving 32% of polystyrene
carbonate (PSC).

The high versatility of complex 9 in promoting the copolymerization of CO2 with various epoxides
was further confirmed by the obtaining of PO/CHO/CO2 and PO/HO/CO2 terpolymers. The resulting
polycarbonates had high content of carbonate linkages (87–93%) and narrow dispersity (Ð = 1.16–1.27)
with thermal and 13C NMR analyses suggesting a block microstructure for these materials.

DFT calculation, carried out for the coupling involving PO as the substrate, displayed that the
activation energies for cyclization and copolymerization are quite close in value (Scheme 3). This was
coherent with the experimental observation that the course of the reaction can be driven to the formation
of PC or PPC by a proper choice of the reaction conditions.
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2.2. Iron-Based Systems

Despite the abundance of this metal on the Earth-crust, the use of iron in homogeneous catalysis
has been longtime neglected and only in the last two decades emerged as a viable alternative to catalysts
based on rare/precious metals. In this trend, the development of iron catalysts for the reaction of CO2

with epoxides was not an exception, with only few examples of complexes that showed significant
activity in the cycloaddition of CO2 to epoxide or in the alternating copolymerization [18,62–65].
As for other metals, the structural motifs of choice were based on macrocyclic or polydentate ligands
having oxygen and nitrogen as donor atoms. In particular, the complexes developed by Williams and
Nozaki [62,63], depicted in Figure 11, were the first examples of iron catalysts able to promote the
copolymerization of CO2 with CHO and PO, respectively. The iron complexes developed by Kleij [64,65]
(Figure 11), efficiently produced cyclic carbonates from a variety of terminal and internal epoxides.
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Figure 11. Representative examples of iron-based complexes active in the coupling of CO2 with
epoxides [18,62–65].

The first example of sulfur-containing ligand for iron complexes active in the reaction of CO2 with
epoxides was reported by Abu-Surrah and coworkers in 2013 (10, Figure 12) [66]. This thiophenaldimine
Fe(II) complex, activated by TBAB, at 130 ◦C and 0.5 MPa of CO2 pressure, promoted the formation of
styrene carbonate (SC) with low activity (TON = 799; TOF = 33.3 h−1).
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Figure 12. Coupling of styrene oxide (SO) and CO2 promoted by the iron(II) thiophenaldimine
complex 10 [66].

In 2015, our group reported on the synthesis of a new air-stable dinuclear iron(III) complex
(11, Figure 13) bearing a bis-thioether-triphenolate ligand [67–69]. These complexes were stable in
solution, and when activated by TBAB (11/TBAB = 1/2), were able to promote the transformation of
various terminal or internal epoxides to the corresponding COCs with good activity and selectivity.
In particular, PO was converted to PC reaching a TOF of 580 h−1 at 100 ◦C with a CO2 pressure of
2.0 MPa, and with a [PO]/[11]/[TBAB] ratio of 4000/1/5. Furthermore, this catalyst showed to be also
highly stereoselective affording exclusively the cis-COC by using CHO as the substrate regardless the
TBAB/[11] ratio. Moreover, by using the enantiopure SO as the epoxide (ee = 94%) the corresponding
SC was gained with a good degree of stereoretention (ee = 74%).
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An enlargement of the catalysts’ family and an optimization of the reaction conditions led to a
further improvement of the catalytic activity. In particular, complex 16, bearing methyl substituents
on the phenol ring, displayed the highest activity so far reported for an iron catalyst with a TOF of
5200 and 7000 h−1 in the conversion of PO and EPC, respectively, in the corresponding COCs at 120 ◦C
with a CO2 pressure of 2.0 MPa and a [PO]/[16]/[TBAB] ratio of 10000/1/10. Conversely, the introduction
of bulkier substituents in catalyst 12 and electron-withdrawing groups in catalyst 14 resulted in a
lowering of the catalyst activity.

In order to shed more light on the reaction mechanism, DFT calculations were performed and
highlighted three important features regarding the formation of COCs promoted by these catalysts:
(i) The coordination of the epoxide to the iron(III) center requires the detachment of a sulfur atom from
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the coordination sphere; (ii) the insertion of CO2 is not mediated by the second iron center; (iii) the
ring-closure of the COCs is the rate-limiting step (Figure 14). As a matter of fact, the hemilability of the
sulfur atoms plays a fundamental role in determining the catalytic activity. This was also confirmed
by the worse performances of catalyst 14, which were reasonably caused by a stronger sulfur-iron
interaction which, in turn, was caused by the presence of electron-withdrawing substituents on the
phenoxo rings.
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Later on, we moved to the development of iron(III) mononuclear complexes bearing [OSSO]-type
ligands 17–20 (Figure 15) [52].
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Notably, when activated by TBAB, these catalysts efficiently performed in the cycloaddition of
CO2 to terminal and internal epoxides giving the corresponding COC under mild reaction conditions
(35 ◦C; pCO2 = 0.1 MPa) and, by using catalyst 20, reaching a TOF of 290 h−1 in the case of PO
with a [PO]/[20]/[TBAB] ratio of 1000/1/5. Substituents on the ligand framework had a negligible
influence on the catalytic activity. In analogy with the bis-thiother-triphenolate complexes 11–16,
the reaction occurred with a high degree of stereoretention (98%) in the case of internal epoxides such
as 2-buteneoxide. More importantly, when the substrate was CHO, only the alternating PCHC was
observed. In this case, the best cocatalyst was TBAC and the activity order was 18 > 20 ≈ 17 > 19.

A thorough kinetic investigation of the formation of PC was performed by means of ATR-IR
spectroscopy. This study evidenced that reaction followed a second-order dependence in 20.
Furthermore, this behavior was observed exclusively when 2 equivalents of TBAB were used,
suggesting that only under these conditions the true catalytic species was formed. As a further
confirmation, UV-vis spectra detected the formation of a new ferrate species when an excess of TBAB
was added to the catalyst’s solution. These findings were rationalized by DFT calculations showing
that the rate-limiting step was the ring-opening of the epoxide that took place in the presence of two
iron centers: one acted as the Lewis acid and the other one, as metallate, furnished the nucleophile
(Figure 16).
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The ferrate species 21 was also isolated and characterized both starting from the chloro-derivative
20 and the bromo-derivative 22 by reaction with two and one equivalent of TBAB, respectively
(Figure 17) [70]. Complex 21 was used as single-component catalyst in couplings of various terminal and
internal epoxides showing good performances under mild reaction conditions (35 ◦C; pCO2 = 0.1 MPa,
[PO]/[21] = 100) and reached a TOF of 54 h−1.
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Figure 17. Synthesis of the ferrate species 21 from complexes 20 or 22 through reaction with two or one
equivalents of TBAB, respectively [70].

Lately, we also developed a new family of tridentate bisthioether phenolate ligands that supported
both Fe(II) and Fe(III) centers [71]. It is worth noting that the both Fe(II) and Fe(III) complexes existed
in solution as mononuclear or dinuclear species depending on the steric bulk of the ligand (Figure 18).
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The cycloaddition reaction of CO2 to HO was used as the benchmark reaction to test the catalytic
activity of these complexes: on one hand, for the Fe(II) complexes the activity depended on the complex
structure, with 26 being the most active (TOF = 36 h−1), on the other hand all the Fe(III) species showed
comparable activities (TOF = 32 h−1). This different behavior was explained by supposing that the
Fe(III) complexes reacted with TBAB forming the corresponding ferrate, in analogy to what was
observed for the [OSSO]-type Fe(III) complexes. In contrast, the formation of such anionic species
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does not occur in the case of the Fe(II) complexes. This mechanistic picture was supported by UV-vis
experiments treating the precatalysts with an excess of TBAB.

More recently, Jones and coworkers reported on the synthesis of a wide family of
imine-thioether-bridged bis(phenolate) ([ONSO]-type) Fe(III) complexes 29–34 (Figure 19) [72].
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These complexes, when activated by TBAC at 80 ◦C, with a CO2 pressure of 1.0 MPa and
a [CHO]/[Fe]/[TBAB] ratio of 1250/1/8 performed as active catalysts (TOF = 22–31 h−1) for the
cycloaddition of CO2 to CHO with excellent selectivity toward the formation of cis-CHC (>99%).
The most active catalytic system, complex 33, could reach a TOF of 156 h−1 by increasing the temperature
to 120 ◦C. However, under this condition, a lower selectivity was detected, because of the simultaneous
production of the polyether product. A reduction of the [TBAC]/[33] ratio down to 2, resulted in a
lower selectivity as well, with the formation of polycyclohexeneoxide (PCHO) and, in lower amounts,
of the trans-CHC. In this publication, the use of other terminal epoxides was also explored. By using
PO, a higher activity with respect to the case of CHO was detected (TOFs of 42 h−1 versus 31 h−1). As a
matter of fact, Thiolen Fe(III) compounds showed to be more active if compared to the corresponding
Salen Fe(III) complexes demonstrating, once again, the beneficial effect of sulfur on catalytic activity.

2.3. Bismuth-Based Systems

Among the possible Lewis acidic metal centers in catalysis, the last two decades have witnessed
a rising interest in the use of bismuth. Indeed, bismuth is cheap and low-toxic and therefore the
implementation of catalytic processes based on this metal are an active task of research in green
chemistry [73–76].

Actually, the use in CO2/epoxide reactions was barely explored and only recently received
more attention [77,78]. In this field, one of the most efficient catalytic systems was developed by
Shimada e Yin in 2009 [79]. In this study, the synthesis of Bi(III) compounds 35 and 36, bearing a sulfur
bridged bis(phenolato) ligand, was reported (Figure 20).
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In the presence of iodide as the nucleophile, by using sources such as Ph3PI, tetrabutylammonium
iodide (TBAI), NaI or LiI, these compounds were found to be active catalysts for the conversion of
PO to PC under mild reaction conditions (RT; pCO2 = 0.1 MPa; [PO]/[Bi]/[I−] = 820/1/4) reaching a
TOF of 34 h−1. More recently, Wong, Au, and coworkers reported that the dinuclear sulfide-bridged
complexes 37–40 (Figure 21) performed as active catalysts for the conversion of EPC to the corresponding
carbonate at 140 ◦C and a CO2 pressure of 3.0 MPa ([EPC]/[Bi]/[TBAI] = 200/1/0.2) reaching TOFs up to
25 h−1 [80]. Complexes 37–39 are also among the few air-stable organobismuth compounds reported
so far.Catalysts 2020, 10, x FOR PEER REVIEW 16 of 20 
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3. Conclusions

The use of sulfur-containing ligands to support metal ions in the reaction between CO2 and
epoxides has attracted an increasing interest in the past years. In many cases, the presence of sulfur
in the ligand backbone imparts unique properties in terms of activity, selectivity, and stability of the
catalyst precursor. Furthermore, both cyclic carbonates and polycarbonates were obtained with good
activity and selectivity for a wide range of substrates showing a high potential for further development.
In particular, the use of these ligands can be extended to a major variety of metal centers, allowing
an increase in the catalytic performances and expanding the portfolio of possible products. Finally,
the design and the synthesis of new structural motifs containing sulfur atoms in the ligand backbone is
another important objective for a possible expansion of the catalytic applications.
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