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Abstract: In this study, the characterization of In-exchanged CHA zeolite (In-CHA (SiO2/Al2O3 = 22.3))
was conducted by in-situ X-ray diffraction (XRD) and ammonia temperature-programmed desorption
(NH3-TPD). We also prepared other In-exchanged zeolites with different zeolite structures (In-MFI
(SiO2/Al2O3 = 22.3), In-MOR (SiO2/Al2O3 = 20), and In-BEA (SiO2/Al2O3 = 25)) and different
SiO2/Al2O3 ratios (In-CHA(Al-rich) (SiO2/Al2O3 = 13.7)). Their catalytic activities in nonoxidative
ethane dehydrogenation were compared. Among the tested catalysts, In-CHA(Al-rich) provided the
highest conversion. From kinetic experiments and in-situ Fourier transform infrared (FTIR) spectroscopy,
[InH2]+ ions are formed regardless of SiO2/Al2O3 ratio, serving as the active sites.

Keywords: In-exchanged zeolite; reductive solid-state ion-exchange (RSSIE); ethane dehydrogenation;
isolated surface hydride

1. Introduction

The valorization of ethane is highly demanded in chemical industry owing to increasing availability
of inexpensive ethane from shale gas [1,2]. The most frequently used method for this purpose is
the steam cracking to obtain ethylene which is an important feedstock for production of various
fundamental chemicals, including polyethylene, styrene, ethylene oxide, and acetic acid. However,
this method requires high reaction temperature (1073–1173 K) to achieve sufficient ethylene yields [3].
Moreover, the rapid cooling of the outlet gas is necessary for suppression of ethylene polymerization.
The steam cracking of ethane is an energy-intensive process. Catalytic dehydrogenation of ethane
to ethylene is a promising alternative to decrease the reaction temperature and to conserve energy
consumption [4–6]. Various catalyst systems using platinum group metal-based alloys [7–10], Cr [11–13],
and Ga [14,15], have been developed. However, the reported systems often suffer from low ethylene
selectivity and catalysts deactivation due to coke formation. In addition, the applicability of those
processes under industrially meaningful conditions, i.e., high ethane concentration regime, has rarely
been investigated [11]. From the practical viewpoint, the development of selective and durable catalyst
systems that are workable even under the high concentration conditions is highly demanded.

Zeolites are porous aluminosilicates that comprise tetrahedral SiO4 and AlO4 units. To compensate
for the cation deficiency derived from the isomorphic substitution of Si4+ with Al3+, cationic species
such as protons are present on Al sites within pores [16]. These cations are exchangeable with
other metal cations through ion-exchange methods. Proton-type and metal-exchanged zeolites show
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potential as heterogeneous catalysts for exhaust gas purification and chemical syntheses [17–26].
Numerous different zeolites consisting of 8–12-membered rings with different crystal structures,
including CHA (8-membered rings), MFI (10-membered rings), BEA and MOR (12-membered rings),
have been developed. The different activities and selectivities of zeolites are closely related to their
different pore sizes and crystal structures [27–32]. The SiO2/Al2O3 ratio also affects catalytic properties
because the configuration of Al sites and surface properties strongly depend on the ratio [33–37].
Thus, investigating the effects of framework structure and SiO2/Al2O3 ratio in zeolites can help control
their catalytic properties, allowing the design of more effective catalysts.

Group 13 metal-exchanged zeolites have attracted much attention as catalysts for the
transformation of light alkanes. Ga-exchanged MFI zeolites (Ga-MFI) have been most widely studied
since the 1990’s [38–41]. Ono and coworkers prepared Ga-MFI using liquid-phase ion-exchange and
then investigated the mechanism of the dehydrocyclodimerization (DHCD) of propane to aromatics [42].
Improving the activity of Ga-MFI by loading larger amounts of Ga species through reductive solid-state
ion-exchange (RSSIE) was investigated [43]. Several cationic Ga species, such as Ga+, [GaH]2+,
and [GaH2]+ ions, have been reported as catalytically active species for the dehydrogenation of
propane [44–46]. Recently, Bell and coworkers reported that [GaH]2+ rather than [GaH2]+ ions are
active species using a combination of kinetic, spectroscopic, and theoretical studies [47], whereas
Lewis-Brønsted acid pairs (Ga+ and H+) have been proposed as active sites by the group of Lercher
based on their investigation of the Ga/Al effect and acidity characterization along with theoretical
investigation [48]. Various Ga-exchanged zeolites including Ga-MFI have been applied to the
transformation of other light alkanes to aromatic compounds, the dehydrogenation of light alkanes,
and reactions of methane with light alkenes to produce higher hydrocarbons [49–51].

In contrast to that by Ga-exchanged zeolites, studies on dehydrogenative transformation of light
alkanes by In-exchanged zeolites have been rarely reported. Their preparation by RSSIE between
In2O3 and proton-type zeolites has been studied by several groups [52]. The reaction is described in
Equation (1).

In2O3 + 2H+Z− + 2H2 → 2In+Z− + 3H2O (1)

where Z− denotes a zeolite anion. In the context of catalysis, Hert and coworkers prepared In-exchanged
MFI (In-MFI) by RSSIE and compared its catalytic activity for propane DHCD with that of Ga-MFI [53,54].
They reported that In-MFI exhibits poor durability due to the reduction of active In+ cations to In metal
during the reaction. The reaction of methane with ethylene/benzene was investigated by the group of
Baba using In-MFI, for which the activation of methane at In+ cations coordinated to zeolite anions
was proposed [55]. Recently, our research group has reported that In-exchanged CHA zeolite (In-CHA)
catalyzes the selective dehydrogenation of ethane and exhibits high durability [56]. A combination of
experimental and theoretical studies revealed that [InH2]+ ions, which are formed in situ through the
reaction of In+ cations with H2, serve as catalytically active sites. However, the detailed investigation
including effects of zeolite framework and SiO2/Al2O3 on ethane dehydrogenation were not conducted.

As a continuation of our previous study, we herein report the detailed characterization of In-CHA
by in-situ X-ray diffraction (XRD) and ammonia temperature-programmed desorption (NH3-TPD).
We also investigated the effect of zeolite framework and SiO2/Al2O3 to achieve higher conversion
compared to In-CHA. In-MFI, In-MOR, and In-BEA exhibit inferior activities compared to that of
In-CHA, whereas a higher conversion value was achieved using In-CHA with a higher Al content
(In-CHA(Al-rich)). Kinetic study and in-situ Fourier transform infrared (FTIR) spectroscopy indicated
that [InH2]+ ions are formed in CHA zeolites regardless of SiO2/Al2O3 ratio, and that they serve as
catalytically active sites for the dehydrogenation of ethane.
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2. Results

2.1. XRD

The RSSIE reactions of In2O3 and zeolites under H2 at high temperature have been investigated
by H2 temperature-programmed reduction (H2-TPR) and/or thermogravimetric analysis in several
previous studies [52,54,57]. However, in-situ characterization of In2O3 and zeolites has not been
reported yet. We have reported the preparation of In-CHA through RSSIE of CHA-supported In2O3

obtained by impregnation (In2O3/CHA), revealing the formation of highly dispersed In species by
spectroscopic and microscopic analysis [58]. In this study, in-situ XRD was conducted for RSSIE of
In2O3/CHA under 5% H2/N2 flow. Figure 1a shows a series of XRD patterns obtained at different
temperatures. The characteristic peak at 2θ = 30.6◦ derived from In2O3 (222) [59] and the typical
diffraction pattern of CHA zeolites [60] were observed at 303 and 473 K, respectively. The intensity of
the peak derived from In2O3 was slightly decreased at 573 K and the peak was no longer observed
at 773 K (Figure 1b). After cooling to 303 K, no peaks derived from In2O3 were observed. The sharp
peaks in the zeolite diffraction patterns at 2θ = 9.6◦ and 20.8◦ decreased in intensity above 573 K due
to temperature-induced disordering and then returned to their initial intensities upon cooling from
773 to 303 K [61]. These observations indicate the occurrence of RSSIE reaction at temperatures from
573 to 773 K, which is consistent with the results of H2-TPR measurement in our previous study [56].
A series of In-exchanged zeolites including In-MFI, In-MOR, In-BEA, and In-CHA(Al-rich) were also
prepared through similar RRSIE reactions of In2O3 supported on the corresponding zeolites. The XRD
measurements showed that the peaks assignable to In2O3 (222), (400), and (440) disappeared after
RSSIE in each case (Figure 2), indicating the high dispersion of In species.
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Figure 1. (a) In-situ X-ray diffraction (XRD) patterns during reductive solid-state ion-exchange (RSSIE)
of In2O3/CHA (In/Al = 0.8) under 5% H2/N2 flow at different temperatures. (b) Comparison of the
peaks derived from In2O3 (222) around 2θ = 30.6◦.
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were obtained at room temperature. 
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Figure 2. XRD patterns for In-MFI, In-BEA, In-MOR, and In-CHA(Al-rich) before (black) and after (red)
RSSIE and for In-CHA(Al-rich) after the ethane dehydrogenation at 993 K (pink). The patterns were
obtained at room temperature.

2.2. NH3-TPD

The acidity profiles of In-CHA samples with different In/Al values (In/Al = 0.2, 0.4, and 0.8) were
investigated by NH3-TPD. In each case, the catalyst was exposed to NH3/He at 473 K followed by
purging with He. Thereafter, the temperature was increased from 473 to 973 K under He flow while
the desorbed NH3 (m/z = 16) was monitored. The TPD profiles of proton-type CHA (H-CHA) and a
series of In-CHA samples are shown in Figure 3. The profile of H-CHA showed a wide peak around
700–800 K due to NH3 desorbed from Brønsted acid sites. The intensity of the peak decreased with
the increase of In/Al. This trend is similar to that observed in the NH3 adsorption experiment [56].
In addition, a desorption peak around 600 K appeared upon In loading and its intensity increased
with In/Al ratio. This peak might be due to NH3 weakly adsorbed on In+ cations [62]. The results of
NH3-TPD are consistent with the occurrence of RSSIE reactions as described in Equation (1).Catalysts 2020, 10, x FOR PEER REVIEW 5 of 12 
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2.3. Effect of Zeolite Host upon Ethane Dehydrogenation Catalyzed by In-Exchanged Zeolites

We previously found that In-CHA with SiO2/Al2O3 = 22.3 and In/Al = 0.8 exhibits high selectivity
for dehydrogenation of ethane to ethylene and carbon balance at 933 K. In this work, In-MFI, In-MOR,
and In-BEA having similar SiO2/Al2O3 ratios (22.3, 20.0, and 25.0, respectively) and In-CHA(Al-rich)
(SiO2/Al2O3 = 13.7) were prepared using the same In/Al value of 0.8 and compared with In-CHA in
ethane dehydrogenation (Table 1). In-MFI, In-MOR, and In-BEA showed lower conversions of 12.9%,
14.9%, and 13.5%, respectively, than that for In-CHA (25.9%) (entries 1–3 vs. entry 5) despite their
larger zeolite pores (5.6 Å × 5.3 Å, 7.0 Å × 6.5 Å, and 7.6 Å × 7.3 Å, respectively) compared to that
of CHA (3.8 Å × 3.6 Å). In contrast, In-CHA(Al-rich) exhibited a superior conversion (37.9%) while
maintaining the high selectivity of 96.1% (entry 5). For all the In-exchanged zeolites, high selectivity
for ethylene (>96%) and carbon balance (>93%) were observed while main byproduct was methane.

Table 1. Conversion, selectivity, and carbon balance values for 30 min of ethane dehydrogenation at
933 K using several In-exchanged zeolites.

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 12 

 

 
\ 

 

Figure 3. Ammonia temperature-programmed desorption (NH3-TPD) profiles for H-CHA and 
different In-CHA samples. 

2.3. Effect of Zeolite Host upon Ethane Dehydrogenation Catalyzed by In-Exchanged Zeolites 

We previously found that In-CHA with SiO2/Al2O3 = 22.3 and In/Al = 0.8 exhibits high selectivity 
for dehydrogenation of ethane to ethylene and carbon balance at 933 K. In this work, In-MFI, In-
MOR, and In-BEA having similar SiO2/Al2O3 ratios (22.3, 20.0, and 25.0, respectively) and In-CHA(Al-
rich) (SiO2/Al2O3 = 13.7) were prepared using the same In/Al value of 0.8 and compared with In-CHA 
in ethane dehydrogenation (Table 1). In-MFI, In-MOR, and In-BEA showed lower conversions of 
12.9%, 14.9%, and 13.5%, respectively, than that for In-CHA (25.9%) (entries 1–3 vs. entry 5) despite 
their larger zeolite pores (5.6 Å × 5.3 Å, 7.0 Å × 6.5 Å, and 7.6 Å × 7.3 Å, respectively) compared to 
that of CHA (3.8 Å × 3.6 Å). In contrast, In-CHA(Al-rich) exhibited a superior conversion (37.9%) 
while maintaining the high selectivity of 96.1% (entry 5). For all the In-exchanged zeolites, high 
selectivity for ethylene (>96%) and carbon balance (>93%) were observed while main byproduct was 
methane.  

Table 1. Conversion, selectivity, and carbon balance values for 30 min of ethane dehydrogenation at 
933 K using several In-exchanged zeolites. 

 

C CH
H

H

H

H
H C C

H

H

H

HIn-zeolite catalyst (0.1 g)
+ CH4 + Coke

933 K, - H2  

 

 

Entry Catalyst SiO2/Al2O3 In/Al Conv. [%] a Sel. [%] a Carbon Balance [%] a 
1 In-MFI 22.3 0.8 12.9 99.2 99 
2 In-MOR 20.0 0.8 14.9 97.6 99 
3 In-BEA 25.0 0.8 13.5 97.5 94 
4 In-CHA(Al-rich) 13.7 0.8 37.9 96.6 98 
5 In-CHA b 22.3 0.8 25.9 96.1 99 

Entry Catalyst SiO2/Al2O3 In/Al Conv. [%] a Sel. [%] a Carbon Balance [%] a

1 In-MFI 22.3 0.8 12.9 99.2 99
2 In-MOR 20.0 0.8 14.9 97.6 99
3 In-BEA 25.0 0.8 13.5 97.5 94
4 In-CHA(Al-rich) 13.7 0.8 37.9 96.6 98
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Reaction conditions: 0.1 g of catalyst, 10% C2H6/He (10 mL/min). [a] The determination was performed using a gas
chromatography (GC). [b] The data were previously reported in our paper [56].

The ethane dehydrogenation was conducted under severe reaction condition (80% C2H6/N2,
993 K) using 0.1 g of In-CHA(Al-rich) (Figure 4). The conversion and selectivity values at 1 h were
32.7% and 90.7%, respectively. Although the conversion value decreased to 30.9% during the 40 h
reaction, good selectivity was maintained. This catalytic performance is comparable with those of other
reported catalyst systems for nonoxidative ethane dehydrogenation [4]. The catalyst was reusable
after regeneration treatment (50% O2/N2 for 60 min and 10% H2/N2 for 30 min at 993 K) without
significant loss of activity or selectivity (32.5% conversion and 90.8% selectivity at 1 h) (Figure 4).
The diffraction pattern derived from CHA framework was maintained after the reaction, as confirmed
by XRD measurement (Figure 2), which is consistent with the high reusability of In-CHA(Al-rich).
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Previously, we investigated the active species ([InH2]+, [InH]2+, or In+ cations) for ethane
dehydrogenation catalyzed by In-CHA based on kinetic and in-situ spectroscopic studies with transition
state (TS) calculations [56]. The TS calculations revealed that the calculated activation enthalpies
(∆H
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Figure 5. (a) Effect of zeolite host on turnover frequency (TOF) normalized to amount of In obtained at
873 K. (b) Eyring plots and apparent activation enthalpies for the ethane dehydrogenation (873–933 K)
using In-MFI (pink), In-MOR (green), In-BEA (black), and In-CHA(Al-rich) (red). The plots were
obtained under conditions obtaining ethane conversions below 15%. The data for In-CHA (blue) were
previously reported in our previous paper [56].

Furthermore, in-situ FTIR spectroscopy was conducted for In-CHA(Al-rich) to determine possible
In hydrides in In-CHA(Al-rich). After H2 treatment at 773 K, the band derived from the stretching
vibration of In−H (ν(In−H)) appeared around 1700 cm−1 (Figure 6a). This band can be deconvoluted
into two peaks assignable to ν(In−H) (1777 and 1715 cm−1) with other peaks (1661 and 1610 cm−1)
(Figure 6b). Based on our previous vibration analysis by density functional theory calculations [56],
the highest peak at 1715 cm−1 is derived from the symmetric ν(In−H) of [InH2]+ ions, while the smaller
peak at 1777 cm−1 is assignable to the asymmetricν(In−H) of [InH2]+ ions or theν(In−H) of [InH]2+ ions.
These results indicate that the main In hydrides are [InH2]+ rather than [InH]2+ in In-CHA(Al-rich).
The other peaks might be derived from different-type adsorbed water molecules [63,64]. From the
above combined results, [InH2]+ ions are likely formed in In-CHA zeolites regardless of SiO2/Al2O3

ratio and are likely to be the active sites.
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3. Materials and Methods

3.1. Catalyst Preparation

The preparation of In-CHA was conducted according to our previous study [58].
In2O3 immobilized on CHA zeolite (In2O3/CHA) was obtained from In(NO3)3·nH2O (purchased
from Kanto Chemical Co., Inc., Japan) and the NH4

+-type CHA zeolite (Tosoh, SiO2/Al2O3 = 22.3)
through impregnation and calcination under air. Next, the RSSIE of In2O3/CHA was carried out
under H2 flow at 773 K to obtain In-CHA. Other In-exchanged zeolites (In-MFI, In-MOR, In-BEA,
and In-CHA(Al-rich)) were obtained in a similar manner from MFI (Tosoh, SiO2/Al2O3 = 22.3,
HSZ-820NHA), MOR (Tosoh, SiO2/Al2O3 = 20, JRC-Z-HM20), BEA (SiO2/Al2O3 = 25, JRC-Z-HB25,
provided by the Catalysis Society of Japan, Japan), and CHA (Tosoh, SiO2/Al2O3 = 13.7). The In/Al
ratio was estimated from the amounts of In(NO3)3·nH2O. H-CHA was prepared by calcination of
NH4

+-type CHA at 873 K under air for 1 h.

3.2. XRD

In-situ XRD measurements during RSSIE of In2O3/CHA was conducted using a Cu Kα radiation
source (Rigaku Ultima IV, Rigaku Corporation, Japan). XRD patterns were obtained while heating
In2O3/CHA from 303 to 773 K at 20 K/min under 5% H2/N2 flow (100 mL/min). For ex-situ XRD
measurements, a Rigaku MiniFlex II/AP diffractometer with Cu Kα radiation (Rigaku Corporation,
Japan) was used.

3.3. NH3-TPD

NH3-TPD experiments were investigated using a BELCAT (MicrotracBEL, Japan). The In-CHA
with different In/Al ratio (0.2, 0.4, and 0.8) was prepared in situ under 5% H2/Ar at 773 K and then
treated with 10% NH3/He at 473 K followed by He purge. After these treatments, the sample was
heated from 473 to 973 K under He flow while the desorbed NH3 (m/z = 16) was monitored by a mass
spectrometer (BELMass (MicrotracBEL, Japan)).

3.4. Catalytic Tests

Non-oxidative dehydrogenation of ethane was performed in a fixed-bed continuous flow system
at 933 K. The catalyst was prepared in situ by treatment of a 0.1 g of the In2O3 immobilized on the
corresponding zeolite under 10% H2/He flow (50 mL/min) at 773 K followed by He purge before the
reaction. Thereafter, the catalyst was heated to 933 K, and 10% C2H6/He (10 mL/min) was introduced.
For determination of conversions, yields, and selectivities, gas chromatography (GC) analysis was
conducted using Shimadzu GC-14B (Shimadzu Corporation, Japan) combined with a SHINCARBON
ST or a Unipack S column (Shinwa Chemical Industry Ltd., Japan). For dehydrogenation under a high
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concentration of ethane, the in-situ preparation of In-CHA(Al-rich) was carried out under 80% H2/N2

(10 mL/min) at 993 K for 30 min, and the reaction was investigated at the same temperature under
10 mL/min of 80% C2H6/N2. The GC analysis was performed using an Agilent 490 micro-GC with a
thermal conductivity detector. The conversion, selectivity, carbon balance, and TOF were calculated
as follows.

Conv. [%] =
[ethane]init − [ethane]

[ethane]init
× 100

Selec. [%] =
[ethylene]

[ethylene] + [methane]
× 100

Carbon balance [%] =
([ethane] + [ethylene] + [methane])

[ethane]init
× 100

TOF
[
s−1
]
=

Formation rate o f ethane
[
mmol·s−1

]
Total In amount [mmol]

3.5. In-Situ FTIR Spectroscopy

FTIR spectroscopy study was conducted using a home-made in-situ cell and FT/IR-4100 (JASCO,
Japan) with a mercury cadmium telluride detector. Prior to measurement, In-CHA was prepared in
situ by H2 treatment of a self-supported disk of In2O3/CHA (ca. 40 mg) at 773 K and was then kept
under vacuum at 773 K for 2 h. After taking a background spectrum below 153 K cooling the cell using
liquid N2, the sample was treated with H2 flow at 773 K for 2 h. Then, the temperature was decreased
to below 153 K again and the FTIR spectra were recorded without exposure to air.

4. Conclusions

In this work, a detailed characterization of In-CHA and the effect of zeolite on ethane
dehydrogenation were described. In-situ XRD revealed that the RSSIE of In2O3/CHA occurs without
decomposition of the zeolite framework. NH3-TPD measurement showed that the amount of acid
sites decreases with the increase of In loading amount. In the catalytic dehydrogenation of ethane,
In-CHA(Al-rich) exhibits the highest conversion value among the In-exchanged zeolites, including
In-MFI, In-MOR, and In-BEA. The combined results of kinetic experiments and in-situ FTIR spectroscopy
suggest that [InH2]+ ions are plausible active In-hydrides for In-CHA(Al-rich) and that the active In
species and/or reaction mechanism for other In-exchanged zeolites are different from those of In-CHA.
This study indicates that the small pores in CHA zeolites play an important role in their unique catalytic
activity. We are now investigating the effect of CHA pores on the formation of In hydrides and the
reaction mechanism of ethane dehydrogenation.
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