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Abstract: The article describes the synthesis of aminoorgano-functionalized silica as a prospective
material for catalysis application. The amino groups have electron donor properties which are
valuable for the metal chemical state of palladium. Therefore, the presence of electron donor groups
is important for increasing catalysts’ stability. The research is devoted to the investigation of silica
amino-modified support influence on the activity and stability of palladium species in 4-nitroaniline
hydrogenation process. A series of catalysts with different supports such as SiO2, SiO2-C3H6-NH2

(amino-functionalized silica), γ-Al2O3 and activated carbon were studied. The catalytic activity
was studied in the hydrogenation of 4-nitroaniline to 1,4-phenylenediamine. The catalysts were
characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron
spectroscopy, Fourier transform infrared spectroscopy and chemisorption of hydrogen by the pulse
technique. The 5 wt.% Pd/SiO2-C3H6-NH2 catalyst exhibited the highest catalytic activity for 4-nitroaniline
hydrogenation with 100% conversion and 99% selectivity with respect to 1,4-phenylenediamine.
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1. Introduction

Supported catalysts have wide applications in fine organic synthesis [1–4], industrial synthetic
processes of petrochemicals [5–7] and pharmaceutical production [8–10]. However, in modern catalysis
there is still the problem of increasing the activity and selectivity of catalysts, as well as the search for
new catalytically active materials [11–16].

Possible ways to increase catalytic activity and selectivity include the development of catalysts
synthesis methods, the optimization of reaction conditions, catalyst modification by different
chemical elements and compounds, the application of supports and modification of the catalyst
surface [4,11–14,16–20]. Modification of catalyst support surface is one possible solution to increase
catalysts’ activity and stability. The presence of functional groups on the support surface has great
influence on the electronic state of active metal and metal dispersion [21]. The aminopropyl groups
provide a unique possibility for further surface modification. Amino groups’ modified supports are
very useful for further surface nucleophilic substitution and obtaining the highest metal dispersion
and study of this effect is a sufficiently novel trend in catalysis [4,19,20,22–25]. A lot of articles are
dedicated to the application of amino-functionalized mesoporous silica in medicine, pharmaceutics
and smart materials, however, publications on their influence on active metals’ catalytic properties
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are fragmental [26–31]. The present study reports the synthesis of aminoorgano-functionalized silica
immobilized by palladium nanoparticles using the sol-gel method. This allows the synthesization
of various hybrid composition materials by the one-pot method. For comparison, amorphous silica,
activated carbon and gamma-alumina were used as supports for palladium particles.

The catalytic activity of synthesized catalysts was tested in 4-nitroaniline hydrogenation (Figure 1).
Liquid phase hydrogenation of substituted nitrobenzenes is an essential technology for the production
of various aromatic amines–key intermediates for manufacturing agrochemicals, isocyanates,
pharmaceuticals and dyes [32–35]. The most commonly used catalysts for different hydrogenation
processes contain platinum group metals (palladium, platinum, iridium, etc.) attached to different
supports [33–38]. Palladium nanoparticles were found to be the most active and have a high potential
for the catalytic application of essential chemical products [33–35]. However, the catalysts’ stability is
an open issue for such types of catalyst, therefore the development of active and stable catalysts is the
focus of the current article.
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Figure 1. The scheme of 4-nitroaniline hydrogenation to 1,4 phenylenediamine.

Compounds such as 4-nitroaniline are used as an industrial raw material to produce agricultural
chemicals, rubber compounding agents, synthetic resin additives, polyamides, pharmaceuticals and
dyes. The conductive polyamines can be used in electronics [39], and also as antioxidants and
preservatives [40–42]. The polyamines can find a wide application in films, materials and membranes
due to their biodegradable and electro-conductive properties.

2. Results and Discussion

2.1. FTIR Spectroscopy of Silica Supports

Silica modification with aminopropyl groups with an NH2 content of 30 wt.% was verified by
Fourier transform infrared spectroscopy (Figure 2). The analysis of the FTIR spectra of modified and pure
supports revealed the broad bands centered around 3441 cm−1 and correspond to O-H groups’ vibrations.
On the other hand, the spectrum of amino-functionalized silic peaks at 2940 and 2886 cm−1 and is assigned
to the C-H stretching vibrations of CH- and -CH2- groups, which can be attributed to the incorporation
of the amino group [22,43]. The peak of the C–N stretching vibration at 1140 cm−1 overlaps with the
Si-O-Si stretching band in the range 1000–1200 cm−1. The peak of the N–H stretching vibration at
~3295 and 3358 cm−1 overlaps with a wide peak of stretching vibration at O–H at 3080 cm−1 [22,43].
The intense bands appearing at 1059 and 1176 cm−1 were assigned to the asymmetric stretching
vibrations Si-O-Si. The symmetric stretching vibrations of Si-O-Si, deformation vibrations of O-Si-O
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and C-Si-O, and in-plane stretching vibrations Si-O can overlap in the 582, 814 and 953 cm−1 range.
The bands of Si-O stretching vibrations give reason to suggest the existence of SiO2 network defects.
The band observed at 467 cm−1 is assigned to the plane-stretching vibrations of Si-C [43].
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Figure 2. FTIR spectra of supports’ surface: (a) SiO2; (b) SiO2-C3H6-(30%)NH2.

However, the use of tetraethoxysilane as a silica precursor led to the formation of surface
methyl-functionalized silica. This was certified by a broad peak in the range 1338–1500 cm−1 which
can be assigned to the C-H deformation vibrations of aliphatic bands [43].

2.2. The Pulse Chemisorption

The hydrogen pulse chemisorption data are presented in Table 1. Silica surface modification by
tetraethoxysilane results in some increase in metal dispersion, and a concentration of active sites and a
metallic surface area. However, metal dispersion remains considerably low.

Table 1. Hydrogen pulse chemisorption data.

Simple Metal Dispersion,% Metallic Surface Area,
m2/g Metal

Concentration of Active
Center mmol/g

5 wt.% Pd/SiO2-C3H6-(30%)NH2 5.0 21 0.017

5 wt.% Pd/SiO2 4.3 19 0.016

2.3. XPS of Catalysts before the Reaction

The surface chemical composition of silica supports determined by X-ray photoelectron spectroscopy.
The high-resolution XPS spectra of C 1s, N 1s, Si 2p are shown in the appropriate figure (Figure 3).
According to XPS data, the silica contains O, C, Si elements. The synthesized amino-organomodified
silica contains O, C, Si and N elements.
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Figure 3. The high-resolution XPS spectra of (a) C 1s; (b) N 1s; (c) Si 2p; energy core-level of
SiO2-C3H6-(30%)NH2 and (d) Pd 3d energy core-level of 5% wt. Pd/SiO2-C3H6-(30%)NH2.

The presence of quantities of aliphatic carbon compounds in silica is a result of the inclusion of an
aminopropyl substituent in the silica structure, and the incomplete hydrolysis of silane and carbon
pollution. The C-N and C-Si bonds prove the inclusion of aminopropyl substituents in the silicon oxide
matrix. According to the published data [43,44], the peaks at 399.5 and 401.6 eV in the spectrum of N 1s
can be attributed to C-N and N-H bonds that correlate with the IR-spectroscopy data (Figure 2) [43,44].
The bonds -C-ONa belong to molecules of sodium carbonate (Figure 3) [43,44].

Figure 3d shows the model decomposition of the XPS high-resolution spectra of Pd 3d energy
core-level of 5% wt. Pd/SiO2-C3H6-(30%)NH2 catalyst before the reaction. The XPS data of the
other catalysts were published in reference 52 of this paper. The atomic concentration of palladium
compounds is given in Table 2. The model decomposition of Pd 3d spectra for 5 wt.% Pd/γ-Al2O3,
5 wt.% Pd/SiO2, and 5 wt.% Pd/SiO2-C3H6-(30%)NH2 catalysts showed the presence of two palladium
chemical states (Table 2, Figure 3d) [45]. Different states of palladium were observed in the catalyst of
activated carbon, particularly metallic palladium Pd0, oxidized PdO on metallic Pd0 and palladium
oxides PdO, PdO2 [45].

Table 2. The spectrum data of catalysts before the reaction.

Catalyst Binding Energy, eV Chemical State at,%

5 wt.% Pd/SiO2 [45]
334.87 Pd0 1.47

337.09 PdO 0.17

5 wt.% Pd/SiO2-C3H6-NH2
334.44 Pd0 2.12

336.59 PdO/Pd0 0.15

An interesting observation was a shift in the binding energy by ~0.5 eV of palladium metal
in the 5 wt.% Pd SiO2-C3H6-(30%)NH2 catalyst in comparison to the standard binding energy of
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metal palladium (335 eV). There was an assumption that this may be the result of the displacement
of the electron cloud of amino groups to palladium atoms. This effect can take place in case of Pd
nanoparticles’ coordination by amino groups. A comparatively similar interaction between palladium
nanoparticles and nitrogen-containing supports was reported in several articles devoted to palladium
nanostructured materials synthesis and characterization [24,46,47]. Typically, a Pd charging by amino
groups has a positive influence on hydrogen chemisorption on active metal that can have a positive
effect on the hydrogenation of the substrate [24,46,47].

2.4. XPS of Used Catalysts

The atomic surface concentrations of palladium and palladium oxide decrease in 5 wt.%
Pd/γ-Al2O3, 5 wt.% Pd/SiO2 and 5 wt.% Pd/C catalysts (Tables 2 and 3) which can be attributed
to metal particles’ diffusion into a matrix of support [45]. However, for amino-modified sample 5 wt.%
Pd/SiO2-C3H6-(30%)NH2, a change in active metal surface concentration was not observed. The quantity
of zero valence metal in 5 wt.% Pd/SiO2 and 5 wt.% Pd/SiO2-C3H6-(30%)NH2 samples before and after
reaction did not change significantly (Table 3). The changes in Pd0 surface concentrations in 5 wt.%
Pd/C and Pd/γ-Al2O3 catalysts were the most noticeable [45].

Table 3. The spectrum data of catalysts after used in reaction.

Catalyst Binding Energy, eV Chemical State At,%

5 wt.% Pd/SiO2 [45]
335.04 Pd0 1.04

337.25 PdO 0.06

5 wt.% Pd/SiO2-C3H6-(30%)NH2
334.51 Pd0 2.10

336.50 PdO/Pd0 0.23

In the case of the 5 wt.% Pd/C catalyst, the quantity of PdO decreased on 0.7 at.% and the content
of PdO2 was increased on 0.7 at.% (Tables 2 and 3). The contents of PdO and Pd0 in 5 wt.% Pd/SiO2

and 5 wt.% Pd/γ-Al2O3 catalysts were decreased.

2.5. SEM

The morphology of the amino-functionalized mesoporous silica was studied by scanning electron
microscopy (Figure 4). The synthesized silica particles have a spherical shape. Average particle size
diameter was found to be 1 µm before and after catalysts’ synthesis.
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2.6. TEM

The images of transmission electron microscope were obtained for the reliable determination of
palladium particle size (Figure 5). The images show that the particles are quite different in size.
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Pd/SiO2; (c) 5 wt.% Pd/SiO2-C3H6-NH2; (d) 5 wt.% Pd/C.
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The particle size in the 5 wt.% Pd/SiO2-C3H6-(30%)NH2 catalyst varies from 3 to 10 nm; in the
5 wt.% Pd/SiO2 catalyst, particle size varies from 2 to 10 nm; in the 5 wt.% Pd/γ-Al2O3 catalyst, particle
size varies from 5 to 70 nm; and in the 5 wt.% Pd/C catalyst, particle size varies from 30 to 100 nm.
In general, the data agree with the result of hydrogen pulse chemisorption.

Depending on the size of the metal particles, according to both methods (microscopy and pulse
chemisorption), the catalysts can be structured in the following row: 5 wt.% Pd/γ-Al2O3 ≈ 5 wt.% Pd/C
> 5 wt.% Pd/SiO2 > 5 wt.% Pd/SiO2-C3H6-(30%)NH2.

The TEM images with a high resolution were used to analyze the atomic lattice parameters
of the catalytic phase. The interplanar distance of palladium particles in 5 wt.% Pd/γ-Al2O3 is of
the order of ~0.14 nm (220), which corresponds to the metallic palladium phase. Other palladium
particles in 5 wt.% Pd/γ-Al2O3 with an interplanar distance of about ~0.26 nm (111) belong to
palladium oxide. The interplanar distances of ~0.14 nm (220) were observed for a catalyst of 5 wt.%
Pd/SiO2-C3H6-(30%)NH2 [48–50]. The TEM data of 5 wt.% Pd/SiO2 catalyst also show the interplanar
spacings of ~0.14 (220) and ~0.26 nm (111) [48–50], which correspond to the metal and oxide state of
palladium. The interplanar distances of ~0.14 (220) and ~0.26 nm (111) were observed for a catalyst of
5 wt.% Pd/C [48–50].

2.7. TPD of Matrices

According to the results of the TPD NH3 study, the modification of silica by amino groups
increased the amount of acid sites compared with silica (Figure 6).
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Figure 6. The acid properties of supports. The heating rate was 10 ◦C per minute. The composition of
gas mixture is 3% NH3 in He flow. (a) SiO2, (b) γ-Al2O3, (c) SiO2-C3H6-NH2.

The alumina contains less acidic properties than amino-modified silica. Thus, according to
the quantity and acid sites’ strength, the catalyst supports can be given in the following order:
SiO2-C3H6-NH2 > γ-Al2O3 > SiO2.

2.8. The Activity of Synthesized Catalysts

In all cycles for all catalysts, the conversion of 4-nitroaniline to 1,4-phenylenediamine was
100%. A sufficient quantity of hydrogen for completely reduce to 4-nitroaniline is 3.62 mmol. Thus,
according to the data of the catalysts, activity can arrange in the order: 5 wt.% Pd/SiO2-C3H6-(30%)NH2
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(10.1 mole/sec.·10−5) > Raney nickel (4.8 mole/sec.·10−5) [51] > 5 wt.% Pd/C (4.4 mole/sec.·10−5) ≈ 5 wt.%
Pd/γ-Al2O3 (4.4 mole/sec.·10−5) > 5 wt.% Pd/SiO2 (0.8 mole/sec.·10−5) (Figure 7, Table 4).
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Figure 7. Kinetic curves of hydrogen uptake in the 4-nitroaniline hydrogenation in aqueous
2-propanol (0.68 mol fraction). T = 298K, m(cat) = 0.30 ± 0.05 g., m(NA) = 0.50 ± 0.05 g. (a) 5 wt.%
Pd/SiO2-C3H6-(30%)NH2; (b) 5 wt.% Pd/C; (c) 5 wt.% Pd/γ-Al2O3; (d) 5 wt.% Pd/SiO2.

Table 4. Catalytic recyclability test for a successive five cycles of 4-nitroaniline hydrogenation.

Catalyst
The Hydrogen Consumption Rate 10−5 Mole(H2)/sec.

1 run 2 run 3 run 4 run 5 run

5 wt.% Pd/SiO2-C3H6-(30%)NH2 10.1 9.5 8.8 8.3 8.0
5 wt.% Pd/SiO2 [45,52] 0.8 0.8 0.8 0.7 0.6

A drastic increase in the catalytic activity for Pd/SiO2-C3H6-(30%)NH2 sample compared to
Pd/SiO2 can be subscribed to an increase in the active surface as a result of some decrease in Pd
nanoparticles’ average diameter. However, Pd nanoparticles’ surface modification by aminogroups
and a sift in electron density to Pd nanoparticles can be the main reason for the increase in Pd
activity [24,46,47].

Comparison of the catalysts’ activity after a catalyst recycle showed that the highest activity after
five reaction cycles was observed for 5 wt.% Pd/SiO2-C3H6-(30%)NH2 (Table 4, Figure 7). The catalysts’
stability can be arranged in the following order: 5 wt.% Pd/SiO2-C3H6-(30%)NH2 > 5 wt.% Pd/SiO2 >

5 wt.% Pd/C ≈ 5 wt.% Pd/γ-Al2O3.
Gas chromatographic analysis made it possible to calculate the yield of 1,4-phenylenediamine in

the hydrogenation reaction after each repeated addition of 4-nitroaniline (Table 5). In all samples, at the
end of the reaction, in each input of 4-nitroaniline, traces of the initial compound were not detected,
and the hydrogenation conversion of 4-nitroaniline was considered to be close to full conversion.

Analysis of 4-nitroaniline conversion rate and the formation of 1,4-phenylenediamine showed a
similar tendency to decrease in the values of the rates, as for the consumption of hydrogen (Table 4).
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Table 5. Data of gas chromatographic analysis in hydrogenation of 4-nitroaniline to 1,4-phenylenediamine.

Catalyst Conversion * of
4-nitroaniline

Yields * of
1,4-phenylenediamine

5 wt.% Pd/SiO2-C3H6-(30%)NH2 100 100
5 wt.% Pd/C 100 100

5 wt.% Pd/SiO2 100 100
5 wt.% Pd/γ-Al2O3 100 100

* in each reaction cycle.

The second catalyst with a lower content of amino groups was obtained to confirm the effect of
the number of amino groups on the surface.

A kinetic experiment showed that the activity of the 5 wt.% Pd/SiO2-C3H6-(30%)NH2 catalyst
with an NH2 content of 30 wt.% is two times higher than the 5 wt.% Pd/SiO2-C3H6-(10%)NH2 catalyst
with a content of 10 wt.% NH2 groups: 10.1·10−5 mole (H2)/sec and 5.5·10−5 mole (H2)/sec. Kinetic
curves of the hydrogen uptake of the catalytic hydrogenation of 4-nitroaniline on organically modified
catalysts are shown in Figure 8. The higher the concentration of amino groups on the matrix surface
was fixed, the more active the palladium deposited on the silica matrix [24,46,47].
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Figure 8. Kinetic curves of hydrogen uptake in the 4-nitroaniline hydrogenation in aqueous
2-propanol (0.68 mol fraction). T = 298K, m(cat) = 0.30 ± 0.05 g., m(NA) = 0.50 ± 0.05 g. (a) 5 wt.%
Pd/SiO2-C3H6-(30%)NH2; (b) 5 wt.% Pd/SiO2-C3H6-(10%)NH2.

According to gas chromatography analysis, the conversion of 4-nitroaniline and the yield of
1.4-phenylenediamine also amounted to 100%.

3. Materials and Methods

3.1. Chemicals and Materials

Tetraethoxysilane (99.9 wt.% Vecton, St. Petersburg, Russia), 2-propanol (99 wt.% Vecton,
St. Petersburg, Russia) aminopropyltrimetoxysilane (97 wt.%, Sigma Aldrich, Hamburg, Germany),
dodecyldimetylamine N-oxyde (30 wt.% solution in water, Sigma Aldrich, Saint-Quentin-Fallavier,
France), Cyclohexane (99 wt.%, ECOS-1, Moscow, Russia), sodium carbonate (Vecton, St. Petersburg,
Russia), hydrochloric acid (Vecton, St. Petersburg, Russia), palladium chloride (PdCl2·2H2O, JSC
“Aurat”, Moscow, Russia), aqueous ammonia solution (60 wt.%, Vecton, St. Petersburg, Russia) the
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high-purity gases (H2 99.998%, Ar 99,99%) for the catalyst synthesis were used. The γ-Al2O3 and
activated carbon ARD-2 were purchased from Reachim Ltd. Russia and were used for catalyst synthesis
as received.

3.2. Sol-Gel Method

3.2.1. Synthesis of Silica

To synthesize spherical silica nanoparticles, 700 mL of distilled water was added to 500 mL of
2-propanol in a flat-bottomed flask and the solution was stirred to obtain a uniform solution. Then,
200 mL of tetraethoxysilane was added to the solution. The reaction mixture was kept under vigorous
stirring for 30 min with a mixing rate of 1500 rpm. Subsequently, 50 mL of aqueous ammonia solution
(60 wt.%) was added dropwise to the reaction mixture over 30 min. The mixture was stirred for 2 h
with a mixing rate of 1000 rpm. Then, the precipitate was filtered, washed with distilled water and
dried at 200 ◦C for 3 h on air.

3.2.2. Synthesis of Amino-Functionalized Silica

The first step of the reaction procedure was to prepare the oil/water emulsion. For this, 104 mL of
distillated water and 16 mL of pure ethanol were mixed with a stirrer with a mixing rate 1500 rpm. Then,
2 mL of cyclohexane was added as a co-template. After the addition of 4.8 mL of dodecyldimetylamine
N-oxyde to the solution, the formation of emulsion was observed. To achieve a higher emulsion
dispersion, the mixture was treated by ultrasound for 5 min in ultrasonic bath 36–42 kHz, 200 W.
In order to homogenize the reaction mixture, an extra 0.2 mL of surfactant was added. Then, 0.8 mL
for SiO2-C3H6-(30%)NH2 and 0.3 mL for SiO2-C3H6-(10%)NH2 of aminopropyltrimetoxysilane were
adjusted in the system for particles’ formation. The solution was stirred for 10 min at a reaction
temperature 60 ◦C. Then first portion of tetraethoxysilane (1 mL) was added to the mixture and
solution opalescence was immediately observed. The solution was stirred for 24 h at room temperature.
The final solution was a viscous colloid of white color, which was sufficiently stable. A vacuum
filtration of solution with 0.2 micrometers membrane filter was used to separate the dispersed phase
from the solution. The material was dried in vacuum oven at pressure of 0.4 bar and temperature
of 100 ◦C.

3.3. Catalyst Preparation

The synthesis of Pd-based catalysts was made by the precipitation of palladium hydroxide due
to hydrolysis reaction by the addition of 3 mM H2PdCl4 solution in water to 1g of support (SiO2,
γ-Al2O3 or activated carbon) suspended in a 40 mL aqueous solution of 0.1 M Na2CO3 and 0.1M
solution of sodium dodecyl sulfate using an ultrasonic bath (Bandelin, 10P, Mannheim, Germany).
The solution of H2PdCl4 was prepared in 0.2 M hydrochloric acid. The suspension was mixed for 3 h
at 35 ◦C in an ultrasonic bath. The catalysts sample was filtered, thoroughly washed with distilled
water and dried at 65 ◦C under air. Prior to kinetic experiments, catalysts’ sample was reduced at
250 ◦C for 60 min in the hydrogen flow in tube furnace than cooled to ambient temperature and
flashed with nitrogen and immediately transferred to the catalytic reactor. The following samples were
synthesized by this methodology and denoted as 5 wt.% Pd/γ-Al2O3, 5 wt.% Pd/SiO2, 5 wt.% Pd/C, 5
wt.% Pd/SiO2-C3H6-NH2, with an NH2 content of 30 wt.%.

3.4. Catalyst Characterization

3.4.1. Fourier Transform Infrared Spectroscopy (FTIR)

The diffuse reflectance IR spectroscopy was carried out using the FTIR spectrometer IRPrestige-21
(Shimadzu, Kyoto, Japan) equipped with a diffuse reflection attachment. DRS-8000 was used for the
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qualitative composition of catalyst surface. The resolution of all spectra was 4 cm−1 and spectra were
registered in the wave number range 490–4000 cm−1.

3.4.2. Hydrogen Pulse Chemisorption

The metal dispersion and the chemically active surface area were determined due to pulse
chemisorption analysis by applying a pulsed titration of the catalyst with a hydrogen. The spectra were
registered on an automatic analyzer of chemosorption AutoChem HP 2950 (Micromeritics, Norcross,
GA, USA).

3.4.3. XPS

X-ray photoelectron spectroscopy (XPS) data were obtained using ES-2403 spectrometer
(manufacturer: Institute for Analytic Instrumentation of RAS, St. Petersburg, Russia) with anode Mg
Kα (hν = 1253.6 eV), energy analyzer PHOIBOS 100-MCD5 (SPECS, Berlin, Germany) and X-Ray source
XR-50 (SPECS, Berlin, Germany). All the data were acquired at an X-ray power of 250 W. Survey spectra
were recorded at an energy step of 0.5 eV with the analyzer pass energy 40 eV, and high resolution
spectra were recorded at an energy step of 0.05 eV with the analyzer pass energy 7 eV. Samples were
degassed within 180 min before analysis and were stable during the treatment. The obtained spectra
were analyzed using CasaXPS software taking sensitivity factors in the quantity analysis of data
into account.

3.4.4. SEM

The morphological characteristics of the amino-functionalized mesoporous silica and catalyst
were examined by scanning electron microscopy (SEM, TESCAN, Vega-LSU) equipped with X-ray
microanalysis (OXFORD INCA PentaFETx3). Scanning electron microscope images were acquired at a
magnification of 66.1 kX at 20 kV with an SE detector.

3.4.5. TEM

The structural properties of the samples were examined using an electron microscope (JEM-2200FS,
accelerating voltage 200 kV) in the transmission high-resolution electron microscopy mode (PFEM,
high-resolution transmission electron microscopy—HRTEM). A model of the microscope JEOL
JEM-2200FS showed an accelerating voltage of 200 kV. Resolution: by points—0.19 nm; on the
lattice—0.1 nm; in the mapping mode—0.2 nm; in the HAADF mode—0.14 nm. For the analysis of the
elemental composition, electron microscopy was used in the energy dispersive X-ray spectroscopy
mode (EMF, energy-dispersive X-ray spectroscopy (EDS)).

3.4.6. Temperature Programmed Desorption (TPD) of NH3

The study of support acid properties was provided by AutoChem HP 2950 automatic chemisorption
analyzer (Micromeritics, Norcross, GA, USA). The high purity grade helium was used by way of carrier
gas. The signal was recorded by a heat conductivity detector. The studied sample was pre-processed
in mixture 3% NH3-He flow at room temperature. The excess of NH3 gas was desorbed by flushing
the system with helium upon gradual heating with a rate of 10 ◦/min. The desorption of NH3 was
carried by heating the sample up to 950 ◦C with a constant heating rate of 10 ◦C per minute. Then,
the sample was cooled to ambient temperature.

3.4.7. Catalysts Activity Experiments Description

The stirred reactor with the temperature-control was used to carry out 4-nitroaniline hydrogenation
to 1,4-phenylenediamine. The catalysts 5 wt.% Pd/SiO2-C3H6-NH2, 5 wt.% Pd/SiO2, 5 wt.% Pd/γ-Al2O3

and 5 wt.% Pd/C were tested in the hydrogenation of 4-nitroaniline in the environment of a water
solution of 2-propanol (0.68 mole fraction). Before experiments, the reactor was flushed three times with
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hydrogen for air removal. The reaction rates were defined by volumetric measurements of hydrogen
consumption. The rates of reaction were calculated as an inclination angle tangent of kinetic curves of
hydrogen consumption. The test for the contribution of homogeneous catalysis to the reaction rate
was performed by Sheldon’s filtration test methodology. After the partial conversion of 4-nitroaniline,
the reaction stopped and the catalyst was extracted by filtration. Further to this, the reaction was
continued without catalyst, but chemical transformation wasn’t observed. Thus, the hydrogenation
was catalyzed only by heterogeneous catalysts.

Chromatographic analysis was performed using a gas chromatograph (Crystal, manufacturer
Chromatek, Yoshkar-Ola, Russia). The reaction rate was controlled through the 4-nitroaniline conversion.
After completion, the catalyst was separated from the reaction mixture by centrifugation.

3.4.8. Deactivation Experiments Using Recovered Catalysts

The deactivation of catalysts was studied by the hydrogenation of 4-nitroaniline to
1,4-phenylenediamine in a water solution of 2-propanol with the repeated injection of 4-nitroaniline at
the end of reaction. Five repeated injections of 4-nitroaniline were carried out on each catalyst.

4. Conclusions

Silica surface modification with aminopropyltrimetoxysilane allows the effective synthesis of
catalytically active Pd nanoparticles with diameters varying from 3 to 10 nm. Pd species mainly
present in the form of metal palladium and palladium oxide(II). Silica surface modification with
amino groups results in a higher palladium surface concentration (2.12 at%) compared to unmodified
silica (1.47 at%) according to XPS data. This results in an increase in sample activity in p-nitroaniline
hydrogenation reaction up to 10.1 mole(H2)/sec.·10−5 for 5 wt.% Pd/SiO2-C3H6-(30%)NH2 compared
to 0.8 mole(H2)/sec.·10−5 for the unmodified sample 5 wt.% Pd/SiO2.

The comparison of TPD and kinetics data shows a certain correlation. The higher the acidity of
the support, the higher the activity of supported palladium.

An increase in surface aminogroups concentration in the case of samples 5 wt.% Pd/SiO2-
C3H6-(30%)NH2 and 5 wt.% Pd/SiO2-C3H6-(10%)NH2 results in an appropriate increase in catalytic
activity by 1.9 times. This confirms the hypothesis that the electron-donating properties of the amino
group have a positive effect on the catalytic activity of the supported metal. This also confirms the
kinetic experiments using an unmodified, commonly used Pd supported on activated carbon, alumina
and Raney nickel samples. Silica surface modification with amino aminopropyltrimetoxysilane has
a positive influence on catalyst stability because of palladium nanoparticles’ strong interaction with
silica compare to unmodified support.
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