
Supplementary Materials

Kinetic and Mechanistic Study of Rhodamine B Degradation by H₂O₂ and Cu/Al₂O₃/g-C₃N₄ Composite

Chunsun Zhou[†], Zhongda Liu[†], Lijuan Fang, Yulian Guo, Yanpeng Feng, Miao Yang*

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China

* Corresponding Author: yangmiao@whut.edu.cn (M.Y.)

Figure S1. (A) $[H_2O_2]$, (B) $[Rh B]/[Rh B]_0$, and (C) $ln([Rh B]/[Rh B]_0)$ as a function of time in the presence of 1 g/L Cu/Al₂O₃/CN composite at room temperature. Reaction conditions: $[Rh B]_0 = 20 \text{ mg/L}$, $[H_2O_2]_0 = 10 \text{ mM}$, V = 100 mL, pH 4.9 (unadjusted).

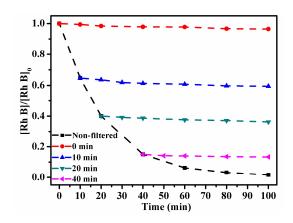


Figure S2. [Rh B]/[Rh B]₀ as a function of time in nonfiltered Cu/Al₂O₃/CN suspension and filtrates obtained at selected time intervals. Reaction conditions: [catalyst] = 1g/L, [Rh B]₀ = 20 mg/L, [H₂O₂]₀ = 10 mM, V = 100 mL, 25°C, pH 4.9 (unadjusted).

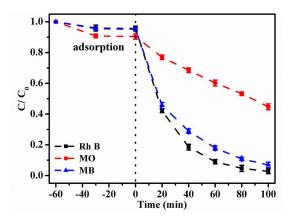
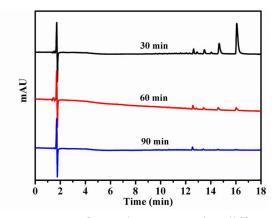
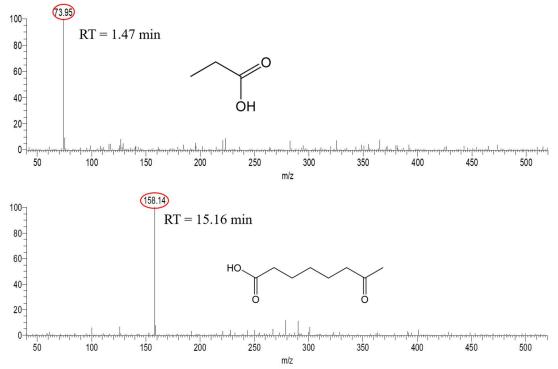
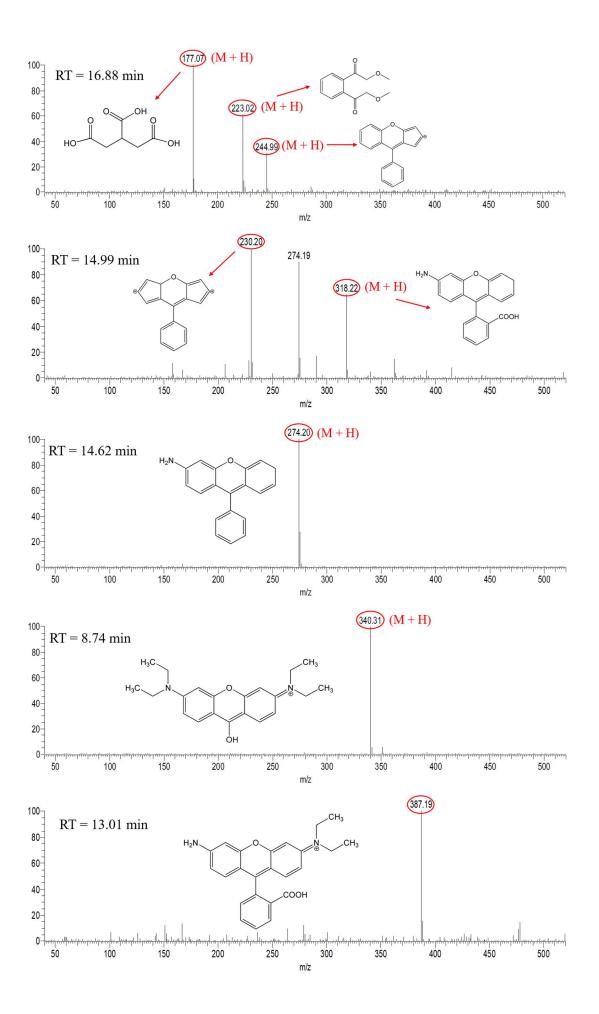





Figure S3. C/C₀ as a function of time with different organic pollutants in the presence of 1 g/L Cu/Al₂O₃/CN composite. Reaction conditions: $[dye] = 20 \text{ mg/L}, [H_2O_2]_0 = 10 \text{ mM}, V = 100 \text{ mL}, 25^{\circ}\text{C}, \text{pH 4.9} (unadjusted).$

Figure S4. HPLC chromatograms of samples extracted at different reaction times in Rh B degradation. Reaction conditions: [catalyst] = 1g/L, [dye] = 20 mg/L, $[H_2O_2]_0 = 10 mM$, V = 100 mL, 25°C, pH 4.9 (unadjusted).

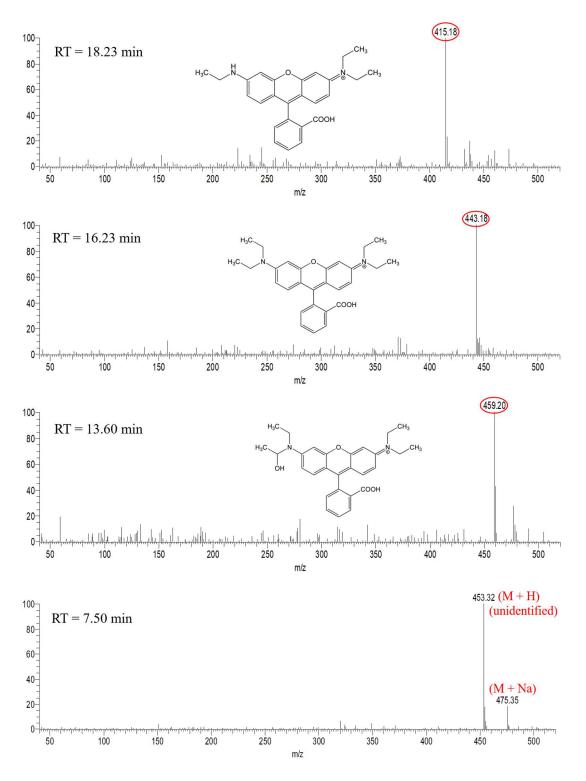


Figure S5. Mass spectra of the degradation products in the sample extracted at 60 min

in Rh B degradation.

Catalyst	SSA (m²/g)	[cata] (g/L)	[Rh B] (mg/L)	[H ₂ O ₂] (mM)	рН	T (°C)	Time (min)	Degradation Ratio (%)	k _{obs} (min ⁻¹)	Cu leaching (ppm)	Ref
Cu/Al ₂ O ₃ /CN	146.6	1	20	10	unadjusted	25	100	96.4	0.039	0.16	This work
CuO (nanowires)	14.29	0.2	10	14.1	unadjusted	35	280	92	0.0098	N/A	[63]
CuO (nanoparticles)	10.66	0.2	10	14.1	unadjusted	35	280	61	0.0036	N/A	[63]
CuO (nanorods)	10.78	0.2	10	14.1	unadjusted	35	280	86	0.007	N/A	[63]
CuO (nanopetals)	8.4	0.2	200	1633	unadjusted	25	5	85	0.006	N/A	[64]
CuO (nanoflowers)	5.5	0.2	200	1633	unadjusted	25	5	81	0.0055	N/A	[64]
CuO (commercial)	1.7	0.2	200	1633	unadjusted	25	5	14	0.0004	N/A	[64]
Fe-g-C ₃ N ₄ /GMC	370.5	0.8	50	40	unadjusted	N/A	40	98	0.1837	1.04	[69]
5Cu/Al ₂ O ₃ -750	147.6	1	10	1000	5.14	50	30	98.53	0.14	0.45	[48]
Cu@SiO ₂ -R200	N/A	0.5	10	29.4	neutral	60	10	95	0.242	0.07	[73]
Cu doped LaTiO ₃	8.5	1.4	8	40	4	N/A	120	94	N/A	1.4	[27]
Cu-g-C ₃ N ₄	N/A	0.2	10	300	neutral	N/A	15	92.3	N/A	N/A	[70]
Cu-Al ₂ O ₃ -g-C ₃ N ₄	284.1	0.5	10	12.5	neutral	N/A	100	98	N/A	0.25	[40]
Cu/g-C ₃ N ₄	27.18	0.8	50	40	neutral	25	60	99.2	N/A	1.18	[71]
Cu-Mn/CeO ₂ /SBA-15	286	0.2	2000	400	3	70	210	99	N/A	N/A	[72]

Table S1. Comparison of the catalytic activities of Cu/Al₂O₃/CN composite with other copper-based Fenton-like catalysts

SSA: specific surface area.

N/A: not available.