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Abstract: Poisoning effects by alkali metal chlorides is one of the major reasons for the deactivation
of SCR catalyst in biomass-fired plants. In this study, the influence of KCl on two vanadium-based
catalysts with different promoters, V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2, was investigated.
The catalytic activity of the fresh V2O5-WO3/TiO2 was higher than that of V2O5-Ce(SO4)2/TiO2 at low
temperatures. V2O5-Ce(SO4)2/TiO2 performed better than V2O5-WO3/TiO2 when KCl was deposited
on the catalyst surface. Both poisoned catalysts were efficiently regenerated by SO2 treatment.
The characterization results show that the reducibility and acidity of the catalysts were weakened by
KCl deposition but regenerated by SO2.
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1. Introduction

NOx from exhaust emissions is an important precursor of pollution sources such as smog and
acid rain, causing severe damages to the natural environment. Selective catalytic reduction (SCR),
with high efficiency of NOx removal, is a wide-spread technology for reducing the emissions of NOx

from the flue gas of power plants and the exhaust gas of vehicles [1–4]. NOx is reduced into harmless
N2 by NH3 over catalysts, following Reactions (1)–(3) with different NO/NO2 ratios [3,5–7]:

Standard-SCR:
4NO + 4NH3 + O2 → 4N2 + 6H2O (1)

Fast-SCR:
NO + NO2 + 2NH3 → 2N2 + 3H2O (2)

NO2-SCR:
6NO2 + 8NH3 → 7N2 + 12H2O (3)

Biomass has been used as a renewable fuel due to its environmentally-friendly features. However,
the deactivation of the SCR catalyst used in the biomass-fired/cofired boilers is faster than that of
coal-fired boilers [8]. The major difference between biomass and fossil fuels is the amount of alkali
earth metals contained: it is higher in biofuels than in fossil fuels. Meanwhile, alkali earth metals are
always contained in the flue gas and result in the deactivation of SCR [9].
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The effect of alkali earth metals on catalysts, especially the commercial VWTi catalysts, has been
investigated by many researchers. The activity of SCR catalysts gradually decreases as a result of the
alkali accumulation on the catalyst [10]. The acidity of V2O5-WO3/TiO2 is affected by alkali earth metals
owing to the reduction in the concentration of V–OH Brønsted acid sites and the reducibility of active
V5+ sites, which play a crucial role for the SCR reaction [11–13]. The effect of alkali metals on vanadium
active sites has also been confirmed by DFT calculations [11]. V2O5-WO3/TiO2 is deactivated more
seriously by K than Ca and Mg due to the greater decrease in the amount and stability of Brønsted acid
sites [14]. The deactivation degree of V2O5-WO3/TiO2 caused by different forms of calcium follows the
order: CaCO3 > CaO > CaSO4. SO4

2− can partly mitigate the CaO deactivation effect on acid sites [15].
A general method to enhance the alkali-resistance is to deposit promoters on the catalyst surface, which
can increase the number of surface acid sites and strengthen their stability, thus improving the alkali
metal resistance of commercial SCR catalysts [16]. Cerium, one of the promoters, is proved to enhance
V2O5/TiO2 NOx conversion [17].

Great efforts have been focused on the regeneration of poisoned catalysts and many methods were
proposed [18,19], such as water-washing and SO2-treatment. SO2 usually appears in the flue gas and
leads to SCR catalysts deactivation. NH4HSO4 is deposited on the surface through the reaction among
SO2, H2O, and NH3, plugging the catalyst pores at low temperatures [20–22]. Ce-based oxide catalytic
activity can be significantly enhanced through SO2-treatment, and the surface acidity of catalyst is
strengthened through impregnation with H2SO4 solution [22,23]. It is of great interest to study the
regeneration of alkali metals-poisoned catalysts through SO2 treatment.

The impact of KCl on the V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2 catalysts (denoted as
VWTi and VCeTi, respectively) was studied. The catalyst poisoning in stationary NOx sources
applications (biomass fired/cofired boilers) was simulated. Experiments were conducted to investigate
the regeneration of the poisoned catalysts through SO2 treatment. The fresh, poisoned, and regenerated
catalyst samples were characterized by H2-TPR and NH3-TPD experiments. The catalytic activity
of the fresh VWTi was higher than that of VCeTi at low temperature, while VCeTi performed better
than VWTi when KCl was deposited on the catalyst. SO2-treatment could efficiently regenerate the
poisoned catalysts, especially the VCeTi catalyst.

2. Results and Discussion

2.1. Poisoning Effect of KCl on VWTi Catalyst

Figure 1 illustrates the performance of the VWTi catalyst with different KCl deposition contents
under different calcination temperatures. The catalytic activity of VWTi catalysts decreased with
increasing of the molar ratio of n(K)/n(V) (i.e., the molar ratio of KCl and V2O5), although the calcination
temperature (Tcalc) was different (Tcalc = 320 and 370 ◦C; Tcalc was 20 ◦C higher than the highest test
temperature). Obviously, the catalytic activity decreased significantly owing to the KCl deposition.
It indicates that VWTi is susceptible to the alkali species as KCl; especially when the molar ratio of
n(K)/n(V) is 1.5, the NO conversion decreased by more than 50%. The results are consistent with the
poisoning phenomenon that occur during the operation of a biomass power plant: the catalytic activity
decreases due to the deposition and accumulation of KCl. The alkali metal ions (K+) evaporated from
the fuel will absorb on the catalysts surface and form solid KCl particles on the catalyst surface [9].
Moreover, a parallel tendency of the VWTi catalysts calcinated at 345, 395, and 420 ◦C was obtained
and N2-selectivity (>95%) of VWTi catalysts was barely affected by KCl. Figure 2 depicts the NO
conversion of poisoned VWTi with different Tcalc. Fluctuations were clearly observed with different
Tcalc, while all the VWTi catalysts activities dropped due to KCl deposition. The highest point of NO
conversion can be explained by the fact that NO conversion of fresh VWTi peaked at 370 ◦C. The reason
for the decrease of NO conversion at 345 ◦C is that diffusion of small KCl clusters on the catalyst surface
led to increasing interface per unit mass of KCl, which is equivalent to the covering of likely active
catalytic sites [24–26]. The decreased degree of NO conversion at 345 ◦C was weakened obviously at
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elevated n(K)/n(V). Therefore, the two effects, of alkali metal and the NO conversion fluctuations of
fresh catalysts, together led to the results demonstrated in Figure 2.
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2.2. Comparison of Alkali Resistance of VCeTi and VWTi Catalysts

Figure 3 shows the influence of different Tcalc and molar ratios of n(K)/n(V) on the
V2O5-Ce(SO4)2/TiO2. As illustrated in these figures, the fresh V2O5-WO3/TiO2 performed better
than the fresh V2O5-Ce(SO4)2/TiO2 at low temperature in terms of activity, whereas their activities
were approximately equal at high temperature. Moreover, the NO conversion of all catalysts decreased
due to KCl loading. Higher alkali loading imposed a stronger poisoning influence on both VWTi
and VCeTi catalysts. One exception is that the VCeTi catalyst was slightly more strongly deactivated
when the deposition ratio was 1.0, rather than 1.5, at the calcination temperature of 320 ◦C. VWTi was
sensitive to alkali metal such as potassium, as discussed in Section 2.1, while VCeTi possessed a better
alkali resistance than VWTi. It in demonstrated in Figure 3 that the VCeTi exhibited a superior NO
conversion than VWTi after poisoning at the test temperature; the explanation for this might be the
superior oxidation properties of Ce4+ and acidity of SO4

2− [23]. The same experiments were also
conducted on poisoned VWTi and VCeTi calcinated at 345, 395 and 420 ◦C, respectively, and the
results are consistent with those discussed above. Figure 4 demonstrates a comparison of poisoned
VCeTi calcinated at different temperatures. It can be noticed that the poisoned VCeTi catalytic activity
decreased slightly with Tcalc changing. What is more interesting is that activities of VCeTi catalysts
barely changed at n(K)/n(V) = 1.0, 1.5. Based on the experimental results, it can be concluded that
VCeTi catalysts possess superior alkaline resistance in a wide calcination temperature window.
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2.3. The Regeneration of the Poisoned Catalysts

The regeneration of poisoned catalysts has been investigated by many researchers, and many
effective methods have been proposed [27–30]. SO2 is always contained in the flue gas [27,28].
Consequently, experiments were conducted to explore the regeneration of poisoned catalysts by SO2

treatment. Figure 5a indicates that the catalytic activity of poisoned VWTi catalysts was dramatically
enhanced after SO2 treatment, even though the activity was still slightly lower than the fresh catalyst.
The catalytic activity of regenerated catalysts peaked at Tcalc = 370 ◦C, and then decreased at elevated
temperature. The regeneration of poisoned VWTi catalysts with 0.5 and 1.0 n(K)/n(V) molar ratios was
also investigated. The catalysts with the low molar ratio of n(K)/n(V) possessed a higher NO conversion
than the catalysts with the high molar ratio of n(K)/n(V) after regeneration. This observation validates
that the deactivation arose from KCl and can be regenerated to some extent.

The SO2 treatment on poisoned VCeTi catalysts was also employed, and experimental results are
plotted in Figure 5b. The activity of poisoned VCeTi was promoted after SO2 treatment, and barely
fluctuated after Tcalc = 320 ◦C. It is more interesting that the activity of the regenerated catalyst was
even better than that of the fresh catalyst. The reasons for this are more Brønsted acid sites were formed
from potassium sulfate and active sites emerged due to surface sulfation by SO2 [29]. As reported,
the number of Brønsted acid sites increased because the surface sulfates on TiO2 were converted to
bidentate surface species (acidic S−OH groups) [30–33], and the reaction rate increased as a result of
more Brønsted acid sites [34].
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V2O5-Ce(SO4)2/TiO2 catalyst at n(K)/n(V) = 1.5 through SO2-treatment. The poisoned catalysts
were calcinated at 320, 345, 370, 395, and 420 ◦C, and the temperature for SO2-treatment corresponded
with calcination temperature.

2.4. Surface Acidity and Redox Properties

NH3-TPD experiments were employed to investigate the amount and strength of the acid sites
on the fresh, poisoned, and regenerated catalysts. The peaks at low (<300 ◦C) and high (>300 ◦C)
temperature are regarded as weakly chemisorbed NH3 and strongly chemisorbed NH3, respectively [35].
Figure 6a shows the curves of NH3 desorption peak over VWTi catalysts. For poisoned catalyst,
the intensity of the NH3 desorption dramatically decreased at both low and high temperature; especially,
the number of strong acids was reduced by 88% according to the integral value of peak area (from 10,374
to 1229) at high temperature. The results are in agreement with those in Reference [36]. Our previous
works proposed that 1V5WTi catalyst covers all exposed TiO2 surface sites [6,37]; both Lewis acid
and Brønsted acid sites exist on the VWTi catalyst [38]. Both are also reduced by KCl and result in
deactivation, while the number of weak acid sites was extremely enhanced (integral value of the peak
area from 3318 to 11,984) through SO2-treatment, which certified the regeneration by SO2-treatment.
However, the adsorption capacity of a strong acid was nearly the same (integral value of peak area from
1229 to 1255) after regeneration. Based on NH3-TPD results (Figure 6a) and the NO conversion of fresh,
poisoned, and regenerated VWTi catalysts (Figure 5a), it is logical that the NO conversion responsed to
the surface acidity variation. Figure 6b demonstrates the NH3-TPD results of VCeTi catalysts. As for
the poisoned VCeTi catalyst, the intensity of the TPD peak dropped slightly, whereas the peak position
did not change. After SO2-treatment, the intensity of weak acid sites improved moderately at low
temperatures; however, the intensity of strong acid sites still decreased. This observation suggests that
the VCeTi catalytic activity was dominated by Brønsted acid, and the increased Brønsted acid sites
strengthened catalytic activity through regeneration [39,40]. The gap of regeneration degree between
the poisoned VWTi and VCeTi catalyst can be explained by the fact that the room for surface acidity
improved. Since poisoned VCeTi catalyst exhibited a superior surface acidity to poisoned VWTi,
the acidity improvement room for poisoned VCeTi was smaller than that of poisoned VWTi (after
deposition of KCl, the integral value of NH3 desorption peak area decreased from 20,245 to 4547 for
VWTi, while from 21,862 to 13,912 for VCeTi). Therefore, the regeneration of poisoned VCeTi catalysts
by SO2-treatment is not obvious.

The H2 consumption of fresh and poisoned catalysts was obtained through H2-TPR experiments.
As shown in Figure 7a, VWTi catalyst exhibited two TPR peaks: TPR Peak (1) at low temperatures shifted
towards high temperatures with the deposition of KCl, whereas TPR Peak (2) at high temperatures did
not change. Peak (1) was assigned to the reduction of V5+ to V3+ and W6+ to W4+ [41], which revealed
that the redox ability of V and W was decreased after deposition of KCl, consistent with the activity
results. Peak (2) belongs to the reduction of W4+ to W0 [42]. The H2 consumption peak of fresh
VCeTi catalyst contained two overlapped reduction peaks, which can be assigned to V5+ and Ce4+,
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respectively, and a synergistic effect between Ce4+ and V5+ appeared due to the adjacent peak positions.
Through the deposition of KCl, a deviation of the TPR reduction peak was observed, the former peak
being related to the reduction of V5+ to V3+, while the latter being assigned to the reduction of Ce4+

to Ce3+ [17,43,44]. It is reported that oxygen vacancies are yielded with the conversion of Ce4+ to
Ce3+ [45]. Oxygen vacancies are beneficial to catalytic activity, thus making VCeTi catalysts perform
better than VWTi.
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3. Materials and Methods

3.1. Catalyst Synthesis

1 wt.% V2O5–5 wt.% WO3/TiO2 and 1 wt.% V2O5–11.74 wt.% Ce(SO4)2/TiO2 (11.74 wt.% Ce(SO4)2

was calculated according to 5 wt.% CeO2) were synthesized by the impregnation method. Ammonium
vanadate (NH4VO3 Aladdin, AP) and ammonium metatungnate ((NH4)6H2W12O40·xH2O Aladdin, AP),
used as the precursors of V2O5 and WO3, respectively, were dissolved in deionized water, acidified by
oxalic acid, and then vigorously stirred at 60 ◦C for 30 min. After impregnation of V- and W-precursor
on TiO2 (Degussa, P25, SBET = 55 m2/g) in a desired proportion, the synthesized samples were dried at
120 ◦C for 12 h, and subsequently calcinated at 500 ◦C for 5 h. V2O5-Ce(SO4)2/TiO2 was prepared by the
same method. Ceric sulfate (Ce(SO4)2·4H2O Aladdin AP) was the precursor of Ce(SO4)2. The detailed
synthesis procedure is described in our previous work [46]. The poisoned catalyst was synthesized by
impregnation. Potassium chloride (KCl, AP), the alkaline reactant, was dissolved in deionized water
and sufficiently stirred, and then mixed with the prepared powdery catalyst according to the molar
ratios of n(K)/n(V) = 0.5, 1.0 and 1.5. The catalyst was subsequently dried and then calcinated at 320,
345, 370, 395 and 420 ◦C to simulate the varying poisoning situations that occur in biomass-fired plants
under different operating temperatures.

3.2. Catalytic Performance

The NH3-SCR reactivity tests were completed on a quartz tube where the catalyst was placed in,
and the feed gas of selected composition went through the tube. Meanwhile, the tube was heated by
electric furnace. A thermocouple was injected to the bed of the catalyst to monitor the temperature,
which was recorded and used in this paper. The feed gas contained 500 ppm NH3, 500 ppm NO,
and 5 vol% O2 with N2 as the balance gas. A catalyst sample of 0.5 g with the particle size of 40–60
mesh was used, and the gas hourly space velocity (GHSV) for all experiments was 150,000 mL·g−1

·h−1.
The gas compositions were measured by Protea ProtIR 204M online flue gas analyzer. The value of NO
conversion was calculated as follows:

NO conversion (%) =
[NO]in − [NO]out

[NO]in
× 100 (4)

3.3. Regeneration Methods

The poisoned catalysts were treated in a quartz tube with a stream of 1000 mL/min mixed gas
contained 500 ppm SO2, 5 vol% O2 and N2 as the carrier, under different temperatures (320, 345, 370,
395 and 420 ◦C, according to the Tcalc) for 1 h.

3.4. Catalyst Characterization

A PX200A equipment was employed for NH3 temperature-programmed desorption of ammonia
(NH3-TPD). Powder catalyst (0.2 g) was purged in an atmosphere of 50 mL/min He while the
temperature was heated up to 400 ◦C at 10 ◦C/min. The purging time was 10 min; then, the sample was
cooled gradually down to 100 ◦C and saturated with 50 mL/min NH3 and 50 mL/min He for 30 min.
After saturation, the sample was purged with pure He at 50 mL/min until the thermal conductivity
detector (TCD) signal was stabilized. The signal was collected while the temperature was raised to
500 ◦C (slope of 10 ◦C/min).

H2-temperature programmed reduction (H2-TPR) was conducted using the PX200A instrument.
The catalyst (0.2 g) was purged with pure He at 200 ◦C for 30 min, and then H2/Ar mixture gas (10 vol%
H2) was pumped into the reactor with a rate of 50 mL/min. Thirty minutes later, the sample was cooled
to ambient temperature in pure He and subsequently heated to 800 ◦C at a rate of 10 ◦C/min under
10 vol% H2/Ar. The values of H2 consumption were obtained through TCD.
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4. Conclusions

This systematic experimental investigation focused on the effects of KCl and SO2 on
V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2. V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2 were calcinated
at different temperatures. Their catalytic activities were inhibited by KCl loading with different molar
ratios. The characterization afterwards showed that the reducibility and acidity of V2O5-WO3/TiO2 and
V2O5-Ce(SO4)2/TiO2 were remarkably decreased by KCl. V2O5-Ce(SO4)2/TiO2 exhibited a superior
alkali metal resistance to V2O5-WO3/TiO2; the poisoned catalytic activity can be efficiently regenerated
through SO2 treatment. V2O5-Ce(SO4)2/TiO2 even possessed a better activity than the fresh catalyst.
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