Supporting Information # Comparing the Nature of the Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol Karoline Kvande^{1,*}, Dimitrios K. Pappas¹, Michael Dyballa¹, Carlo Buono¹, Matteo Signorile², Elisa Borfecchia², Kirill A. Lomachenko³, Bjørnar Arstad⁴, Silvia Bordiga², Gloria Berlier², Unni Olsbye¹, Pablo Beato⁵, Stian Svelle¹ - Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315, Oslo, Norway - Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, via P. Giuria 7, 10125 Turin, Italy - ³ European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France - ⁴ SINTEF Industry, Department of Process Technology, Forskningsveien 1, 0373 Oslo, Norway - ⁵ Haldor Tops & A/S, Haldor Tops & All & 1, DK-2800 Kgs. Lyngby, Denmark - * Correspondence: karoline.kvande@smn.uio.no (K.K.) #### **Table of Contents** | 1 | Phy | sico-chemical characterization | . 1 | |---|-----|--|-----| | | 1.1 | Elemental and N ₂ -physisorption Measurements | . 1 | | | 1.2 | Scanning Electron Microscopy (SEM) | . 3 | | | 1.3 | Powder X-ray Diffraction (PXRD) | | | | | CO ₂ production from CH ₄ -TPR | | | | | Raman Spectroscopy | | | 2 | | erences | | ## 1 Physico-chemical characterization #### 1.1 Elemental and N₂-physisorption Measurements The results from standard characterization is reported in Table S1. The samples are denoted xCuSSZ-13 and yCuSAPO-34, where x is the Cu/Al ratio and y is the Cu/Si ratio. **Table S1.** Elemental composition, such as (Al+P)/Si [Si/Al], Cu/Si [Cu/Al] and Cu content was determined with Energy Dispersive X-ray Spectroscopy (EDX). N₂-adsorption/desorption measurements recorded at -196 $^{\circ}$ C were used to find the specific surface area (m²/g) and total pore volume (V_T). Thermogravimetric analysis was used to find the water content (%). | Sample | Exchange Method (Cu-salt) | (Al+P)/Si
[Si/Al] ^a | Cu/Si
[Cu/Al] ^a | Cu ^a (µmol/g) | Water content ^b | Specific
surface
area ^c
(m ² /g) | V _T ^c (cm ³ /g) | |-------------------|--|-----------------------------------|-------------------------------|--------------------------|----------------------------|---|--| | 0.50Cu
SSZ-13 | LIE
(CuAc ₂) | 14.8 | 0.53 | 540 | 18 | 770 | 0.334 | | 0.25CuSAPO-
34 | LIE
(CuAc ₂)
(x3) ^d | 14.9 | 0.25 | 249 | 18 | 616 | 0.294 | | 0.08CuSAPO-
34 | LIE
(CuAc ₂) | 14.9 | 0.08 | 87 | 14 | 690 | 0.306 | ^adetermined by EDX ^bdetermined with TGA $^{^{}c}$ determined at $p/p_0 = 0.99$ $[^]d$ The CuAc₂ solution used in the first round was 0.02 M. For the second and third round, a CuAc₂-solution resulting in a Cu/Si ratio of 0.5 was used (0.008 M). ### 1.2 Scanning Electron Microscopy (SEM) Figure S1 shows the SAPO-34 morphology at different distances. **Figure S1.** SEM-images of H-SAPO-34 at different distances. The crystals of the copper incorporated SAPO-34 materials were similar to the parent material, and are therefore not included. ## 1.3 Powder X-ray Diffraction (PXRD) The PXRD patterns of the template containing and H-form SAPO-34 is reported in Figure S2. In Figure S3, the H-form SAPO-34 pattern is reported together with the Cu exchanged SAPO-34 samples used in this study. **Figure S2.** PXRD pattern of the template containing SAPO-34 (turquoise), and the calcined SAPO-34 (black). The patterns are vertically shifted for clarity. **Figure S3.** PXRD patterns of the calcined parent material (black) as well as the Cu-exchanged SAPO-34 materials, 0.08CuSAPO-34 (orange) and 0.25CuSAPO-34 (red). The patterns are vertically shifted for clarity. #### 1.4 CO₂ production from CH₄-TPR Figure S4 shows the product detected after fully oxidation of methane over the three Cu-CHA samples tested in this study. **Figure S4.** CO₂ production profiles from total oxidation of CH₄ over 0.50CuSSZ-13 (blue), 0.08CuSAPO-34 (orange) and 0.25CuSAPO-34 (red), measured by an online MS during flow of CH₄ while heating from 100 to 650 $^{\circ}$ C (ramp: 5 $^{\circ}$ C/min). The materials were activated at 500 $^{\circ}$ C in O₂ for 8 h prior to the CH₄-TPR experiment. The profiles have been normalized to the sample weight. #### 1.5 Raman Spectroscopy Table S2 is summary of the Cu(II)_xO_y species assigned to peaks observed in the Raman spectra. **Table S2.** Overview of bands correlating to $Cu(II)_xO_y$ species observed in this study, and their comparison to assignments found in literature | SAPO-34 | SSZ-13 | SSZ-13 Coordination Cu(II) _x O _y -species | | Reference | |---------|--------|---|---|---------------------| | | 620 | Three-fold $[Cu-(\mu-O)-Cu]^{2+}$ | | Ipek et al. [1] | | 524 | 510 | | | Pappas et al. [2] | | 587 | 580 | Three-fold | $[Cu(trans-\mu-1,2-O_2)Cu]^{2+}$ | | | 812 | 830 | | | | | 549 | | Four-fold | [Cu(η²-O ₂)] ⁺ | Pappas et al. [2] | | 1006 | 1100 | | 2 (1 | | | | 1155 | Three-fold | $[\mathrm{Cu}(\eta^1\text{-}\mathrm{O}_2)]^+$ | Woertink et al. [3] | ### 2 References - 1. Ipek, B.; Wulfers, M. J.; Kim, H.; Göltl, F.; Hermans, I.; Smith, J. P.; Booksh, K. S.; Brown, C. M.; Lobo, R. F., Formation of $[Cu_2O_2]^{2+}$ and $[Cu_2O]^{2+}$ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. *ACS Catal.* **2017**, *7*, 4291-4303. [10.1021/acscatal.6b03005] - 2. Pappas, D. K.; Borfecchia, E.; Dyballa, M.; Pankin, I. A.; Lomachenko, K. A.; Martini, A.; Signorile, M.; Teketel, S.; Arstad, B.; Berlier, G.; Lamberti, C.; Bordiga, S.; Olsbye, U.; Lillerud, K. P.; Svelle, S.; Beato, P., Methane to Methanol: Structure-Activity Relationships for Cu-CHA. *J. Am. Chem. Soc.* **2017**, *139*, 14961-14975. [10.1021/jacs.7b06472] - 3. Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I., A [Cu₂O]²⁺ Core in Cu-ZSM-5, the Active Site in the Oxidation of Methane to Methanol. *Proc. Natl. Acad. Sci. USA* **2009**, *106*, 18908-18913. [10.1073/pnas.0910461106]