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Abstract: The main purpose is to figure out the involved synergistic effects by combining sono-Fenton
using in situ generated H2O2 and the photocatalytic process of P25 under visible light (Vis/P25).
Two emerging contaminants, dimethyl phthalate (DMP) and diethyl phthalate (DEP), with similar
structure but different properties were selected to examine the influence of hydrophilic and
hydrophobic properties of target pollutants. Results show that there is synergy between sono-Fenton
and Vis/P25, and more significant synergy can be obtained with low dose of Fe3+ or Fe2+ (0.02 mM)
and for more hydrophilic DMP. Based on systematic analysis, the primary mechanism of the synergy
is found to be the fast regeneration of Fe2+ by photo-electrons from P25 photocatalysis, which plays
the dominant role when the Fe3+/Fe2+ concentration is low (0.02 mM). However, at high Fe3+/Fe2+

concentration (0.5 mM), the photoreduction of Fe(III) to Fe2+ can play a key role with relatively
low efficiency. By studying the degradation intermediates of both DMP and DEP, the degradation
pathways can be determined as the hydroxylation of aromatic ring and the oxidation of the aliphatic
chain. Better mineralization performance is achieved for DMP than that for DEP due to the enhanced
utilization efficiency of H2O2 by accelerating Fe2+ regeneration.

Keywords: sono-Fenton; photocatalysis; TiO2; P25; ultrasound; visible light; iron; cycling; emerging
contaminant; endocrine disrupting compound

1. Introduction

The shortage of water resources accelerates the process of wastewater recycling, in which
process the safety of reclaimed water should be the primary concern. The emerging contaminants
(ECs), mainly consisting of the endocrine disrupting compounds (EDCs) and pharmaceuticals and
personal care products (PPCPs), have the characteristics of chemical structure stability and resistance
to biodegradation [1–3]. Although conventional wastewater treatment technologies present the
opportunity for ECs removal, satisfactory removal techniques are still to be established.

The advanced oxidation technologies (AOTs) have shown excellent performance in degrading
refractory organic pollutants by various radicals [4–9], although several technical challenges still have
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to be addressed in future research before practical application. Due to the limitation of a single type of
AOT, combinative technologies are often adopted to overcome the limitation and/or obtain synergistic
performance. Among various AOTs, the ultrasound-based technologies have drawn increasing
attention in different fields of wastewater treatment, such as assisting persulfate degradation of organic
contaminants [10], treating the secondary effluent of a municipal wastewater before agricultural
reuse [11], serving the pretreatment of edible oil wastewater before the biological treatment [12,13],
and destroying wastewater particles for improved UV disinfection [14]. The typical characteristics of
ultrasonic reactions are reflected by the heterogeneous distribution of solutes including both pollutants
and other water quality components due to the presence of cavitation gas bubbles, and also the in
situ generated H2O2 with zero-order kinetics as mainly produced by the unutilized hydroxyl radicals
(2•OH→ H2O2) [15–17]. Other AOTs are often tried to combine with ultrasound (US) to make full
use of the in situ generated H2O2, like the combinative technologies of UV/US [18,19], sono-Fenton
process [20,21], and US/O3 [22].

The combination of US and homogeneous Fenton to create sono-Fenton process is a simple
and environmentally friendly approach. In sono-Fenton process, the increase of Fe2+ concentration
can to some extent enhance the efficiency of pollutants degradation [23]. However, since Fe2+ itself
also consumes the reactive oxygen species (ROS), simply increasing Fe2+ concentration not only
results in unproductive consumption of H2O2 in the system but also easily produces iron sludge
waste. In conventional Fenton system, Fe2+ plays the role of a reactant rather than a catalyst since its
consumption rate is very fast and the regeneration rate is rather slow. Promoting Fe2+ regeneration in
Fenton-related processes can not only fully cut down the iron demand but also improve the utilization
efficiency of H2O2, changing the role of Fe2+ more like a catalyst.

The photo-electrons generated from various kinds of photocatalysts can effectively reduce ferric
ions to ferrous ions [24,25]. The previous study of this (Xu et al., 2019) finds that, through the
interactions between P25 and Fenton reagent, the photoelectrons can be more efficiently excited
by visible light, which further significantly accelerates Fe3+ reduction and promotes iron cycling
in photo-Fenton process. As a result, the iron demand is decreased and the use of H2O2 is more
productive [26]. Inspired from these findings, the P25-mediated visible light condition was tried to
combine with sono-Fenton to examine the possibility of improving the efficiency with exclusive in situ
produced H2O2 [23]. It is found that the presence of P25 accelerates the degradation of sulfadiazine
at small amount of iron precursors (Fe2+/Fe3+) (0.02 mM) and free of exogenous H2O2, making the
regeneration of Fe2+ much faster than that in sono-Fenton process [23]. However, the synergistic effects
and detailed mechanisms of combining sono-Fenton and the photocatalytic process of P25 have not
yet been systematically investigated. Additionally, the relationship between the process synergy and
pollutant properties has not been investigated previously.

Two EDCs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), belonging to the group
of phthalate acid esters (PAEs), are selected as the target pollutants. The PAEs are mainly used as
plasticizers to improve the ductility and softness of various products [27]. Both DMP and DEP are
classified as the “priority-controlled toxic pollutants” by the US Environmental Protection Agency.
The similar chemical structures but different side chain lengths for DMP and DEP can make them
demonstrate different physicochemical properties.

In view of the above, the main purpose of this study is to figure out the involved mechanisms and
the synergistic effects by combining sono-Fenton using in situ generated H2O2 and the photocatalytic
process of P25 under visible light (Vis/P25) when degrading refractory organic pollutants. The influence
of physicochemical properties of target pollutants is also to be discussed.
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2. Results and Discussion

2.1. Synergy Between Sono-Fenton and Vis/P25

The degradation kinetics of DEP and DMP in the processes of P25 photocatalysis (Vis/P25),
sono-Fenton (US/Fe2+), and the coupling (Vis/P25 + US/Fe2+) is shown in Figure 1. The pseudo
first-order rate constants and corresponding R2 values of the fitting for different processes are
summarized in Table 1. A very low amount of Fe2+ (0.02 mM) was applied to examine the synergistic
effects. In Vis/P25 process (Figure 1), a small amount of adsorption occurs in dark for both compounds,
but their degradation is insignificant under visible light irradiation. The pseudo first-order rate
constants of DEP and DMP photocatalysis are only 0.0009 min−1 and 0.0003 min−1, respectively. This is
on the one hand due to the very limited overlap between the absorption edge of P25 (ca. 420 nm)
and the emission spectrum of the light emitting diode (LED) lamp (Figure S1). On the other hand,
the superoxide radicals (O2

•–) have been reported as the important reactive oxygen species (ROS) in
the photocatalytic process of P25 [28,29], which however are incapable to decompose the structures
like DMP [30,31]. In sono-Fenton process, both DEP and DMP can be degraded efficiently with the rate
constants of 0.0400 min−1 and 0.0287 min−1, respectively (Table 1, line 3). However, it is noticed that
the sono-Fenton process doped with 0.02 mM Fe2+ only makes limited improvement compared with
the sole ultrasonic process (line 1), probably due to the fast consumption of 0.02 mM Fe2+. However,
the degradation of both compounds is accelerated significantly in the coupling processes of Vis/P25
+ US/Fe2+ (Figure 1). The synergy indexes (SI) as determined from Equation (1) are 2.65 and 2.41
for DMP and DEP, respectively, based on the pseudo first-order rate constants shown in Table 1.
The SI > 1 indicates the existing synergy between two processes and stronger synergy is obtained for
the degradation of DMP. The involved mechanisms will be discussed in more detail below.

Synergy Index =
k(Vis/P25 +US/Fe2+)

k(Vis/P25) +k(US/Fe2+)
(1)
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Figure 1. The degradation kinetics of diethyl phthalate (DEP) (a) and dimethyl phthalate (DMP) (b) 
in the processes of P25 photocatalysis (Vis/P25), sono-Fenton (US/Fe2+), and the coupling (Vis/P25 + 
US/Fe2+) (conditions: [DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 dosage 0.5 g L−1, adsorption time 20 
min, [Fe2+]0 = 0.02 mM). 
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Figure 1. The degradation kinetics of diethyl phthalate (DEP) (a) and dimethyl phthalate (DMP) (b)
in the processes of P25 photocatalysis (Vis/P25), sono-Fenton (US/Fe2+), and the coupling (Vis/P25 +

US/Fe2+) (conditions: [DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 dosage 0.5 g L−1, adsorption time
20 min, [Fe2+]0 = 0.02 mM).
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Table 1. The pseudo first-order degradation rate constants of both DMP and DEP in US and sono-Fenton
processes with two different iron levels (0.02 mM and 0.5 mM).

Processes
DMP DEP

kaverage
(min−1)

R2 SI kaverage
(min−1)

R2 SI

1 US 0.0252 0.9774 0.0375 0.9927
2 Vis/P25 0.0003 0.9494 0.0009 0.9345

3
Sono-

Fenton

US/Fe2+ (0.02 mM) 0.0287 0.9784 0.0400 0.9996
4 US/Fe3+ (0.02 mM) 0.0276 0.9921 0.0383 0.9986
5 US/Fe2+ (0.5 mM) 0.0424 0.9874 0.0619 0.9917
6 US/Fe3+ (0.5 mM) 0.0326 0.9983 0.0418 0.9964

7
Visible light

assisted
sono-Fenton

US/Fe2+ + Vis (0.02 mM) 0.0289 0.9792 0.0494 0.9950
8 US/Fe3+ + Vis (0.02 mM) 0.0297 0.9921 0.0403 0.9998
9 US/Fe2+ + Vis (0.5 mM) 0.0443 0.9778 0.0722 0.9661

10 US/Fe3+ + Vis (0.5 mM) 0.0398 0.9990 0.0548 0.9940

11
P25

mediated
sono-Fenton

US/Fe2+ + Vis/P25 (0.02 mM) 0.0768 0.9843 2.65 0.0987 0.9918 2.41
12 US/Fe3+ + Vis/P25 (0.02 mM) 0.0812 0.9812 2.91 0.1051 0.9904 2.68
13 US/Fe2+ + Vis/P25 (0.5 mM) 0.0700 0.9863 1.64 0.0848 0.9879 1.35
14 US/Fe3+ + Vis/P25 (0.5 mM) 0.0612 0.9804 1.86 0.0730 0.9932 1.71

2.2. Influence of P25 on Ultrasonic and Sono-Fenton Processes in Dark

In order to clarify the involved synergistic mechanisms of combining sono-Fenton and the
photocatalytic process of P25, influence of P25 on both ultrasonic and sono-Fenton processes was
firstly examined in dark. Varied dosages of P25 (0~0.8 g/L) were added in ultrasonic processes to
examine the impact. As observed in Figure S2, the presence of P25 slightly enhances the removal of
both pollutants as the increase of dosages from 0 to 0.5 g·L−1. This may be resulting from the increased
nuclei for cavitation bubble formation by fine particles of P25 [32]. However, further increase of the
dosages to 0.8 g·L−1 makes slight deceleration of pollutants removal, which may be related with the
attenuation of ultrasound intensity by the presence of excess particles. In addition, a large amount of
P25 may also shield incident light, so 0.5 g·L−1 P25 as observed as the optimum dosage in Figure S2
was selected for further tests. The ultrasonic degradation kinetics of both DMP and DEP with and
without the presence of P25 is shown in Figure S3. During the 20 min silent adsorption (stirring in
beaker without ultrasound input), a higher ratio of adsorption is obtained for DEP (12%) compared to
that for DMP (5%), which can be attributed to the stronger hydrophobicity of DEP (logKow = 2.47)
than that of DMP (logKow = 1.60). During the ultrasonic reaction, DEP removal in the presence of
P25 demonstrates gradual convergence with that of the ultrasonic process since the adsorbed DEP
molecules can get redissolved under the shock of ultrasonic waves. In general, the influence of P25 on
ultrasonic degradation of both DMP and DEP is weak.

Further, the influence of P25 on dark sono-Fenton was examined with results shown in Figure 2.
Since Fe2+ and Fe3+ are interconvertible in the presence of light, both were tried as precursors in
sono-Fenton reaction. Figure 2 shows that Fe2+ ions are more efficient to initiate the sono-Fenton
reaction compared with Fe3+, leading to faster degradation of both DMP and DEP in US/Fe2+ processes.
It is found that the presence of P25 does not hinder compounds degradation. Although the possible
adsorption of Fe2+ and Fe3+ on P25 may reduce the amount of iron to react with H2O2, further stripping
by ultrasonic shock and the additional nuclei provided by P25 for ultrasonic cavitation may slightly
promote the degradation of DMP and DEP instead. The 60 min removal rates in the above-mentioned
processes are compared in Figure S4, where positive effects of P25 addition can be clearly seen on both
ultrasonic and dark sono-Fenton processes. This provides favorable conditions for the combination of
sono-Fenton and P25-mediated photocatalysis. In general, in the absence of visible light, the influence
of P25 is generally weak and other mechanisms should be involved.
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Figure 2. Influence of P25 on the degradation of (a) DMP and (b) DEP in dark sono-Fenton and
sono-Fenton-like processes ([DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 dosage 0.5 g L−1, adsorption
time 20 min, [Fe2+]0 = 0.5 mM, [Fe3+]0 = 0.5 mM).

2.3. Transformation of Iron in Dark Sono-Fenton

In sono-Fenton process, the role of iron species can be double-edged. Increase of Fe2+ concentration
can promote Fenton reaction (Equation (2)), but the self-quenching property of Fe2+ is also able to
slow down the degradation of pollutants (Equation (3)) [23,33]. As shown in Table 1, when increasing
the initial iron concentrations from 0.02 mM to 0.5 mM (lines 3−6), the pollutant removal efficiency
increases significantly. By examining the variation trends of ferrous irons (Figure 3), it is found that in
dark sono-Fenton processes, the Fe2+ concentration decreased dramatically due to the fast reaction
between Fe2+ and H2O2. Especially when the initial concentration of Fe2+ is low at 0.02 mM (Figure 3b),
the vast majority is consumed within 10 min, which explains well the limited improvement of pollutant
degradation in this condition compared with US alone (Table 1). Thus, the available Fe2+ in dark
sono-Fenton process mainly lies on its initial dose. Although the ultrasonic wave has been reported to
facilitate Fe3+ reduction (Equations (4) and (5)) [34,35] and compounds degradation is also improved
when applying high Fe3+ dose (0.5 mM) as shown in Table 1 (line 6), the available Fe2+ measured
in dark US/Fe3+ process is at low level (Figure 3). This may be because the sono-reduction of Fe3+

is a rate-limiting step and Fe2+ can immediately react with H2O2 once produced without obvious
accumulation. It is also observed that, the sono-Fenton processes doped with 0.02 mM Fe2+ or Fe3+

shows similar efficiencies in degrading compounds (lines 3, 4 in Table 1), which agrees with the close
level of detectable Fe2+ concentration in US + Fe2+ and US + Fe3+ processes after 10 min reaction
(Figure 3b). On the contrary, with 0.5 mM of iron, the US + Fe2+ process shows much higher efficiency
than US + Fe3+ (lines 9, 10), which is owing to the higher amount of Fe2+ in US + Fe2+ process
throughout the 60 min reaction as shown in Figure 3a. Moreover, it is also found that, when the
Fe2+ is at low level (0.02 mM) (Figure 3b), the consumption of Fe2+ during the degradation of DMP
(dotted line) proceeds more quickly than that in the process of DEP degradation (solid line). This is
because DMP is relatively hydrophilic and its direct ultrasonic oxidation is not so efficient as that of
DEP, resulting in higher level of underutilized H2O2 and the eventual stronger ability to consume
Fe2+. As a result, the degradation of DMP is enhanced more obviously than that of DEP in dark
sono-Fenton processes.

Fe2+ + H2O2→ Fe3+ + •OH + OH− (k = 70 M−1 s−1) (2)

Fe2+ + •OH→Fe3+ + OH− (k = 3.2 × 108 M−1 s−1) (3)

Fe3+ + H2O2→ Fe-O2H2+ + H+ (4)

Fe–O2H2+ + )))→ Fe2+ + •OOH (5)
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Figure 3. Variation of ferrous ion concentrations during the degradation of DMP or DEP in sono-Fenton
and sono-Fenton-like processes at two different levels of iron species: (a) 0.5 mM, (b) 0.02 mM ([DMP]0

= 0.01 mM, [DEP]0 = 0.01 mM).

2.4. Influence of Visible Light on Sono-Fenton Processes

Based on the above investigation, the main problems of dark sono-Fenton and sono-Fenton like
processes are the strong dependence on the large initial dose of iron and the slow regeneration of Fe2+.
Herein, the influence of visible light on sono-Fenton processes was examined mainly focusing on the
interactions between visible light and iron.

The influence of visible light was first examined by evaluating the compounds degradation.
As can be seen in Table 1, in the presence of visible light (lines 7, 8), compounds degradation at 0.02 mM
Fe2+/Fe3+ concentrations shows similar rates with that in sono-Fenton processes (lines 3, 4), suggesting
the weak interactions between iron species and visible light. In general, the light absorption of both Fe2+

and Fe3+ in visible range is weak (Figure S5), particularly at low concentrations. Therefore, the direct
photo-transformation of iron should be weak at 0.02 mM. When increasing the Fe2+/Fe3+ concentrations
to 0.5 mM, moderate enhancement of compounds degradation induced by visible light is observed (lines
5, 6 and lines 9, 10), which is more remarkable for DEP degradation. The pseudo first-order rate constants
of DEP decomposition increased by 17% and 31% due to the presence of visible light for using Fe2+ or
Fe3+ (0.5 mM) as the precursor, respectively. Influence of Fe2+/Fe3+ photoactivities on compounds
degradation is separately investigated by control experiments conducted in Vis+Fe2+/Fe3+ process
without ultrasound (Figure S6). It is clearly seen that, photolysis of Fe(III) could lead to compounds
degradation mainly due to the generation of •OH radicals (Equations (6) and (7)), and the efficiency is
associated with Fe3+ concentration. Hardly any degradation is observed for both compounds during
the photolysis of Fe2+. It is also observed that DEP degradation proceeds slightly faster than DMP
probably ascribed to their different reaction rates with •OH radicals (k•OH,DMP = 3.46 × 108 M−1 s−1,
k•OH,DEP = 2.09 × 109 M−1 s−1) [36]. This may also explain the above-mentioned greater impact induced
by visible light for DEP degradation in sono-Fenton process.

Fe3+ + H2O→ Fe(OH)2+ + H+ (6)

Fe(OH)2+ + hν→ Fe2+ + •OH (k = 3.33 × 10−6 M−1 s−1) (7)

As observed in Figure S7, Fe2+ concentration in the presence of visible light shows similar variation
trends as that in dark sono-Fenton (Figure 3). The moderate enhancement by visible light at 0.5 mM
iron dosage (lines 5, 6 and lines 9, 10) indicates additional sources of radicals most likely by improved
decomposition of H2O2, while the insignificant difference of Fe2+ variation as shown in Figure 3
and Figure S7 implies a possible fast circulation between Fe2+ and Fe3+. As reported, the Fe(II) can
be photo-oxidized to Fe(III) by UV light and even filtered light of λ > 400 nm [37,38] and Fe(III) is
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also well known for its photoactivity (Equations (6) and (7)), leading to the promoted conversion of
Fe2+
→Fe3+ and Fe3+

→Fe2+ under visible light. From the control experiment results, it is assumed
that at relatively high concentration of iron dose (0.5 mM), photolysis of Fe(III) can play a role in
compounds degradation, while it is negligible at low level of iron (0.02 mM).

2.5. Role of the Photoelectrons in Promoting Fe2+ Regeneration

The role of P25 in promoting Fe3+ reduction was firstly examined without ultrasound input
to examine the Fe2+ generation capability (Figure 4). At 0.5 mM Fe3+ conditions (green lines),
the production of Fe2+ in the presence of P25 shows similar rates as when you use light only, suggesting
the role of direct light reduction of Fe3+ dominates (Equations (6) and (7)). However, at 0.02 mM
Fe3+ conditions (red lines), the presence of P25 significantly promotes the generation of Fe2+, roughly
four times the amount of direct light reduction, implying that Fe3+ reduction by photoelectrons
generated from P25 (Equations (8) and (9)) is more efficient than visible light reduction [26]. Due to the
limitation of active sites on P25 surface and the mobility of Fe3+ ions, the superiority of photoelectrons
in Fe3+ reduction is more remarkable at low iron concentrations. Moreover, it is also seen that in
homogeneous conditions (free of cavitation bubbles) and in the absence of ultrasonically produced
H2O2, the generation of Fe2+ is hardly influenced by the properties of target pollutants. This also
implies that the discrepancies of process synergy obtained for DMP and DEP is primarily due to the
heterogeneous effect during the occurrence of cavitation.

TiO2 + hν→ TiO2 (e−) + TiO2 (h+) (8)

TiO2 (e−) + Fe3+
→ TiO2 + Fe2+ (9)
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Figure 4. The reduction of ferric iron under visible light irradiation with and without the presence of
P25 ([DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 0.5 g L−1).

Further, the variation of Fe2+ was examined in the presence of ultrasound (Figure 5). By comparing
Figure S7a and Figure 5a (0.5 mM iron), the presence of P25 does not influence the detectable Fe2+

concentration in reaction system, but compounds degradation is improved moderately by comparing
the kinetics data shown Table 1 (lines 9, 10 vs. lines 13, 14). From the analysis of Fe2+ in dark
sono-Fenton (Figure 3a) and visible light assisted sono-Fenton (Figure S7a), it can be seen that when
dosing 0.5 mM Fe2+ at the beginning, the remaining Fe2+ during the reaction is sufficient to conduct
Fenton reaction, which is not the rate-limiting factor. Therefore, the improvement of compounds
degradation at high level of Fe2+/Fe3+ (0.5 mM) may not be ascribed to enhanced Fe2+ regeneration.
Based on the investigation of photo-Fenton-like process, interactions are confirmed between P25 and
Fe3+, P25 and H2O2, respectively, which could enhance the generation of hydroxyl radicals mainly via
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broadening the light absorption range of P25 and increasing the separation efficiency of photo-induced
carriers [26]. This may also explain the enhanced compounds degradation in US/Fe2+ + Vis/P25 and
US/Fe3+ + Vis/P25 processes with higher dosages (0.5 mM) of iron species.
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Figure 5. Variation of ferrous ion concentrations during the degradation of DMP or DEP in the
combined processes of sono-Fenton and P25-mediated visible light photocatalysis at two different levels
of iron species: (a) 0.5 mM, (b) 0.02 mM ([DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 dosage 0.5 g L−1).

However, it is clearly found from Figure 5b that, when doped with 0.02 mM Fe2+ (or Fe3+),
a relatively stable concentration of Fe2+ can be detected. It indicates that the Fe(III) reduction rate
by photo-electrons is comparable to the Fe2+ oxidation rate in sono-Fenton process. Specifically,
when using Fe2+ as the precursor (green lines), a fast decrease of [Fe2+] can still be found within
initial 10 min, while the steady-state concentrations of Fe2+ is significantly higher than that in dark
sono-Fenton (Figure 3b). Moreover, faster generation and accumulation of Fe2+ is observed when
using 0.02 mM Fe3+ as the precursor. By comparing the kinetic data shown in Table 1, the remarkable
enhancement of compound degradation (lines 11, 12) from 0.0287 min−1 to 0.0768 min−1 and 0.0276
min−1 to 0.0812 min−1 when using Fe2+ and Fe3+ as the precursor, respectively, corresponds well with
the increased regeneration of Fe2+ by photo-electrons. In addition, it is also illustrated in Figure 5b,
the overall concentration of Fe2+ shows a higher level during the degradation of DEP than that of DMP,
implying a relatively slow use of Fe2+ during the degradation of DEP due to its hydrophobic property.
As a result, higher synergistic effects are obtained for the degradation of DMP (Table 1). In the late
phase of the reaction, DEP has been mostly decomposed to more hydrophilic intermediates resulting
in higher probabilities for the in situ accumulation of H2O2 and corresponding increased consumption
of Fe2+. Resultantly, the concentration of Fe2+ shows observable decrease after 40 min reaction.

Through the analysis, it can be confirmed that combining sono-Fenton process with P25-mediated
photocatalysis under visible light can successfully realize the continuous supply of Fe2+ to react with
H2O2 with low iron demand.

2.6. Analysis of the Intermediates and Mineralization Performance

The degradation pathways of both DMP and DEP were further investigated by identifying their
degradation intermediates in US/Fe3+ + Vis/P25 (0.02 mM) process which demonstrates the highest
synergistic effect. In order to intensify the mass signal of trace amount of intermediates and to facilitate
the measurement of total organic carbon (TOC), 0.05 mM initial concentration was applied for both
DMP and DEP. The high performance liquid chromatography (HPLC) spectra during the degradation
of DMP and DEP were shown in Figure S8. It can be seen that the peak intensity of target compounds
(i.e., DMP and DEP) gradually decreases as the reaction goes on, and complete disappear after 60 min.
At the same time, some peaks assigned for various intermediates (e.g., 12 min, 8 min, and 2 min
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for DMP) show up, and the peak intensity for the intermediates also changes as the reaction goes
on. Based on mass analysis, the peak showing 209 (M-H)− at around 12 min retention time can be
assigned to the mono-hydroxylated DMP (Figure S9), which is a typical primary intermediate in most
•OH-dominated AOTs [15–17]. Since in the present study, the dominant reactive oxygen species should
be •OH based on our previous study [23], hydroxylation is determined as one primary degradation
pathway. Similar to DMP degradation, mono-hydroxylated DEP showing 237 (M-H)− at around
11.5 min was also found. In addition, monomethyl phthalate (MMP) showing 179 (M-H)− at around 8
min retention time was also detected, indicating another degradation pathway of DMP by oxidation of
the aliphatic chain. Similarly, monoethyl phthalate (MEP) showing 193 (M-H)− was also identified as
the primary intermediate for DEP degradation. Apart from the primary degradation intermediates,
several secondary intermediates were also identified, like hydroxylated-MMP, hydroxylated-MEP,
phthalate acid (PA), and hydroxylated-PA. Therefore, the possible degradation pathways of DMP and
DEP are proposed in Figure 6. Although similar degradation pathways were identified for DMP and
DEP, the TOC removal performance shows different degrees. No evident TOC removal was observed
for both DMP and DEP during the ultrasonic degradation due to the fact that the •OH radicals mainly
generate surrounding the cavitation bubbles not capable to react with more hydrophilic degradation
intermediates. However, about 47% TOC was decreased for degrading 0.05 mM DMP and 35% was
decreased for 0.05 mM DEP in US/Fe3+ + Vis/P25 process. This suggests that acceleration of Fe2+

regeneration can enhance the Fenton reaction and make the utilization of H2O2 more productive, so as
to improve the mineralization of hydrophilic degradation intermediates.
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Figure 6. Possible degradation pathways of DMP and DEP.

3. Materials and Methods

3.1. Chemicals and Materials

Chemicals and materials used in this study are shown in Table S1 in Supplementary Materials.
Ultrapure water prepared by water purification machine (Hhitech, Shanghai, China) was used
exclusively. For pH adjustment, 0.1 M sulfuric acid (Sinopharm, Shanghai, China), and 0.1 M sodium
hydroxide (Sinopharm, Shanghai, China) were used.

3.2. Apparatus and Experimental Conditions

The ultrasound apparatus used in this study is a stainless-steel basin-type reactor with 400 kHz
frequency. The detailed description and set-up diagram are given elsewhere [17]. The experiments
involving visible light were conducted using a commercial light emitting diode (LED) lamp and
the emission spectrum is given in Figure S10, mainly covering the wavelength range from 400 to
600 nm. The radiation intensity was measured as 3575 µW·cm−2 at the surface position of the reaction
solution via the 420 nm channel by Beijing Normal University Illuminometer. The solution volume
of each test was kept constant as 250 mL unless otherwise indicated. The temperature of reaction
solution was maintained at 25 ± 2 ◦C by cooling tube submerged in the solution which was made
of the same material as that of the basin. No external stirring was applied for systems involving
ultrasound and the suspension of P25 was realized by ultrasonic vibration. Quartz beaker was used
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for the photocatalytic processes in which ultrasound was uninvolved. The initial concentration of
target pollutants was 0.01 mM unless otherwise stated. The initial pH of reaction solution was kept
constant at 3.5 ± 0.2, and neither further adjustment nor buffer was applied throughout. The dosage
of P25 was kept constant at 0.5 g L−1 for experiments involving P25, except for the tests examining
the effect of P25 dosages. As for the mixed liquids involving P25, it was allowed 15 min stirrer in
beaker for adsorption equilibrium before being poured into the ultrasound reactor. Sample aliquots of
exact 1.0 mL were withdrawn and quenched immediately with 0.2 mL methanol (TEDIA, Fairfield,
OH, USA), and samples containing P25 were filtered by 0.2 µm membrane before analysis. All the
experiments were duplicated or triplicated and the mean values were used for plotting.

3.3. Analytical Methods

The concentrations of DMP (Sigma-Aldrich, USA) and DEP (Sigma-Aldrich) were determined
by high performance liquid chromatography (HPLC) (Dionex Ultimate 3000) equipped with a
reverse-phase C18 column (5 µm particle size, 250 × 4.6 mm). The mobile phase for DMP and DEP
measurement at a flow rate of 1.0 mL min−1 was composed of methanol and 0.1% phosphoric acid
(Sigma-Aldrich, USA) water solution with a volume ratio of 60:40 and 70:30, respectively. The respective
detection wavelength for DMP and DEP was 225 nm and 270 nm. The limit of detection (LOD) of
the HPLC for DMP and DEP were determined as 0.0061 mg/L and 0.0048 mg/L, respectively (Text S1).
The concentration of Fe2+ was determined by a spectrophotometric method by forming reddish orange
complex with 1,10-phenanthroline (Sinopharm, Shanghai, China) (ε = 1.1 × 104 L mol−1 cm−1) which
was detected at 510 nm. Intermediates identification was performed by HPLC/MS (LTQ Orbitrap
XL, Thermo Fisher) equipped with an electrospray ionization source and an electrostatic orbitrap
mass analyzer. The Agilent Polaris 3 C18-A column (5 µm particle size, 250 × 3.0 mm) was used for
separation. Negative mode was used for intermediates detection. The mobile phase was obtained
by mixing different ratio of methanol and water at the flow rate of 0.5 mL min−1 with the gradient
program shown in Figure S2. The TOC concentration was quantified by Analytic Jena multi N/C
3100 TOC.

4. Conclusions

In this work, the synergistic effects and involved mechanisms of combining sono-Fenton and
P25-based photocatalytic process under visible light have been investigated. Results show that,
significant synergy (SI = 2.41 for Fe2+ precursor, SI = 2.68 for Fe3+ precursor) can be obtained at
0.02 mM iron dose, and more remarkable synergy is observed for more hydrophilic DMP compared
with that for DEP. Generally, the influence of P25 on ultrasonic and sono-Fenton process in dark is
weak. The direct photoreduction of Fe3+ only play a role at relatively high iron concentration (0.5 mM).
The main mechanism of the synergy at low iron dose (0.02 mM) is found to be the fast regeneration
of Fe2+ by photo-electrons provided by P25 photocatalysis. Both hydroxylation of aromatic ring and
the oxidation of the aliphatic chain contribute to the degradation of DMP and DEP. Mineralization
performance can also be enhanced by the combination of sono-Fenton and Vis/P25 process, and better
mineralization performance is achieved for DMP (47%) than that for DEP (35%).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1297/s1,
Table S1: Chemicals and materials used in this study. Figure S1: The emission spectrum of the LED lamp used
in this study. Figure S2: The gradient programme of the mobile phase (mixture of methanol and water) for the
seperation of intermediates. Figure S3: Influence of P25 with varied dosages on ultrasonic degradation of DEP
and DMP (solution volume 250 mL, reaction time 60 min, [DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM). Figure S4:
Effect of P25 on the ultrasonic degradation of DMP or DEP (solution volume 250 mL, [DMP]0 = 0.01 mM, [DEP]0
= 0.01 mM, P25 0.5 g L−1, adsorption time 20 min). Figure S5: Comparison of 60 min removal rates for both DMP
and DEP in different processes ([DMP]0 = 0.01 mM, [DEP]0 = 0.01 mM, P25 dosage 0.5 g L−1, adsorption time
20 min, [Fe2+]0 = 0.5 mM, [Fe3+]0 = 0.5 mM). Figure S6: The UV-vis absorption spectra of 0.1 mM FeCl3 water
solution and 0.05 mM Fe2SO4 (0.1 mM Fe2+) solution at pH 3.3. Figure S7: The degradation of DMP and DEP in
the processes combining visible light with different concentrations of Fe2+/Fe3+ ([DMP]0 = 0.01 mM, [DEP]0 =

http://www.mdpi.com/2073-4344/10/11/1297/s1
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0.01 mM). Figure S8: Variation of ferrous ion concentrations during the degradation of DMP or DEP in visible
light assisted sono-Fenton processes at two different levels of iron species: (a) 0.5 mM, (b) 0.02 mM ([DMP]0 =
0.01 mM, [DEP]0 = 0.01 mM). Figure S9: The profiles of HPLC spectra during the degradation of DMP and DEP
([DMP]0 = 0.05 mM, [DEP]0 = 0.05 mM, P25 dosage 0.5 g L−1, [Fe3+]0 = 0.02 mM). Figure S10: The mass spectra of
hydroxylated-dimethyl phthalate with m/z 210 and 209 (M-H)−.
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