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Abstract: A comprehensive mechanistic insight into the photocatalytic reduction of CO2 by H2O
is indispensable for the development of highly efficient and robust photocatalysts for artificial
photosynthesis. This work presents first-principles mechanistic insights into the adsorption
and activation of CO2 in the absence and presence of H2O on the (001), (010), and (110) surfaces
of tantalum nitride (Ta3N5), a photocatalysts of significant technological interest. The stability of
the different Ta3N surfaces is shown to dictate the strength of adsorption and the extent of activation
of CO2 and H2O species, which bind strongest to the least stable Ta3N5(001) surface and weakest to
the most stable Ta3N5(110) surface. The adsorption of the CO2 on the Ta3N5(001), (010), and (110)
surfaces is demonstrated to be characterized by charge transfer from surface species to the CO2

molecule, resulting in its activation (i.e., forming negatively charged bent CO2
−δ species, with

elongated C–O bonds confirmed via vibrational frequency analyses). Compared to direct CO2

dissociation, H2O dissociates spontaneously on the Ta3N5 surfaces, providing the necessary hydrogen
source for CO2 reduction reactions. The coadsorption reactions of CO2 and H2O are demonstrated
to exhibit the strongest attractive interactions on the (010) surface, giving rise to proton transfer
to the CO2 molecule, which causes its spontaneous dissociation to form CO and 2OH− species.
These results demonstrate that Ta3N5, a narrow bandgap photocatalyst able to absorb visible light,
can efficiently activate the CO2 molecule and photocatalytically reduce it with water to produce
value-added fuels.
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1. Introduction

Photocatalytic reduction of carbon dioxide (CO2) with water (H2O) to produce value-added fuels
such as such as CO, HCOOH, CH3OH, and CH4 is a promising route to reduce CO2 emissions and address
the global energy crisis [1–5]. The activation and reduction of CO2 is, however, an energetically demanding
process that involves multiple electron transfer reactions [6–10], hence highly efficient and robust
photocatalysts are critical. Several photocatalysts, such as TiO2 [11–13], In2O3 [14,15], Ga2O3 [16,17],
Al2O3 [18,19], ZnO [20,21], CeO2 [22,23], ZnGe2O4 [24], and BiVO4 [25,26], have been investigated for
their performance in catalysing CO2 reduction. However, because of their large bandgaps and high
charge-carrier recombination rates, most of these semiconductor materials have low CO2 conversion
efficiencies. Therefore, there is continuous active research to find novel photocatalytic materials that are
active under visible/solar light.

Recently, many active visible light absorbers with narrow bandgaps, in particular Ta-based
materials, such as tantalum nitrides (Ta3N5) and tantalum oxynitrides (TaON), have attracted a lot
of attention owing to their unique catalytic properties [27]. Various forms of nanostructured Ta3N5
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including nanorod, nanoparticle, hollow sphere, and thin films have been considered as photocatalysts
with reported enhanced photocatalytic activities [28–32]. Ta3N5 and TaON have narrow band gap
energies of 2.1 and 2.4 eV, respectively, which make them suitable to absorb visible light to initiate
photocatalysis [33]. Due to its narrow bandgap energy, Ta3N5 could generate a sufficient number of
electrons and holes even under visible light, which could directly reduce CO2 into a radical anion (CO2

−δ)
and reduce H2O to protons (H+). Several studies have been conducted on the application of Ta3N5 for
water splitting and photocatalytic degradation of organic pollutants [15,16,34,35]. The obtained results
indicated that the T3N5 is a promising candidate as a visible light-driven photocatalysis. Recently,
the photocatalytic reduction of CO2 to CO over Ta3N5 has been reported [36,37]. However, detailed
mechanistic understanding of the interaction between CO2 and Ta3N5 photocatalyst is still limited.

The adsorption and activation of CO2 are the foremost and fundamental steps in the photocatalytic
reduction of CO2 on the surface of a photocatalyst [38–41]. Compared to the linear gas-phase
molecule, chemisorbed CO2 (mainly carbonate or CO2

−δ anion) is characterized by a bent geometry
with a decreased lowest unoccupied molecular orbital (LUMO), which favours charge transfer from
the photoexcited semiconductors to the surface-adsorbed CO2 molecules [41]. Generally, exposed
surfaces with a smaller work function provide greater activation for CO2 as they favour electron
transfers [42]. In this work, a comparative first-principles density functional theory (DFT) study
of the adsorption and activation of CO2 in the absence and presence of H2O on Ta3N5(001), (010),
and (110) surfaces is presented. First, the structures and relative stabilities of the low-index (001),
(010), and (110) surfaces were systematically characterized and the equilibrium crystal morphology of
the Ta3N5 crystal was constructed based on calculated surface energies. Secondly, the fundamental
adsorption and coadsorption geometries of CO2 and H2O, including the energetics and electronic
properties are discussed. The stabilities of the coadsorbed CO2–H2O species on the various surfaces
were also evaluated to determine the pathways for the surface reactions involving these species,
and to characterize the stability of the different reduced forms of CO2, in particular the formate
and bicarbonate species that were identified experimentally [37].

2. Results and Discussion

2.1. Bulk and Surface Properties

Ta3N5 crystalizes in the orthorhombic structure, as shown in Figure 1a,b, with space group Cmcm
(No. 63). The neutron diffraction-derived lattice parameters are a = 3.886 Å, b = 10.212 Å, c = 10.262 Å,
and α = β = γ = 90◦ [43]. The structure of Ta3N5 is composed of octahedra of N atoms centred
by Ta atoms. Since the N atoms are both three and four coordinated, the octahedra are irregular.
The conventional unit cell consists of 32 atoms, where each Ta atom is bonded to six N atoms, while
N atoms are bonded to three or four Ta atoms. The Ta–N distances in Ta3N5 range from 1.96 to
2.24 Å. From full relaxation (ions + cell shape + volume) until the required accuracy was reached,
the lattice parameters of Ta3N5 were predicted at a = 3.921 Å, b = 10.317 Å, and c = 10.323 Å, in close
agreement with experimental data [43] and earlier theoretical predictions [44–47]. The Ta–N distances
for the N atoms coordinated to three Ta atoms were calculated at 2.000, 2.083, and 2.048 Å, whereas
those for the N atoms coordinated to four Ta atoms are 2.117(×2) and 2.241(×2) Å. Figure 1c shows
the partial density of states of Ta3N5, from which the band gap is estimated at 2.11 eV, which is in good
agreement with ultraviolet–visible (UV–vis) spectroscopy measurements of Ta3N5 powders and thin
films which estimate an optical gap of approximately 2.1 eV [48,49]. Previous theoretical studies based
on GGA+U [45] and HSE06 [50,51] functionals predicted the bandgap in the range of 2.1–2.21 eV. It is
evident from Figure 1c that the top of the valence band is mainly composed of N-2p orbitals, while
the bottom of the conduction band is mainly composed of Ta-5d orbitals, indicating that transitions
near the absorption edge occur between N-2p and Ta-5d orbitals, which is in agreement with earlier
theoretical works [45,50,51].
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Figure 1. The orthorhombic crystal structure of Ta3N5 in terms of TaN6 octahedra viewed in the (a) c–
b and (b) b–a planes. (c) The electronic density of state of Ta3N5 showing the total and projection on 
the Ta d states and N p states. (Colour scheme: Ta = pale olive and N = blue.) 

Figure 2 shows the optimized structures of the most stable terminations of the Ta3N5(001), (010), 
and (110) surfaces, which have calculated surface energies of 2.33, 2.04, and 1.58, Jm−2, respectively. 
All surfaces are terminated by N atoms and exhibit step-like surface topologies. Using the calculated 
surfaces energies, the equilibrium Wulff shape of Ta3N5 nanocrystal was constructed, as shown in 
Figure 3. The Ta3N5 nanocrystal is found to exhibit an elongated shaped, with the (110) and (010) 
facets expressed in the rectangular crystal edges and the (001) facet enclosing the hexagonal edge. 
The predicted morphology is consistent with the elongated polyhedral crystal shape observed in 
experiments [30,52]. The differences in the structure, composition and stabilities of the (001), (010), 
and (110) surfaces are expected to dictate their reactivity towards CO2 and H2O molecules, which is 
investigated in detail and discussed in the following sections. 

Figure 1. The orthorhombic crystal structure of Ta3N5 in terms of TaN6 octahedra viewed in the (a) c–b
and (b) b–a planes. (c) The electronic density of state of Ta3N5 showing the total and projection on
the Ta d states and N p states. (Colour scheme: Ta = pale olive and N = blue.)

Figure 2 shows the optimized structures of the most stable terminations of the Ta3N5(001), (010),
and (110) surfaces, which have calculated surface energies of 2.33, 2.04, and 1.58, Jm−2, respectively.
All surfaces are terminated by N atoms and exhibit step-like surface topologies. Using the calculated
surfaces energies, the equilibrium Wulff shape of Ta3N5 nanocrystal was constructed, as shown in
Figure 3. The Ta3N5 nanocrystal is found to exhibit an elongated shaped, with the (110) and (010)
facets expressed in the rectangular crystal edges and the (001) facet enclosing the hexagonal edge.
The predicted morphology is consistent with the elongated polyhedral crystal shape observed in
experiments [30,52]. The differences in the structure, composition and stabilities of the (001), (010),
and (110) surfaces are expected to dictate their reactivity towards CO2 and H2O molecules, which is
investigated in detail and discussed in the following sections.
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Figure 2. Optimized structures of the (a) {001}−(2 × 1), (b) {010}−(2 × 1), and (c) {110}−(1 × 1) surfaces 
of Ta3N5, in top (top) and side (bottom) views. (Atomic colour scheme: Ta = pale olive and N = blue.) 

 

Figure 3. Equilibrium morphology of Ta3N5 nanocrystal derived from Wulff construction. 

2.2. CO2 Adsorption on (001), (010), and (110) Ta3N5 Surfaces 

Considering that the initial step for CO2 reduction is its activation [53], the lowest-energy 
adsorption configurations of CO2 on the Low-Miller index (001), (010), and (110) Ta3N5 surfaces were 
first investigated in order characterize the strength of interaction and the extent of the C−O bond 
activation. Shown in Figure 4 are the lowest-energy adsorption geometries of CO2 on the different 
Ta3N5(001), (010), and (110) surfaces, with the calculated adsorption energy and structural parameters 
summarized in Table 1. The less stable CO2 adsorption geometries predicted on the different Ta3N5 
surface are displayed in Supplementary Information Figures S1–S3. At the (001) surface, the CO2 
molecule interacts through all three atoms, as shown in Figure 4a, with the C atom bound to N sites 
and the O atoms bound to Ta sites, releasing an adsorption energy of −2.73 eV. The interacting Ta−O 

Figure 2. Optimized structures of the (a) {001}−(2 × 1), (b) {010}−(2 × 1), and (c) {110}−(1 × 1) surfaces
of Ta3N5, in top (top) and side (bottom) views. (Atomic colour scheme: Ta = pale olive and N = blue.)
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Figure 3. Equilibrium morphology of Ta3N5 nanocrystal derived from Wulff construction.

2.2. CO2 Adsorption on (001), (010), and (110) Ta3N5 Surfaces

Considering that the initial step for CO2 reduction is its activation [53], the lowest-energy
adsorption configurations of CO2 on the Low-Miller index (001), (010), and (110) Ta3N5 surfaces were
first investigated in order characterize the strength of interaction and the extent of the C−O bond
activation. Shown in Figure 4 are the lowest-energy adsorption geometries of CO2 on the different
Ta3N5(001), (010), and (110) surfaces, with the calculated adsorption energy and structural parameters
summarized in Table 1. The less stable CO2 adsorption geometries predicted on the different Ta3N5

surface are displayed in Supplementary Information Figures S1–S3. At the (001) surface, the CO2

molecule interacts through all three atoms, as shown in Figure 4a, with the C atom bound to N sites
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and the O atoms bound to Ta sites, releasing an adsorption energy of −2.73 eV. The interacting Ta−O
and the N−C bonds were calculated at 2.176 and 1.361 Å, respectively. The strong adsorption induced
structural transformation in the CO2 molecules with the C−O bonds elongated from 1.176 Å in the gas
phase to 1.301 Å in the adsorbed state and the ∠OaCOb angle reduced to 130.0◦, indicating activation
of the CO2 molecule. Compared to the (001), the CO2 molecule interacts with the (010) surface via
the carbon and one oxygen atom, as shown in Figure 4b, releasing an adsorption energy of −1.89 eV.
The C−O bonds are significantly elongated, in particular the surface-bound one (1.422 Å) compared to
the unbound one (1.202 Å) and the ∠OaCOb angle is reduced to 123.9◦. Similar to the (001) surface,
CO2 adsorption on the (110) surface involves all three atoms, as shown in Figure 4c, with the C atom
binding at the N site and the O atoms bound to Ta sites, releasing an adsorption energy of −1.20 eV.
Consistent with the weaker adsorption, longer Ta−O and the N−C bonds than on the (001) were
calculated at 2.217 and 1.400 Å, respectively. The average C−O bond and ∠OaCOb angle are calculated
at 1.292 Å and 125.5◦, respectively.
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Figure 4. Lowest-energy CO2 adsorption structures on (a) (001), (b) (010), and (c) (110) Ta3N5 surfaces.
The DOS projected on the surface Ta d states and N p states interacting with the C and O p states of
CO2 (d–f) and the corresponding isosurface contours of the differential charge density are shown as
inserts in (d–f), where green contours denote electron density increase and the red contours denote
electron density decrease by 0.02 e/Å3, respectively. (Atomic colour scheme: Ta = pale olive, N = blue,
C = green, and O = red.)

Partial density of states (PDOS) and differential charge density isosurface contours analyses
provided further atomic-level insights into the mixing atomic orbitals and redistribution of electron
density within the CO2-Ta3N5 systems. The adsorption of CO2 on Ta3N5 surface is characterized by
a strong mixing of interacting surface (Ta-d and N-p) and CO2 (C-p and O-p) orbitals, as shown in
Figure 4d–f. Consistent with chemisorption, electron density redistributions within the CO2-Ta3N5

systems is observed, which was analysed through differential charge density isosurface contours,
obtained as:

∆ρ = ρCO2+sur f ace − (ρsur f ace + ρCO2) (1)
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where ρCO2+sur f ace, ρsur f ace and ρCO2 are the electron density of the total CO2-Ta3N5 system, the bare
Ta3N5 surface, and the isolated CO2 molecule as in the relaxed adsorbed configuration. The differential
charge density iso-surface contours inserts in Figure 4d–f reveal a charge transfer from the bound
surface ions into theπ-antibonding orbital of the CO2 molecule via the newly formed Ta−O and the N−C
bonds. The CO2 molecule gained a net charge of 0.40, 0.35 and 0.28 from the (001), (010), and (110)
surfaces, resulting in the formation of negatively charged bent species (CO2

δ−) with elongated C−O
bonds, confirmed by vibrational frequencies analyses, as shown in Table 1.

Table 1. Adsorption energies, geometrical parameters, charges, and vibrational frequencies of molecular
CO2 on Ta3N5(001), (010), and (110) surfaces.

Parameter Free CO2 Ta3N5(001) Ta3N5(010) Ta3N5(110)

Eads (eV) - −2.73 −1.89 −1.20
∆q(CO2) (|e|) 0.0 0.40 0.34 0.31
d(C−Oa) (Å) 1.176 1.302 1.422 1.293
d(C−Ob) (Å) 1.176 1.301 1.202 1.290
∠OaCOb (o) 180.0 130.0 123.9 125.5
d(C−N) (Å) - 1.361 1.396 1.400

d(Oa−Ta) (Å) - 2.176 2.012 2.217
d(Ob−Ta) (Å) - 2.180 - 2.230
υas (cm−1) 2373 1465 1804 1718
υs (cm−1) 1323 1265 911 881
υb (cm−1) 631 819 737 691

2.3. CO2 Dissociation on (001), (010), and (110) Ta3N5 Surfaces

Shown in Figure 5 are the most stable coadsorption geometry of CO + O pair from CO2 dissociation
(CO2→CO + O) reaction on the (001), (010), and (110) Ta3N5 surfaces. At the Ta3N5(001) surface,
the oxygen atom binds at Ta site, whereas the carbon of the CO moiety bridges two N atoms, as shown
in Figure 5a, releasing a coadsorption energy of −1.64 eV. At the Ta3N5(010) surface, the oxygen atom
binds at bridge Ta sites, whereas the carbon of the CO moiety binds at the N site, as shown in Figure 5b,
releasing a coadsorption energy of−2.99 eV. At the Ta3N5(110) surface, as shown in Figure 5c, the oxygen
atom and the carbon of the CO moiety bind at Ta and N sites, respectively, releasing a coadsorption
energy of −0.68 eV. The results show that the coadsorption of (CO + O) pairs is more favourable on
the Ta3N5(010), followed by Ta3N5(001), and then the Ta3N5(110) surface. The geometrical parameters
and calculated coadsorption (Ecoads), reaction (Erxn), and the activation energy barriers (Eact) of CO2

dissociation are shown in Table 2. The Ta3N5(010) surface exhibits the lowest CO2/Ta3N5(010)→(CO
+ O)/Ta3N5(010) reaction energy—exothermic by −1.09 eV. The CO2→CO + O reaction is, however,
endothermic by 1.04 and 0.52 eV on the Ta3N5(001) and Ta3N5(110) surfaces, respectively. The activation
energy barrier (Eact) for the dissociation of CO2 on the (001), (010), and (110) Ta3N5 surfaces are calculated
at 1.34, 1.15 and 1.56 eV, respectively. The higher Eact and the endothermic Erxn for the dissociation of
CO2 predicted on the (001) and (110) surfaces suggest that direct dissociation may be hindered at room
temperature and without surface promoters such as H2O and H species. Direct CO2 dissociation may,
however, occur at room temperature on the Ta3N5(010) surface owing to its calculated exothermic Erxn

and the lower Eact.
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Table 2. Coadsorption (Ecoads), reaction (Erxn), activation (Eact) energies and geometrical parameters of
(CO + O) pairs on Ta3N5(001), (010), and (110) surfaces.

Parameter Ta3N5(001) Ta3N5(010) Ta3N5(110)

Ecoads (eV) −1.69 −2.99 −0.68
Erxn (eV) 1.04 −1.09 0.52
Eact (eV) 1.34 1.15 1.56

d(C−N) (Å) 1.467/1.388 1.237 1.242
d(Oa−Ta) (Å) 1.788 2.126/1.979 1.788
d(C−Ob) (Å) 1.227 1.173 1.170

2.4. CO2 and H2O Coadsorption and Reactions

Water is a suitable source of hydrogen for CO2 conversion via its hydrogenation to valued-added
chemicals [54]. As such, investigations of H2O and CO2 coadsorption and the possible reactions
between them are indisputable. Prior to investigating the coadsorption structures of CO2 and H2O,
the most stable adsorption geometries of isolated H2O on the (001), (010), and (110) Ta3N5 surfaces
were systematically characterized. The calculated energetics and structural parameters for molecular
and dissociative water adsorption on the three Ta3N5 surfaces are presented in Table 3 and Figure 6.
The most stable adsorption of water is predicted at the Ta sites via its O atoms. The adsorption
energy of molecular water at the (001), (010), and (110) Ta3N5 surfaces is calculated to be −1.42, −1.07,
and −1.08 eV, respectively, indicating that the interaction is strongest at the (001) surface and weakest
on the (110) surface, similar to the trend predicted for CO2 adsorption. The most stable dissociative
water adsorption configurations (OH + H pair) provided in the rightmost panel of Figure 6 show that
when dissociated, the OH species preferentially bind to the Ta sites through the O atom, whereas the H
atoms bind at the N sites. From Table 3, it is worth noting that the dissociative adsorption of water
on three surfaces is thermodynamically more favourable than molecular adsorption as reflected is
the larger coadsorption energies released by the OH + H pairs. The H2O→OH + O reaction energies
on the (001), (010), and (110) surfaces can be calculated at −1.15, −0.28, and −1.03 eV, respectively, all
of which are exothermic and thus indicate favourable dissociation of water. The interacting Ta−OH
distances are calculated at 1.987, 2.297, and 1.978 Å, whereas the N−H distances were converged
at 1.031, 1.056, and 1.022 Å on the (001), (010), and (110) surfaces, respectively. The transition states
structures were determined (central panels, Figure 6) in order to estimate the activation energy barriers
for the dissociation of water, which were predicted at 0.18, 0.34, and 0.27 eV at the (001), (010),
and (110) surfaces, respectively. In a previous study the energy barriers for the dissociation of water
was calculated at to be as low as 0.05 eV on the Ta3N5(110) surface [55]. Compared to direct CO2

dissociation, the predicted low activation energy barriers and the exothermic reaction energies suggest
that spontaneous water dissociation will occur on the (001), (010), and (110) surfaces.
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Table 3. Coadsorption (Ecoads), reaction (Erxn), activation (Eact) energies and geometrical parameters of
(OH + H) pairs on Ta3N5(001), (010), and (110) surfaces.

Parameter Ta3N5(001) Ta3N5(010) Ta3N5(110)

State Molecular Dissociative Molecular Dissociative Molecular Dissociative

Eads (eV) −1.42 −2.16 −1.07 −1.35 −1.08 −2.12
Erxn (eV) - −0.74 - −0.28 - −1.04
Eact (eV) 0.18 - 0.34 - 0.27 -

d(O−Ta) (Å) 2.307 1.987 2.395 2.297 2.295 1.978
d(H−N) (Å) - 1.031 - 1.056 - 1.022
d(O−H) (Å) 0.977/0.977 0.969 0.980/0.979 0.976 0.986/1.006 0.970

The lowest-energy coadsorption structures of CO2 + H2O on the (001), (010), and (110) surfaces of
have been characterized, as shown in Figure 7. The coadsorption energy of CO2 + H2O on the different
surfaces is calculated as follows:

Ecoads = E(CO2+H2O)/sur f ace − (Esur f ace + ECO2 + EH2O) (2)

where E(CO2+H2O)/sur f ace, ECO2 , EH2O and Esur f ace are the total energy of the coadsorbed (CO2+H2O)
surface system, the free CO2, the free H2O, and the bare Ta3N5 surfaces, respectively. The calculated CO2

+ H2O coadsorption energies and the geometrical parameters are presented in Table 4. The coadsorption
energy for the CO2 + H2O pair on the (001), (010), and (110) Ta3N5 surfaces were calculated at −3.94,
−3.68, and −2.43 eV, respectively. Consistent with attractive interactions, the coadsorption energies are
more exothermic than the sum of the separate CO2 and H2O adsorption energies.
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Table 4. Coadsorption energies and structural parameters for CO2 + H2O on Ta3N5(001), (010),
and (110) surfaces.

Parameter Ta3N5(001) Ta3N5(010) Ta3N5(110)

Ecoads (eV) −3.94 −3.68 −2.34
∆q(CO2+H2O) (|e|) 0.40 0.35 0.31

∆q(H2O) (|e|) 0.03 0.03 0.02
d(C−Oa) (Å) 1.305 1.460 1.292
d(C−Ob) (Å) 1.307 1.202 1.292
∠OaCOb (o) 125.6 122.1 125.5
d(C−N) (Å) 1.354 1.378 1.399

d(Oa−Ta) (Å) 2.187 2.045 2.231
d(Ob−Ta) (Å) 2.188 - 2.244
d(Ow−H) (Å) 0.981 1.022 0.978
d(Ow−Ta) (Å) 2.299 2.226 2.315
d( O–H) (Å) 3.619 1.606 3.454

Analysis of the differential charge density isosurface contours (Figure 8) shows accumulation of
electron density within the C–N and O–Ta bonding regions, indicating chemisorption.
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Figure 8. Differential charge density isosurface contours of the CO2 + H2O coadsorption on Ta3N5

(a) (001), (b) (010), and (c) (110) surfaces. The green contours denote electron density increase whereas
the red contours denote electron density decrease by 0.02 e/Å3, respectively. (Atomic colour scheme:
Ta = pale olive, N = blue, C = green, and O = red.)
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Hydrogen-bonded interactions between the CO2 and H2O species are observed at the Ta3N5(010)
surface, evident by the close interaction of the electron density of the two species. This may favour
proton transfer to the CO2 molecule, which has been investigated and found to results in spontaneous
dissociation of the surface-bound C−O bond to form CO and 2OH− species (Figure 9a). Relative to
the initial coadsorbed CO2 + H2O system, the reaction energy for the formation of the CO + 2OH−

species on the Ta3N5(010) surface is calculated to be highly exothermic by 1.11 eV. When the proton
is transferred to the unbound O of CO2, a stable carboxyl COOH species (Figure 9b) is formed with
a reaction energy of −0.67 eV. No stable formate HCOO species is formed as the attached proton
to the C atom detaches during energy minimisation to the surface N site, as shown in Figure 9c,
with the reaction energy calculated to be −0.19 eV. These results suggest that the Ta3N5(010) surface
favours the dissociation CO2 in the presence of H2O, and the resulting CO species could be further
hydrogenated to form CH2O and CH3OH.
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Compared to the Ta3N5(010) surface, the reaction energy for the proton transfer from H2O to CO2

to form COOH and HCOO species is found to be highly endothermic on the Ta3N5(001) and Ta3N5(110)
surfaces, as shown in Figure 10. The less endothermic reaction energies predicted for the COOH
species than for the HCOO species, however, suggest that further hydrogenation reactions to products
will proceed via the carboxyl COOH route.
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3. Summary and Conclusions

This work presents comprehensive first-principles density functional theory analyses of
the adsorption and activation of CO2 in the absence and presence of H2O on the (001), (010), and (110)
surfaces of Ta3N5, a photocatalyst able to absorb visible light to initiate photocatalysis. The strength
of adsorption and extent of CO2 activation is found to be influenced by the stability of the different
Ta3N surfaces, where it adsorbs most strongly onto the least stable Ta3N5(001) surface and most
weakly onto the most stable Ta3N5(110) surface. Direct dissociation of CO2 is suggested to occur on
the Ta3N5(010) surface owing to the calculated exothermic reaction energy and lower activation energy
barrier. In contrast, direct CO2 dissociation would be hindered on the Ta3N5(001) and Ta3N5(110)
surfaces without surface promoters such as H2O and H species. Spontaneous water dissociation is
predicted occur on the (001), (010), and (110) surfaces, providing the necessary hydrogen source for
CO2 reduction reactions. The strongest attractive interaction between coadsorbed CO2 and H2O is
predicted on the Ta3N5(010) surface, which gave rise to proton transfer to the CO2 molecule, causing its
spontaneous dissociation to form CO and 2OH− species with an exothermic reaction energy of −1.11 eV.
The formation of COOH* and HCOO* intermediates is found to be highly endothermic on the Ta3N5(001)
and Ta3N5(110) surfaces, although the COOH* species are less endothermic, indicating that further
hydrogenation reactions will proceed via the carboxyl COOH* route. A further hydrogenation of the OH
end of the COOH* intermediate may lead to CO + H2O formation, where the formed CO species could
be further hydrogenated towards methane of methanol formation. This is consistent with the findings
of Lu et al. [37], who, based on their detected intermediates, suggested that the possible reaction
pathway for CO2 reduction over the Ta3N5 catalysts is CO2→COOH*→CO→CH*

x→CH4. The present
results demonstrate that Ta3N5 can efficiently activate the CO2 molecule and photocatalytically reduce
it with water to produce value-added fuels. Future investigations of the Eley–Rideal type of mechanism
will be important to draw a direct comparison with the Langmuir–Hinshelwood mechanism unravelled
in the present study. Further investigations of the effects of transition metal doping on the electronic
structure and CO2 conversion reactions over Ta3N5 catalyst under visible light will also be important.

4. Computational Details

The density functional theory (DFT) calculations were performed within the VASP package [55–58].
The projected augmented wave (PAW) method [59] was employed to describe the interactions
between the valence electrons and the ionic core. Geometry optimisations were carried out using
the Perdew−Burke−Enzerhof (PBE) generalized gradient approximation (GGA) functional [60], while
the Hubbard U correction (PBE+U) was employed for accurate determination of the electronic
structures [61–64]. From an analysis of how the electronic band gap increases with increasing strength
of the on-site Coulomb repulsion, it was found that an effective U of 6.5 eV gives an accurate description
of the structural parameters and the electronic properties of Ta3N5 [65]. Dispersion forces were
accounted for through the Grimme DFT-D3 scheme [66]. The kinetic energy cut off was set to 600 eV,
which ensured convergence of the total energy of the Ta3N5 to within 10−6 eV and the residual
Hellman−Feynman forces to within 10−3 eV Å−1. A 7 × 3 × 3 mesh of Monkhorst−Pack [67] k-points
was used to sample the Brillouin zone of Ta3N5. For accurate determination of the electronic structure
of Ta3N5, a higher mesh of 9 × 5 × 5 was used.

The (001), (010), and (110) surfaces, which are commonly observed in Ta3N5 nanoparticles, were
created from the optimized bulk material using the METADISE code [68,69], which ensures the creation
of surfaces with zero dipole moment perpendicular to the surface plane. In each simulation cell (slab
thickness of at least 15 Å), a vacuum region of 20 Å was added in the z direction to avoid interactions
between periodic slabs. The relative stabilities of the (001), (010), and (110) Ta3N5 surfaces were
determined according to their relaxed surface energy (γr), calculated as:

γr =
Erelaxed

slab − nEbulk

2A
(3)
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where Erelaxed
slab is the energy of the relaxed slab, nEbulk is the energy of an equal number (n) of the bulk

Ta3N5 atoms, and A is the area of the slab surface. The adsorption energy (Eads) of CO2 and H2O
species is determined as follows:

Eads (M) = EM+surface - (Esurface + EM) (4)

where EM+surface is the total energy of the relaxed M+Ta3N5 systems (M = CO2 and H2O), Esurface

the total energy of the naked Ta3N5 surfaces alone, and EM the total energy of the isolated adsorbates
(CO2 and H2O). Because of the adsorption of reactant molecules at only one side of the surface,
Makov–Payne dipole correction was applied perpendicular to each surface [70]. In order to determine
the preferred adsorption sites and lowest energy adsorption modes of CO2 and H2O molecules on
the Ta3N5 surfaces, different initial orientations of the molecules were optimized without any symmetry
constraints. Charge transfer between the surfaces and adsorbates is quantified via Bader charge
analysis [71]. Transition states (TS) along reaction pathways were determined using the climbing-image
nudged elastic band (CI-NEB) method [72], wherein six images were generated between the states of
reactants (IS) and products (FS) in each elementary process. Located TS were characterized by only one
imaginary frequency, corresponding to the reaction coordinate. The reaction activation energy barrier
(EA) is determined by EA = TS – IS, whereas the reaction energy (ER) is determined by ER = FS – IS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1217/s1,
Figure S1: Contains the relaxed structures of all possible adsorption CO2 geometries on Ta3N5 (001), (010),
and (110) surfaces.
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