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Abstract: The effect of the raw materials including parent zeolite as aluminosilicate sources and
organic structure-directing agents (OSDAs) on the crystallization mechanism, and physicochemical
and catalytic properties of the CHA-type aluminosilicate zeolite was investigated. For this purpose,
the FAU-type and the LTL-type zeolites were used as raw material, and trymethyladamantyl
ammonium hydroxide and tetraethyl ammonium hydroxide were used as OSDAs. We firstly found
that the CHA-type aluminosilicate zeolite was crystallized from the combination of the LTL-type
zeolite and tetraethyl ammonium hydroxide as raw materials. The crystallization behaviors were
also monitored in detail. The crystallization was delayed by using the LTL-type zeolite as the starting
material regardless of the type of OSDA because of the low solubility of the LTL-type zeolite compared
to the FAU-type zeolite. We have found that the Al distribution in the CHA framework was dependent
on the raw materials. Thus, the prepared CHA-type aluminosilicate zeolite from the LTL-type zeolite
exhibited a high thermal stability and catalytic performance in the methanol to olefins reaction.

Keywords: interzeolite conversion method; CHA-type zeolite; LTL-type zeolite; crystallization
mechanism; MTO reaction

1. Introduction

An 8-membered ring (8-MR) zeolite such as CHA-type zeolites show an excellent activity for
selective catalysis due to their small pores [1–27]. In 1985, the CHA-type aluminosilicate zeolite
(hereinafter called CHA) was artificially synthesized by using FAU-type aluminosilicate zeolite
(hereinafter called FAU) as raw material with potassium cation [6]. Thus, synthesized CHA has the
Si/Al ratio of 2.0–4.0 in a framework. A high-silica type CHA (Si/Al = 5–150) has successfully been
synthesized with the assistance of trymethyladamantyl ammonium cation (TMAda+) as an organic
structure-directing agent (OSDA) [7]. Furthermore, fluoride and dry-gel conversion methods lead
to the crystallization of the siliceous CHA-type framework without Al atoms [8,9]. Thus, the Si/Al
ratio in CHA has been controlled in a wide range to date [10–15]. In addition to TMAda+, other
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OSDAs including tetraethylammonium cation (TEA+) [22,23] and benzyltrimethyl ammonium cation
(BTMA+) [18–21] have been applied in the synthesis of CHA.

Recently, besides FAU, various zeolites have been used as raw material via the so-called
“interzeolite conversion (IZC)” method [16–30]. CHA has been synthesized with a short crystallization
time using FAU- and PHI-type zeolites as raw material in the presence of TMAda+ [16,17]. CHA has
also been synthesized using LTL-type aluminosilicate zeolite (hereinafter called LTL) in the presence
of TMAda+ [28,29]. In addition to the type of zeolite as raw material, the influence of OSDA on the
composition of the final product has been studied [31,32]. The combination of FAU and BTMA+ has
led to the synthesis of CHA with the Si/Al ratio ranging from 14 to 30 [18–21]. The use of TEA+

has resulted in the synthesis of CHA with the Si/Al ratio ranging from 4.8 to 8.3 [22,23]. Nowadays,
besides CHA-type zeolites, several zeolites have been synthesized from various zeolites as raw
materials [33–38]. The *BEA-type zeolite has been converted into FAU [33], and the MFI-type zeolite
has been synthesized using the *BEA-type zeolite as the starting material [34]. In the IZC method,
structural units with local ordered structure, so-called “nano parts”, which are produced from zeolite
as the starting material, play an important role in crystallizing the targeted zeolite [35–41].

More recently, in the synthesis of CHA via the IZC method using FAU (Si/Al = 2.8), we have
found that the proportion of FAU in the raw materials strongly affected the distribution framework
of Al atoms; when the proportion of FAU was high, the Q4(2Al)-rich CHA, where “Q4(nAl)” is
Si(OSi)4−n(OAl)n, was obtained [42]. In addition to the proportion of FAU, the types of parent zeolite
and/or OSDA will affect the physicochemical properties of the resultant CHA. Although the synthesis
of zeolites using the IZC method has been reported by several groups, there are few reports on the
relationship between the type of parent zeolite and the organic structure-regulating agent.

Here, we report on a new route to synthesize CHA-type aluminosilicate zeolite by the interzeolite
conversion method using the LTL-type zeolite. Based on this new synthesis route, the effect of the
raw materials including parent zeolite as an aluminosilicate sources and organic structure-directing
agent (OSDA) on the crystallization mechanism, and physicochemical and catalytic properties was
investigated. For these purposes, FAU and LTL were used as raw materials, and TMAdaOH and
TEAOH were used as OSDA. The crystallization behaviors were also monitored in detail. Finally,
the catalytic properties for the methanol to olefins (MTO) reaction were investigated.

2. Results

2.1. Synthesis of CHA-Type Zeolite

The CHA-type aluminosilicate zeolites were synthesized by using FAU and LTL via the IZC
method in the presence of TMAda+ as OSDA; the obtained products using FAU and LTL as starting
material were designated as CHA–FAU–TMAda and CHA–LTL–TMAda, respectively. The Si/Al ratio
in gel was set at 15. The XRD patterns of the calcined products revealed that all the products had a pure
CHA phase (Figure S2 (Supplementary Materials)). The Si/Al ratios in the products are listed in Table 1.
When TMAda+ was used as the OSDA, the Si/Al ratios in CHA–FAU–TMAda and CHA–LTL–TMAda
were 14.6 and 16.3, respectively, being almost in accordance with that in gel. In this case, the yields of
the products, which were calculated by the weight of the as-synthesized product excluded from the
organic content, were 94 and 84 wt %, respectively. On the other hand, the use of TEAOH resulted in
the formation of CHA with a low yield and low Si/Al ratio compared to that of TMAdaOH. The Si/Al
ratios synthesized with LTL and FAU were 10.5 and 6.3, respectively (designated as “CHA–LTL–TEA”
and “CHA–FAU–TEA”, respectively). The yields of the products synthesized with TEAOH were
much lower than those with TMAdaOH (ca. below 50%). In addition, in the case of CHA–LTL–TEA,
the crystallization of the CHA structure proceeds after the dissolution of LTL, as described later, and
the crystallization is progressed by the IZC method.
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Table 1. Physicochemical properties of the as-made samples.

Sample
in Gel

Yield/% Si/Al Na+/Al K+/Al (Na+ + K+)/Al SDA/Al
Si/Al Na/Si K/Si SDA/Si

CHA–LTL–TMAda 15 0.3 0.0 0.2 84 16.3 0.07 0.06 0.07 1.02
CHA–FAU–TMAda 15 0.3 0.0 0.2 94 14.6 0.12 - 0.12 1.10

CHA–LTL–TEA 15 0.3 0.1 0.55 49 10.5 0.05 0.16 0.21 0.78
CHA–FAU–TEA 15 0.3 0.1 0.55 40 6.3 0.36 0.18 0.54 0.23

The crystallization time was 120 h and the temperature was 443 K.

There were differences in the (Na+ + K+)/Al and OSDA/Al ratios among the products (Table 1).
The OSDA/Al ratios in gels containing TMAdaOH and TEAOH were 0.2 and 0.55, respectively.
Nevertheless, the use of TEAOH resulted in the formation of CHA with a low OSDA/Al compared
to that of TMAdaOH. In the synthesis of CHA via the IZC method in the presence of OSDA, parent
zeolite as a silica and alumina source is considered to be re-crystallized into the targeted structure
being accompanying by OSDA as well as Na and K [31]. TMAda+ molecule was more effectively
incorporated into the final product. This is because TMAda+, which has a higher C/N ratio than
TEA+, would be easily combined with the amorphous aluminosilicate species produced from the
parent zeolites through hydrophobic interaction [31]. Note that the OSDA/Al ratio for CHA–FAU–TEA
(ca. 0.23) was much lower than that for CHA–LTL–TEA (ca. 0.78). This would be caused by the high
loadings of Na and K in place of OSDA, and a higher dissolubility of FAU than LTL (described below).
Thus, our results suggest that OSDA greatly affects the composition of the final products, and that
the crystal growth process would be different depending on the combination of the parent zeolite
and OSDA.

2.2. Evaluation of Al Species in CHA Structure

The 27Al MAS NMR spectra of the calcined products are shown in Figure S3 (Supplementary
Materials). A strong peak at 58 ppm assignment to the tetrahedral coordinated Al atoms in an
oxygen environment. Furthermore, the peak at 0 ppm, which is assigned to octahedrally coordinated
extra-framework Al atoms, was hardly observed. These results show mostly Al species in the products
included in the CHA framework.

The 29Si MAS NMR technique was applied to investigate the distribution of framework Al
(Figure 1) [42]. All the spectra showed two peaks at −110 and −105 ppm, which correspond to Q4(0Al)
and Q4(1Al), respectively, where Q4(nAl) is Si(OSi)4−n(OAl)n. Note that a broad peak around −100 ppm
was observed, and it consists of two peaks at −101 and −99 ppm, which were assigned to Q4(2Al) and
Q3(0Al), respectively, where Q3(nAl) is Si(OH)(OSi)3−n(OAl)n, respectively [43]. The proportions of
the Si species estimated by deconvolution are listed in Table 2. When TMAdaOH was used as the
OSDA, the proportion of Q3(0Al), the structural defect sites, was significantly high compared to the
use of TEAOH. In these cases, the excess amounts of Na and OSDA species in comparison with the Al
content were loaded; the (Na + OSDA)/Al ratios for CHA–LTL–TMAda and CHA–FAU–TMAda were
calculated to be 1.09 and 1.22, respectively (Table 1). Thus, excess loadings would cause the formation
of the negatively charged defect sites, resulting in the high proportion of Q3(0Al).

Interestingly, there was a marked difference in the Al distribution among the products;
the Q4(2Al)/Q4(1Al) ratio was dependent on the type of zeolite used, not OSDA. Note that
CHA–LTL–TEA was the lowest (ca. 0.05). The use of FAU resulted in a high Q4(2Al)/Q4(1Al)
ratio compared to that of LTL. The FAU used as the parent zeolite had a high proportion of Q4(2Al)
compared to LTL (Figure S1 (Supplementary Materials)). Thus, the amorphous aluminosilicate species
produced from FAU would contain a high proportion of Q4(2Al), resulting in the Q4(2Al)/Q4(1Al) ratio
in the products. These results indicate that the raw materials including parent zeolite strongly affected
the Al distribution.
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in Figure 3. In the synthesis from LTL, the crystallinity of LTL was gradually decreased along with 
the crystallization time, and the LTL phase mostly disappeared after 120 h irrespective of type of 
OSDA. The CHA phase was clearly observed after 24 h, and its crystallinity was dramatically 
increased at the crystallization time of 48 h. Finally, a pure CHA phase was obtained after 120 h. On 
the other hand, in the synthesis from FAU, the FAU phase was quickly decreased to below 20% at 
only 1 h irrespective of the type of OSDA, and almost 100% crystallinity of CHA was achieved within 
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Figure 1. 29Si MAS NMR spectra with curve fittings of the products: (a) CHA–LTL–TMAda,
(b) CHA–FAU–TMAda, (c) CHA–LTL–TEA, (d) CHA–FAU–TEA. TEA: Tetraethylammonium cation;
TMAda: Trymethyladamantyl ammonium cation.

Table 2. 29Si MAS NMR spectra deconvolution results.

Sample Si/Al
(ICP)

Si/Al a

(NMR)
Proportion of Q4(nAl) b and Q3(nAl) c/%

Q4(2Al)/Q4(1Al)
Q4(3Al) Q4(2Al) Q4(1Al) Q4(0Al) Q3(0Al)

CHA–LTL–TMAda 16.3 14.7 <0.1 2.1 22.9 67.0 7.9 0.091
CHA–FAU–TMAda 14.6 19.6 <0.1 1.5 16.4 73.1 9 0.122

CHA–LTL–TEA 10.5 12.9 <0.1 1.3 28.4 69.1 1.2 0.046
CHA–FAU–TEA 6.3 6.2 <0.1 9.8 44.4 44.6 0.11 0.22

a Si/Al(NMR): Si/Al atomic ratio in the sample determined by 29Si MAS NMR spectra. b Q4(nAl): Si(OSi)4−n(OAl)n.
c Q3(nAl): Si(OSi)3−n(OH)(OAl)n.

2.3. Crystallization Behavior of CHA via the IZC Method Using FAU and LTL

2.3.1. Crystallinity

The crystallization behaviors were monitored in detail. The changes in the XRD patterns of
the products along with crystallization time are shown in Figure 2. For CHA–LTL–TMAda and
CHA–FAU–TMAda, the diffraction peaks of the parent zeolites (LTL and FAU) were clearly observed
until 24 and 6 h, respectively. The crystallinity was estimated based on relative intensity, and the
change in the crystallinity of the FAU, LTL and CHA phases along with the crystallization time are
shown in Figure 3. In the synthesis from LTL, the crystallinity of LTL was gradually decreased along
with the crystallization time, and the LTL phase mostly disappeared after 120 h irrespective of type of
OSDA. The CHA phase was clearly observed after 24 h, and its crystallinity was dramatically increased
at the crystallization time of 48 h. Finally, a pure CHA phase was obtained after 120 h. On the other
hand, in the synthesis from FAU, the FAU phase was quickly decreased to below 20% at only 1 h
irrespective of the type of OSDA, and almost 100% crystallinity of CHA was achieved within 24 h, and
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the CHA phase was completely retained for 120 h. The pH values in the synthesis gels containing
TMAdaOH and TEAOH were almost similar (ca. 13.2 and 13.6, respectively). Therefore, observed
differences could be explained by the difference in the dissolubility between FAU and LTL, which is
caused by the framework density: 13.3 and 16.7 T/1000 Å3 is for FAU and LTL, respectively. We have
considered that FAU was quickly dissolved and produced more amorphous aluminosilicate species
compared to LTL, and the produced amorphous aluminosilicate species were crystallized into the
CHA phase in the presence of OSDA.
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2.3.2. Solid Yield and Al Content

The changes in the solid yield and Si/Al ratio along with crystallization time were investigated
(Figure 4). When TMAdaOH was used as the OSDA, the Si/Al ratios of the solid products were
dramatically increased when the formation of CHA started, and the Si/Al ratios in the final products
were almost similar to that of the synthesis gel, irrespective of the parent zeolites. The yields were also
increased along with the formation of CHA, and they reached over 94 and 84% for CHA–LTL–TMAda
and CHA–FAU–TMAda, respectively. For CHA–LTL–TMAda, the yield and Si/Al ratio were gradually
increased along with the crystallization time ranging from 12 to 72 h. The amorphous silicate species
derived from LTL were consumed for the crystal growth. On the other hand, for CHA–FAU–TMAda,
the yield and Si/Al ratio were unchanged after 24 h, suggesting that CHA was completely crystallized
for 24 h.

When TEAOH was used as the OSDA, there was a clear difference in the change in the Si/Al
ratio along with the crystallization time between CHA–LTL–TEA and CHA–FAU–TEA. When the
crystallization time was increased from 24 to 72 h, the Si/Al ratio of CHA–LTL–TEA was increased
from 3.2 to 10.5, and then it was unchanged after 72 h. For CHA–FAU–TEA, the yield was drastically
increased to 31% for 12 h, and it finally reached 40%. Correspondingly, the Si/Al ratio was increased to
4.5 for 12 h, and it had a slight increase. It finally reached 6.3 at 120 h. These results imply that the
crystallization of CHA was mostly completed within 12 h.

The changes in the amount of OSDA, Na+, and K+ were also monitored in terms of the charge
balance of zeolite framework. Figure 5 shows the changes in the amount of OSDA amount along with
the crystallization time. For CHA–LTL–TMAda, the TMAdaOH in product was stable (ca. 0.4 mmol
g−1) until 24 h, and it was dramatically increased up to 0.8 at 48 h. It reached about 1.2 mmol g−1 at
72 h. For CHA–FAU–TMAda, the TMAdaOH/Al quickly reached 1.2 within 12 h, and it was almost
unchanged after 12.
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The TEAOH/Al ratio in CHA–LTL–TEA was gradually increased to 0.78 for 72 h. On the other
hand, that in CHA–FAU–TEA reached 0.2 within 6 h, and it was almost unchanged after 6 h. Thus,
the behavior of the OSDA/Al ratio against the crystallization time was dependent on the type of the
parent zeolites, not OSDA.

2.3.3. Particle Morphology

The changes in the particle morphology of the products along with the crystallization times
ranging from 1 to 120 h were investigated (Figure 6). The SEM images of LTL and FAU used as starting
material are shown Figure S1 (Supplementary Materials), showing cylindrical particles 0.2–0.3 µh
and octahedral particles 0.8–1.0 µa in size, respectively. When TMAdaOH was used as OSDA, cubic
particles about 5.0 µw in size were finally formed irrespective of the parent zeolites. At the initial
stages of the crystallization until 3 h, particles attributed to the amorphous product were observed.
The presence of an amorphous product was consistent with the observation of the so-called “halo
peak” at 20◦ in the XRD measurement (Figure 1). The formation of the cubic particles began at 6 h
(Figure 3a), and cubic particles were clearly observed at 12 h for CHA–FAU–TMAda, while amorphous
particles were still observed for CHA–LTL–TMAda at this time

The particle size of CHA–FAU–TMAda was almost unchanged after 12 h. For CHA–LTL–TMAda,
the formation of cubic particles began at 48 h, and it was almost completed at 72 h. There was
not a marked difference in the particle size of the final products between CHA–LTL–TMAda and
CHA–FAU–TMAda. So-called “hydrophobic effect” of TMAda+ species might enhance the interaction
with amorphous aluminosilicate species derived from the parent zeolites. Such species would be
involved in crystal growth, resulting in the formation of large crystals.

When TEAOH was used as OSDA, cubic particles 0.3–0.4 µm in size were observed at 3 h, and
their formation was almost completed at 6 h for CHA–FAU–TEA. On the other hand, LTL were still
observed until 6 h, the formation of cubic particles began at 24 h, and the particles gradually grew
along with the crystallization time. Finally, stacked cubic particles 1.0 µm in size were formed at 120 h.
Thus, in the use of TEAOH, the use of LTL led to the increase in the particle size.
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These results indicated that the parent zeolite affected the nucleation of CHA. In the synthesis
from FAU, FAU was quickly dissolved, forming “nanoparts” containing Na+ and K+ cations, which
would enhance the nucleation of CHA [44–46]. On the other hand, the dissolution of LTL was slow,
and the production of the nanoparts was also retarded. As a result, the nucleation of CHA would also
be delayed, forming larger-sized CHA compared to the use of FAU.

2.4. Hydrothermal Stability

Hydrothermal stability is one of the most important properties of zeolite. The CHA samples
synthesized from LTL are expected to show a high hydrothermal stability because they showed a
high Q4(1Al) proportion compared to those from FAU [42]. The XRD patterns of the NH4

+ from
samples before and after the hydrothermal treatment are shown in Figure 7. CHA–FAU–TEA was
collapsed upon the hydrothermal treatment. It is well known that zeolite with a high Al content
shows a poor hydrothermal stability because water vapor reacts easily with framework Al species,
enhancing the cleavage of the Si–O–Al bond [47]. For CHA–LTL–TMAda and CHA–FAU–TMAda,
the CHA structure was retained after the hydrothermal treatment, while the intensities were slightly
decreased; the relative crystallinity was decreased to 73 and 49%, respectively. CHA–LTL–TMAda
showed a slightly higher hydrothermal stability than CHA–LTL–TMAda in spite of a similar Si/Al
ratio and particle size. Note that the relative crystallinity of CHA–LTL–TEA was almost unchanged
after the hydrothermal treatment; the relative crystallinity was calculated to be 91%. The difference in
the hydrothermal stability would be related to the Al distribution as well as the Al content. We have
reported that the CHA-type zeolite with more Q4(1Al) species and/or lower defect sites is more stable in
hydrothermal conditions [42]. Considering that the use of FAU resulted in a high Q4(2Al)/Q4(1Al) ratio
compared to that of LTL (Table 2), it is successfully concluded that the high hydrothermal stability of
CHA–LTL–TMAda and CHA–LTL–TEA is derived from a low Q4(2Al)/Q4(1Al) ratio. Such properties
would be advantageous for the application to the selective reduction of NOx.
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2.5. MTO Reaction

The prepared CHA samples were used as catalyst for the MTO reaction. Figure 8 shows the
change in the conversion of methanol and the products’ selectivities along with time on stream
(TOS) at 350 ◦C. Table S1 (Supplementary Materials) summarizes the products’ selectivities when
the selectivity to ethene was the highest in each sample. At the initial region (TOS = 10 min), for all
the samples, the methanol conversion reached 100% and the main product was ethene followed by
propene. The selectivity to ethene was increased along with the TOS until the deactivation started.
Furthermore, dimethylether (DME) was formed after the deactivation started. Thus, the prepared CHA
samples in this study exhibited similar catalytic properties to those in the literature [48,49]. The CHA
catalysts synthesized using TMAdaOH, CHA–LTL–TMAda and CHA–FAU–TMAda showed a longer
catalytic life and higher selectivity to light olefins compared to those synthesized using TEA, although
the use of TMAdaOH resulted in the formation of larger particles (Table S1 (Supplementary Materials)).
CHA–FAU–TEA showed the shortest catalytic life. The difference in the acid amount is one of the
critical reasons for catalytic life (Table S1 (Supplementary Materials)). In addition, the distribution of
framework Al would influence the catalytic properties described below.

In the MTO reaction, light olefins are produced by the cracking of alkanes and alkenes and the
so-called “hydrocarbon pool mechanism” [50,51]. The higher yields of paraffins could be caused by
the Lewis acid site derived from extra-framework Al species in the hydrogen transfer reactions [52,53].
Therefore, we investigated the Al state of the H+-type products (Figure S4 (Supplementary Materials))
in addition to the calcined Na+-type products (Figure S3 (Supplementary Materials)): Figures S3 and
S4 (Supplementary Materials) revealed that the ion-exchange process resulted in the formation of
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extra-framework Al species, in particular CHA–FAU–TEA. In addition, CHA–FAU–TEA gave the
highest value for the Q4(2Al)/Q4(1Al) ratio (Table 2). It has been reported that Q4(2Al) species would
enhance hydrogen transfer reactions [12,42], accelerating aromatization followed by coke formation.
Thus, CHA–FAU–TEA showed the shortest catalytic life (Figure 8).
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3. Materials and Methods

3.1. Synthesis of CHA-Type Zeolite from FAU- and LTL-Type Zeolites

JRC-Y-4.8 (Si/Al = 2.4, Catalysis Society of Japan, Tokyo, Japan) and HSZ-500KOA (Si/Al = 3.0,
Tosoh Corp., Tokyo, Japan) were used as FAU and LTL, respectively (Figure S1 (Supplementary
Materials)). Two kinds of OSDA, trymethyladamantylammonium hydroxide (TMAdaOH) (SACHEM,
Texas, USA) and tetraethylammonium hydroxide (TEAOH) (TCI 35% in water, Tokyo, Japan) were
used. Fumed silica (Cab-O-Sil M5, CABOT, MA, USA) was added as an additional silica source to
achieve the targeted composition of the mother gel.

In the presence of TMAdaOH, the molar ratio of the mother gel was 1 SiO2/0.033 Al2O3/0.2
NaOH/0.2 TMAdaOH/40 H2O. In this work, 15 mmol SiO2 was applied to synthesize the CHA-type
zeolite. The 10 wt % seed crystal (CHA-type zeolite synthesized by Ref. [24]) was added to the mother
gel. After stirring at room temperature for 1 h, the mother gel was hydrothermally treated at 443 K in a
stirring for 1–120 h for the evaluation of crystallization behavior. The solid product was recovered
by filtration, washed with distilled water, and dried at 373 K. The sample was calcined under 873 K
for 5 h in air. Then, the calcined Na-form sample was carried out the ion exchange at 353 K for 3 h
using 2.0 M NH4NO3 aqueous solution. This treatment was repeated 3 times to convert into the
NH4-type. Finally, the H+-type was obtained after calcination of the NH4-type under an air atmosphere
at 873 K for 5 h. Thus, obtained products using FAU and LTL as starting materials were designated as
CHA–FAU–TMAda and CHA–LTL–TMAda, respectively.

In the presence of TEAOH, the following system was used: 1 SiO2/0.033 Al2O3/0.3 NaOH/

0.1KOH/0.55 TEAOH/40 H2O, and 15 mmol SiO2 was also applied. The 10 wt % seed crystal was
added to the mother gel. The prepared mother gel was hydrothermally treated, and then the H-type
form was obtained by the method similar to the use of TMAdaOH. The products were designated as
CHA–FAU–TEA and CHA–LTL–TEA.
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3.2. Characterization

X-ray diffraction (XRD) patterns were collected on a Rint-Ultima III (Rigaku, Tokyo, Japan) using
a CuKα X-ray source (40 kV, 20 mA). The crystallinity was calculated based on the relative intensity,
which was estimated as follows.

Relative crystallinity of LTL, FAU =

The sum of the peak intensity of LTL, FAU
at each crystallization time

The sum of peak intensity of raw materials
(1)

Relative crystallinity of CHA =

The sum of peak intensity of CHA
at each crystallization time

The sum of peak intensity of CHA at 5days
(2)

Sum of peak intensity at 2 θ

LTL = 5.5◦,11.7◦,14.6◦,19.2◦,22.6◦,24.2◦,25.5◦,28.0◦,29.0◦ and 30.5◦

FAU = 6.0◦,10.1◦,11.8◦,15.6◦,18.7◦,20.4◦,23.7◦,27.1◦ and 31.4◦

CHA = 9.8◦,16.1◦,18.2◦,21.0◦,25.3◦,26.4◦ and 31.1◦

FE-SEM images of the powder samples were collected on an S-5200 microscope (Hitachi, Tokyo,
Japan). The amount of the Si and Al was analyzed by ICP-AES using a ICPE-9000 spectrometer
(Shimadzu, Kyoto, Japan). The amount of Na and K in the samples was estimated by atomic absorption
spectroscopy (AAS) on a AA-6200 spectrometer (Shimadzu, Kyoto, Japan). The amount of organic
species in the as-synthesized samples was determined based on the weight loss from 573 to 1073 K
in a thermogravimetric (TG) profile, which was performed on a thermogravimetric–differential
thermal analyzer (TG-DTA, Thermo plus EVO II) (Rigaku, Tokyo, Japan). To determine the acid
amount, temperature-programmed NH3 desorption profiles (NH3-TPD) were recorded on BEL-CAT
(MicrotracBEL, Osaka, Japan). Solid-state NMR spectra were obtained on a JEOL ECA-600 spectrometer
(14.1 T) (JEOL, Tokyo, Japan). The samples were spun at 15 kHz by using a 4 mm ZrO2 rotor. For 27Al
MAS (Magic Angle Spinning) NMR spectra, the 27Al chemical shift was referenced to −0.54 ppm,
AlNH4(SO4)2·12H2O. For 29Si MAS and 29Si CP/MAS NMR spectra, the 29Si chemical shift was
referenced to −34.12 ppm using polydimethylsiloxane (PDMS)(Sigma-Aldrich, St. Louis, MO, USA).

3.3. Hydrothermal Stability

About 300 mg of binder-free zeolite pellets (50/80 mesh) were filled into a quartz-tube flow
micro-reactor (inner diameter 6 mm) and heated from room temperature to 1073 K under air flow at
a heating rate of 5 K min−1 with 40 vol % H2O (PH2O = 40.5 kPa, W/F = 1.62, N2 balance), and the
hydrothermal stability of the zeolite was investigated by hydrothermal treatment at 1073 K for 5 h.
The stability was assessed based on the relative crystallinity, which is defined as the change in the sum
of the intensities of the diffraction peaks assigned to the CHA structure.

3.4. MTO Reaction

The reaction was performed by using a continuous flow reactor at atmospheric pressure.
The H+-form samples were pressed, crushed, and sorted into grains using 50/80 meshes without
a binder. The grains were packed into a quartz tubular flow microreactor (6 mm inner diameter)
in a vertical furnace and heated under helium from room temperature to 773 K. This temperature
was maintained for 1 h prior to the reaction, and then cooled to the desired reaction temperature.
The pressure of methanol was set at 5 kPa with He as a carrier gas. W/F for methanol was set at 34 g h
mol−1. Ethene, propene, butenes, C1–C4 paraffins, over-C5 hydrocarbons, and dimethyl ether (DME)
were detected as products, which were analyzed by an online gas chromatograph GC-2014 (Shimadzu,
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Kyoto, Japan) equipped with HP-PLOT/Q capillary column and an FID (flame ionization detector).
The conversion of methanol and selectivity of the products was calculated by the formula below.

Conversion of reactants = 100−
C− atoms of Methanol (output)
C− atoms of Methanol (input)

× 100 (3)

product distribution =
C− atoms of the product

(C− atoms of Methanol (input) −C− atoms of Methanol (output)
× 100 (4)

4. Conclusions

A new synthesis route of CHA-type aluminosilicate zeolite by the interzeolite conversion method
using the LTL-type zeolite in the presence of tetraethyl ammonium hydroxide has successfully been
developed. Based on this new synthesis route, the effect of the raw materials including parent zeolite
as aluminosilicate sources and an organic structure-directing agent (OSDA) on the crystallization
mechanism, and the physicochemical and catalytic properties, were investigated. We have found
that OSDA greatly affects the composition of the final products, and that the raw materials strongly
influenced the Al distribution in the final products; the use of FAU resulted in a high Q4(2Al)/Q4(1Al)
ratio compared to that of LTL. By monitoring the crystallization behaviors, the crystallization was
delayed by using the LTL-type zeolite as raw material regardless of the type of organic structure-directing
agent because of the low dissolubility of the LTL-type zeolite compared to the FAU-type zeolite.

The hydrothermal stability and catalytic performance in the MTO reaction of the prepared
CHA-type zeolites were clearly dependent on the raw materials. The use of LTL-type zeolite as a
raw material improved the hydrothermal stability, which is closely related to the Al distribution in
the CHA framework. The CHA zeolites synthesized using TMAdaOH showed a longer catalytic life
and higher selectivity to light olefins in the MTO reaction compared to those synthesized using TEA.
The results obtained from this study clearly showed that the raw materials for the CHA-type zeolite
should be optimized depending on its application. Furthermore, our findings will contribute to the
diversification of the IZC method, to the improvement of hydrothermal stability of zeolite, and also to
the control of the distribution of the heteroatoms in the zeolite framework.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1204/s1,
Figure S1: Physicochemical properties of used as parent zeolite for the synthesis of CHA, Figure S2: XRD patterns
of products, Figure S3: 27Al MAS NMR spectra of the calcined Na+-type products, Figure S4: 27Al MAS NMR
spectra of the H+-type products, Table S1: The products’ selectivities in the MTO reaction over products.
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