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Abstract: Converting CO2 to methane via catalytic routes is an effective way to control the CO2

content released in the atmosphere while producing value-added fuels and chemicals. In this study,
the CO2 methanation performance of highly dispersed Ni-based catalysts derived from aqueous
miscible organic layered double hydroxides (AMO-LDHs) was investigated. The activity of the
catalyst was found to be largely influenced by the chemical composition of Ni metal precursor and
loading. A Ni-based catalyst derived from AMO-Ni3Al1-CO3 LDH exhibited a maximum CO2

conversion of 87.9% and 100% CH4 selectivity ascribed to both the lamellar catalyst structure and the
high Ni metal dispersion achieved. Moreover, due to the strong Ni metal–support interactions and
abundant oxygen vacancy concentration developed, this catalyst also showed excellent resistance to
carbon deposition and metal sintering. In particular, high stability was observed after 19 h in CO2/H2

reaction at 360 ◦C.

Keywords: AMO-LDH; layered double oxides; CO2 hydrogenation; methane; Ni catalyst

1. Introduction

The concentration of CO2 in the atmosphere has risen from 270 to 385 ppm in the past 200 years
which has been causing serious problems such as the greenhouse effect, global climate change,
and glaciers melting [1–3]. Regarding these environmental issues, three ways to reduce CO2 content in
the atmosphere have been suggested [4–7], namely CO2 emission reduction, CO2 capture and storage
(CCS), and CO2 conversion and utilization.

CO2 is chemically stable and it needs to be activated in the presence of hydrogen in order to
convert it to CH4. Although CO2 activation is an endothermic process, thus requiring energy input,
it can usually be integrated with fuel production from renewable energy, making CO2 conversion in the
Power-to-Gas (PtG) process a very promising green technology [4,8,9]. Due to a series of technological
issues of storage and transportation, renewable energy can hardly be a primary source of energy for
the society [10].

CO2 methanation appears to be one of the largely investigated scientific topics [11,12]. Herein,
CO2 is hydrogenated to methane at relatively high temperatures, ca. 300–400 ◦C, known as the Sabatier
reaction, which is a very promising approach for the storage of renewable energy [6]. Based on the PtG
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concept, electricity generated by renewable energy is then used to produce hydrogen by electrolysis.
The thus formed hydrogen is then used to produce selectively CH4 by the reaction with CO2 [13–15].

CO2(g)+ 4 H2(g)→ CH4(g) + 2 H2O(g) (∆H◦ = −165 kJ/mol) (1)

Presently, CO2 activation catalysts are under extensive investigation. Commonly used catalysts are
group VIII noble metal-based catalysts, such as Rh, Ru, etc [16,17]. Moreover, non-precious metal-based
in the group VIII, like Ni, Co, and Fe can also be used [18,19]. Noble metal-based catalysts show
the best methanation catalytic performance, but their high cost limits large-scale utilization [20,21].
Among all the non-precious metals, although Fe-based catalysts are preferable because of their very
low cost, they suffer from problems of low catalytic activity, coking, and deactivation after long
time-on-stream [22]. On the other hand, Ni-based catalysts are currently used in Sabatier reaction
due to their high activity and low cost [23–25]. For Ni-based catalysts, γ-Al2O3 has been widely used
as support for its large specific surface area (SSA), high-temperature thermal resistance, and good
chemical stability [26,27]. Benefiting from these features, Ni/γ-Al2O3 composite is the most broadly
used catalytic system for CO2 methanation.

LDHs is a family of ionic lamellar solid compounds consisting of positively charged brucite-like
layers and exchangeable interlayer anions [28,29]. Group VIII metal ions can be inserted into the LDH
precursor and then be reduced to form catalytically active metal nanoparticles [30–32]. Thus, the LDHs
derived materials can be tuned for the carbon dioxide methanation to fulfill the following requirements:
high basicity that is crucial for CO2 activation (adsorption strength and capacity), and appropriate
nickel dispersion and reducibility, necessary for this redox process [33–35]. Liu et al. [36] demonstrated
that the interaction between metal nanoparticles and support can be strengthened due to chemical
bonding, thus improving the anti-coking and anti-sintering properties of the supported metal catalysts.
In addition, a novel method called aqueous miscible organic (AMO) treatment was described in our
previous work to increase the SSA and total pore volume of the LDHs materials [30]. In this method,
the LDHs were synthesized by the conventional co-precipitation strategy, but the final wet slurry was
washed with an AMO solvent. If organic solvents are completely miscible with water, they will then
replace surface bound water, which can often lead to dispersion into thin nanosheets or exfoliation
to even single layers [37,38]. AMO treatment gives a much-diminished driving force for aggregation
to dense agglomerates of LDHs, while improving the SSA and surface basic site density of catalysts,
and ultimately enhancing the catalytic activity.

Herein, we report the use of AMO-LDH as precursors for the preparation of solids suitable for the
CO2 methanation reaction. Ni-based CO2 methanation catalysts derived from NiAl LDHs precursors
have been prepared by co-precipitation and further treatment with the AMO method [30,39,40].
Precursors and catalysts were characterized by powder X-ray diffraction (XRD), scanning electron
microscope (SEM), and surface texture. The impact of Ni loading (wt%) and the factors influencing the
CO2 conversion and CH4 selectivity over these AMO-NiAl layered double oxides (LDOs) catalysts,
as well as their stability during a long-term CO2 methanation reaction were examined.

2. Results and Discussion

2.1. Influence of Interlayer Anions of AMO-Ni3Al1 LDHs on CO2 Methanation

Figure 1 shows the powder XRD patterns of LDH precursors with different interlayer anions
(NO3

− and CO3
2−) before and after reduction. LDH precursors present typical characteristic peaks

at 11.7◦, 22.8◦ and 35.1◦, corresponding to the reflections of (003), (006) and (012) facets of the LDH
crystal phase, respectively, indicating the successful synthesis of LDHs [41]. The peak intensity of
Ni3Al1-CO3 LDH is higher than that of Ni3Al1-NO3 LDH, suggesting that CO3

2− intercalated LDH is
better crystallized than the NO3

− intercalated one. The XRD patterns of reduced samples show two
intensive peaks at 2θ = 44.4 and 51.8◦, corresponding to the reflections of (111) and (200) facets of
metallic Ni, and no diffraction peaks due to the NiO phase could be observed [42]. This result shows
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that NiO is rather completely reduced into metallic Ni. However, if strong Ni support interactions
prevail, NiO might not be completely reduced into metallic Ni since small NiO particles (<4 nm)
cannot be detected by XRD. Moreover, the γ-Al2O3 phase was not detected, result that might be
related to its very low crystallinity. According to literature reports [30], the Al2O3 phase derived
from LDH precursors generally exists in an amorphous phase. In order to better understand the
dispersion of Ni on the catalyst surface, the TEM image and EDX element mapping images of the
reduced AMO-Ni3Al-CO3 LDH solid are shown in Figures 2 and 3, respectively. Black dots in the TEM
image represent the Ni particles, where a mean diameter of ~10 nm was estimated. From Figure 3b,
it can be observed that Ni is evenly dispersed in the sample. Overall, it can be concluded that highly
dispersed Ni-based catalysts were successfully synthesized from Ni-Al LDH precursors.
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Figure 3. TEM image of reduced AMO-Ni3Al-CO3 LDH solid (a) and corresponding EDX elemental
mapping of AMO-Ni3Al-CO3 LDH derived catalyst for Ni (b), Al (c), and O (d).

The CO2 conversion and CH4 selectivity over the AMO-Ni3Al1-CO3-LDO and AMO-Ni3Al1-NO3-LDO
solids were compared and results are presented in Figure 4. These two catalysts show extremely
high CH4 selectivity, ca. 100% at T < 400 ◦C, although the conversion level is not remarkable in the
low-temperature window, i.e., temperatures lower than 260 ◦C. Above 450 ◦C, the CH4 selectivity
starts to decrease, due to the competition with the reverse water-gas shift reaction (RWGS) which
converts CO2 to CO through hydrogenation (CO2 + H2→ CO + H2O) [43]. For both catalysts, the CO2

conversion reaches maximum value at 360 ◦C, namely 87.9 and 84.2% over AMO-Ni3Al1-CO3-LDO
and AMO-Ni3Al1-NO3-LDO, respectively. According to our previous study [44], interlayer anions
influence the morphology and the interlayer distance of LDH, and the LDH with CO3

2− interlayer
has a larger SSA than the LDH with NO3

− interlayer. The values of SSA of the pre-reduced catalysts,
namely 158 m2/g (AMO-Ni3Al1-CO3-LDO) and 134 m2/g (AMO-Ni3Al1-NO3-LDO) are in good
agreement with the previous study. Owing to the larger SSA, Ni produced after reduction will be
likely better exposed, which might be one of the intrinsic reasons for the better activity performance of
AMO-Ni3Al1-CO3-LDO catalyst.
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Figure 4. CO2 conversion and CH4 selectivity vs T profiles of AMO-Ni3Al1-CO3-LDO and
AMO-Ni3Al1-NO3-LDO catalysts for the CO2 methanation reaction.

2.2. The Influence of Catalysts Preparation Procedure on the CO2 Methanation

The N2 adsorption-desorption isotherms were measured for the as-synthesized
carbonate intercalated LDHs derived catalysts, AMO-Ni3Al1-CO3-LDO and C-Ni3Al1-CO3-LDO,
by coprecipitation and AMO treatment. These pre-reduced catalysts show different SSA, namely
117 m2/g (C-Ni3Al1-CO3-LDO) and 158 m2/g (AMO-Ni3Al1-CO3-LDO). AMO-Ni3Al1-CO3-LDO,
indicating that AMO treatment has a positive effect on increasing the SSA of LDH-derived solids.
As previously reported [30,37], AMO treatment greatly reduces the driving force for aggregation to
dense agglomerates, resulting in the increase of SSA.

The CO2 methanation catalytic performance (CO2-conversion and CH4-selectivity) of
AMO-Ni3Al1-CO3-LDO and C-Ni3Al1-CO3-LDO solids is illustrated in Figure 5. There is a significant
difference in the CO2-conversion (%) over the two catalysts between 250 and 350 ◦C. The optimal CO2

conversion of AMO-Ni3Al1-CO3-LDO is 88%, while that of C-Ni3Al1-CO3-LDO is 82.5%. As discussed
above, the AMO treatment is beneficial to increase the SSA of the solid, and this could lead to better Ni
dispersion and thus to an increased CO2 methanation activity per gram of solid basis.
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2.3. Influence of Ni/Al Ratio on Catalyst CO2 Methanation Activity

A series of NiAl-LDHs with different Ni/Al atom ratios were synthesized and their XRD patterns
are shown in Figure 6. The X-ray diffraction peaks at 11.76, 22.84 and 35.2◦ prove that LDH precursors
were successfully synthesized, and there are no obvious differences in the crystal structure of LDHs
with different Ni/Al ratios. The precursors were then calcined and reduced (see Section 2.1) before CO2

methanation activity tests. The CO2 conversion (%) and CH4 selectivity (%) vs temperature profiles
obtained over these NiAl-LDHs catalysts are presented in Figure 7. AMO-Ni2Al1-CO3-LDO presented
the lowest CO2 conversion among all the samples, especially at low temperatures. Upon increasing
of the Ni/Al ratio to 3:1, the CO2 conversion increase. As the Ni/Al ratio continues to increase to 4:1,
the CO2 conversion levels off, and becomes almost constant. This is likely because overloaded Ni
can cause aggregation of Ni particles [45]. Hence, we identify a threshold for the positive impact
of increasing Ni content on the catalytic CO2 methanation activity being the Ni/Al ratio 4:1 the
experimental limit to boost conversion. As for the selectivity to CH4, by increasing the Ni/Al ratio
no change is observed except a slight decrease at high temperatures (ca. 500 ◦C, Figure 7) due to the
RWGS reaction.
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2.4. Influence of Reduction Temperature in Hydrogen on Catalyst CO2 Methanation Activity

Since the active component of the as-synthesized CO2 methanation catalysts is the Ni metal,
NiO (formed after calcination) should be reduced to metallic Ni (H2 is used) before catalytic
activity testing. The SEM images of AMO-Ni3Al1-CO3 LDH, AMO-Ni3Al1-CO3 LDO, and reduced
AMO-Ni3Al1-CO3 LDO solids are presented in Figure 8. Stacked and interlayered platelet-like crystals
of LDH particles of a crystal particle size of ~60 nm are observed in Figure 8a, which is consistent with
previous reports [46,47]. This typical platelet-like morphology remains after calcination. However,
the morphology greatly changed after reduction in hydrogen.
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As shown in Figure 8c, spherical particles with a diameter of 100 ~ 200 nm are formed. The hydrogen
treatment conditions had a great influence on the particle dispersion, morphology and structure,
and these features would eventually affect the activity performance of the catalyst [30,48]. The powder
XRD patterns of samples reduced at 500 and 600 ◦C are presented in Figure 9. After hydrogen treatment
at 600 ◦C for 1 h, the sample shows relatively strong diffraction peaks at 44.48 and 51.67◦ corresponding
to the Ni phase. The main diffraction peaks for the NiO phase (ca. 37.25 and 44.48◦) were not detected,
indicating that NiO has been fully reduced to Ni [49]. However, the sample exhibited relatively weak
peaks of Ni phase and clear peaks of NiO phase after H2 treatment at 500 ◦C.
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The H2-TPR profile of the AMO-Ni3Al1-CO3-LDO solid (Figure 10) shows its reducibility
characteristics. It can be inferred that complete reduction of NiO cannot be accomplished at 500 ◦C,
and it is envisaged that the full reduction temperature is at least 550 ◦C [50]. This is consistent with
the powder XRD results that the sample reduced at 500 ◦C is not as complete as that reduced at
600 ◦C. It can be concluded that there exist strong metal–support interactions between NiO and Al2O3

surface [36,51–53].
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The effect of reduction temperature on the CO2 conversion and CH4 selectivity over the
AMO-Ni3Al1-CO3-LDO solid was investigated and results are presented in Figure 11. In all case,
practically 100% CH4-selectivity (no CO formation) was detected below 400 ◦C. The CO2 conversion
reaches its maximum value at 360 ◦C, namely 87.9%, 86.3%, 85.5%, and 77.5% for the catalysts reduced
at 600, 550, 500, and 400 ◦C, respectively. A significant improvement of CO2 conversion can be seen after
increasing the hydrogen reduction temperature from 400 to 600 ◦C, especially for the CO2 methanation
reaction occurred at 260 ◦C. As discussed above, with the increase of reduction temperature, more NiO
was converted into Ni, which leads to a high activity. Based on the results of powder XRD, H2-TPR
and catalytic tests, it can be stated that the degree of supported Ni reduction is influenced by the
hydrogen reduction temperature and it has an important impact on the CO2 conversion. It appears
that 600 ◦C is the best reduction temperature for the present LDHs derived Ni-based CO2 methanation
catalysts. However, according to the H2-TPR profile, the catalyst should be reduced completely at
550 ◦C. Since the H2-TPR experiment is conducted dynamically, the reduction peak maximum may
not appear at the exact temperature recorded. To ensure the thorough conversion of NiO into Ni,
the hydrogen reduction temperature of the sample was set at 600 ◦C.
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2.5. Stability Performance of AMO-Ni3Al1-CO3-LDO

A stability test was performed on AMO-Ni3Al1-CO3-LDO at 360 ◦C for 19 h and results are
shown in Figure 12. Before any measurements, the catalyst was reduced at 600 ◦C for 1 h. The results
obtained indicate that AMO-Ni3Al1-CO3-LDO derived catalyst showed enhanced stability for long
time-on-stream (TOS) since no obvious deactivation was observed (Figure 12). The CO2 conversion
remained above 87% and no CO was detected in the effluent gas stream. After the stability test,
the spent catalyst was characterized by SEM. Figure 13 indicates the surface morphology of the spent
catalyst. Compared with Figure 8c, the SEM images of spent catalysts show no obvious change in
the particle configuration, which means that there were no structural changes in the solid catalyst.
It was reported [22] that deactivation of CO2 methanation catalysts is mainly caused by possible
structural changes, such as sintering of the metal, and the generation of carbon deposits. By using
AMO-Ni3Al1-CO3 LDH as precursor, the obtained supported Ni nanoparticles exhibit a high degree of
dispersion and strong metal–support interactions. Furthermore, the LDO support may provide oxygen
vacancies [54], which are beneficial to the improvement of anti-sintering and anti-coking properties by
providing an alternative route for CO2 dissociation into CO and O (lattice oxygen), the latter being
able to oxidize carbon (formed on Ni) formed by the reverse Boudouard reaction [55], so as to ensure
its high activity during long-term operation.
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3. Experimental

3.1. Preparation of Catalysts

LDHs were first synthesized by the co-precipitation method. An aqueous solution containing
nitrates of the metallic salts, ca. Ni(NO3)2·6H2O and Al(NO3)3·9H2O were added dropwise into a
vigorously stirred Na2CO3 (NaNO3 for NiAl-NO3 LDH) solution. The pH of the resulting solution
was kept constant at 10 by the addition of NaOH solution (4 M). The resulting slurry was stirred
continuously for ~12 h at 30 ◦C, then filtered and washed several times with deionized water until pH
reached 7, followed by drying at 60 ◦C in an oven. For AMO treatment, after the above-mentioned
washing step, the resulting slurry was re-dispersed in ethanol for 2 h. The final solids were collected
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by filtration and then dried at 60 ◦C for further characterization. To investigate the influence of Ni
content, NiAl LDHs with different Ni/Al atom ratios (x = Ni/Al) were synthesized, which were denoted
as NixAl1-LDH (x = 2, 3, and 4). The obtained LDHs were calcined at 400 ◦C for 5 h and reduced in
10 vol% H2/Ar gas atmosphere (1 bar) before being used in any catalytic experiment.

3.2. Catalysts Characterization

Powder X-ray diffraction (PXRD) patterns of the solid AMO-NiAl LDOs samples were recorded
using a Shimadzu XRD-7000 instrument in reflection mode and a Cu Kα radiation. The X-ray tube
was operated at 40 kV and 40 mA while the accelerating voltage was set at 40 kV with 30 mA
current (λ = 1.542 Å). Diffraction patterns were recorded within the range of 2θ = 5–75◦ with a
scanning rate of 5◦/min and a step size of 0.02◦. Textural properties of the solids were analyzed using
nitrogen adsorption-desorption isotherms obtained from a physisorption analyzer (SSA–7000, Builder,
Beijing, China). SSA was estimated using the Brunauer−Emmett−Teller (BET) method. Before each
measurement, ~0.1 g catalyst sample was degassed in a N2/He gas mixture at 220 ◦C for 4 h.

Hydrogen temperature-programmed reduction (H2-TPR) experiments were carried out in a
multifunction chemisorption analyzer (PCA-1200, Builder, Beijing, China) equipped with a quartz
U-tube reactor and a thermal conductivity detector (TCD) for gas analysis. For each test, a ~0.05 g
sample was utilized. Before switching to the H2/Ar gas stream, the sample was pretreated in Ar
(40 mL/min) at 200 ◦C for 30 min and then cooled in Ar gas flow to 50 ◦C. The sample was then heated
from 50 to 800 ◦C with a ramping rate of 10 ◦C/min in 5 vol% H2/Ar gas mixture flow (30 mL/min).
A field emission scanning electron microscope (SU-8010, Hitachi, Tokyo, Japan) was used to characterize
the morphology of Ni33Al LDO (secondary agglomerated particles). A carbon tape was used to stick
the powder to the SEM stage. Transmission electron microscopy (TEM) images were obtained on a FEI
Tecnai G2 F30 (Hillsboro, USA) which was operated at 300 kV. Energy-dispersive X-ray (EDX) mapping
characterizations of the composite oxides-based catalysts was made to investigate the distribution of
the elements in the samples using the same TEM instrument.

3.3. Catalytic Activity Tests

The CO2 methanation catalytic activity tests of the synthesized AMO-NiAl LDOs were carried
out at 1 atm pressure in a fixed-bed stainless-steel micro-reactor. The stainless-steel micro-reactor
was installed in a vertical split-tube furnace equipped with a proportional-integral-derivative (PID)
temperature controller and several mass flow controllers. Before the catalytic performance test,
a catalyst amount of Wcat = 0.1 g was first pretreated in 20 vol% H2/N2 gas mixture (50 mL/min) at
600 ◦C for 1 h, and then cooled to 200 ◦C in N2 gas flow. Subsequently, a gas mixture of H2, CO2 and
N2 with a molar ratio of H2/CO2/Ar = 4:1:5 (ca. 40 vol% H2/10 vol% CO2/50 vol% Ar) was introduced
into the reactor with a total flow rate of 80 mL/min corresponding to a space velocity of 48,000 mL
gcat

−1 h−1. The methanation reaction was tested in the 200–500 ◦C range. After the reaction rate was
stabilized at a given temperature after about 30 min, the composition of the effluent gas stream was
analyzed online using a gas chromatography (SP-7890, Shandong Lunan, Zaozhuang, China) equipped
with a TCD and FID detectors. The CO2 conversion and CH4 selectivity were estimated from the
following Equations (2) and (3), respectively:

CO2 conversion(%) = [
[CO2,in] − [CO2,out]

[CO2,in]
] × 100% (2)

CH4 selectivity(%) =
[CH4]

[CH4] + [CO]
× 100% (3)

In Equation (3), the [CO] concentration at the outlet of reactor refers to the non-selective CO2

hydrogenation reaction towards CO and H2O products (reverse water-gas shift reaction). Also,
given the CO2 feed composition used (10 vol%), the change in the outlet total molar flow rate of the
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methanation reaction was small with respect to the inlet total molar flow rate, and this was considered
in the estimation of CH4 selectivity (Equation (3)).

4. Conclusions

Selective CO2 methanation reaction was conducted over NiAl LDH derived catalysts which
were prepared by coprecipitation and AMO treatment. AMO treated LDH exhibits higher SSA,
which benefits Ni dispersion, than the conventional one. Highly dispersed Ni particles on the catalyst
surface led to higher catalytic activity for CO2 methanation. The Ni loading was found to play a key
role in determining the catalytic activity by influencing the concentration of active sites along with
the SSA. However, excessive Ni loading may result in Ni particle agglomeration, thus reducing the
catalytic activity. As shown by the performed experiments, an optimal Ni/Al atom ratio of 3:1 was
found. The catalyst reduction temperature by hydrogen was found to also play a role in its activity,
which should be higher than 550 ◦C to ensure complete reduction of NiO to Ni. After hydrogen
reduction at 600 ◦C, AMO-Ni3Al1-CO3 LDH derived catalyst showed the highest CO2 conversion
(87.9%) and 100% CH4 selectivity at 360 ◦C, due to the enhanced dispersion of Ni nanoparticles and
SSA. Moreover, this AMO-Ni3Al1-CO3 LDH derived catalyst shows remarkable stability in a 19-h
activity test (above 87%) as the result of maintaining a highly dispersed Ni state, strong metal–support
interactions, and abundant oxygen vacancy concentration.
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