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Abstract: Ni-Ce-Zr-Oδ catalysts were prepared via one-pot hydrothermal synthesis. It was found that
Ni can be partially incorporated into the Ce-Zr lattice, increasing surface oxygen species. The catalysts
possess high surface areas even at high Ni loadings. The catalyst with Ni content of 71.5 wt.% is able
to activate CO2 methanation even at a low temperature (200 ◦C). Its CO2 conversion and methane
selectivity were reported at 80% and 100%, respectively. The catalyst was stable for 48 h during the
course of CO2 methanation at 300 ◦C. Catalysts with the addition of medium basic sites were found
to have better catalytic activity for CO2 methanation.
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1. Introduction

Catalytic hydrogenation of CO2 has drawn considerable attention due to its potential for the
production of methane or other useful hydrocarbons. For CO2 methanation, the greenhouse gas (CO2)
is consumed, and converted to methane, promoting energy regeneration, and methane can be used as
a clean fuel. This reaction (Rxn. 1) occurs competitively with reverse water gas shift reaction (Rxn. 2)
and CO methanation reaction (Rxn. 3) as expressed below.

CO2 methanation (CDM):

CO2 + 4H2 → CH4 + 2H2O, ∆Ho
298K = −165 kJ mol−1 (1)

Reverse water gas shift (RWGS):

CO2 + H2 → CO + H2O, ∆Ho
298K = 41 kJ mol−1 (2)

CO methanation (CMM):

CO + 3H2 → CH4 + H2O, ∆Ho
298K = −206 kJ mol−1 (3)
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It was reported that CO2 methanation (CDM) could occur through CO intermediates through
which CO2 had initially undergone the reverse water gas shift then was followed by CO methanation
(CMM) [1,2]. With weak basic supports such as Ce-Zr oxide supports, CO2 formed carbonates on the
surface followed by being hydrogenated to yield formate, and then CH4 [3–5]. Due to the exothermic
nature of the CDM reaction, CO2 conversion is not favorable at a high-temperature operation; therefore,
it would be desirable to make use of a catalyst which possesses remarkably high catalytic activity at
low temperatures in the CDM reaction. Typically, Ni and specific noble metals such as Ru, Rh, and Pd
are selected as active species on various supports [6–16]. Although Ni-based catalysts were commonly
utilized due to their low cost and high activity [17–20], they were prone to suffer from the deactivation
by metal sintering and carbon deposition even at low temperatures [21,22]. The nature of support also
affected the state of an active phase involved in the adsorption and catalysis [23]. Apparently, Ce-Zr
mixed oxides were demonstrated as good catalyst support potential for methanation because of their
advantages, including good redox properties, high thermal stability, as well as resistance to sintering
and coke formation [24–26]. Moreover, CeO2 was found to improve CO2 adsorption and active metal
dispersion resulting in better catalytic activity [3]. Nonetheless, most Ni-based catalysts were not
active at low temperatures [18–20]. According to the literature, loading a high amount of Ni could
improve the catalytic activity by offering more adsorption arenas for the migration of intermediate
species [27–30]; however, high metal loading via the conventional impregnation method often resulted
in the low dispersion of the bulk oxide and channel blocking by the formation of bulk metal oxide
clusters [31]. Therefore, the method to prepare high nickel content catalysts with good promoting
effects of the support is essential.

In this work, the high Ni-loading Ni-Ce-ZrOδ catalysts were prepared via one-pot hydrothermal
synthesis for which such high surface area catalysts with Ni loading of up to 71.5 wt.% were achieved.
The results of their catalytic activity for CO2 methanation investigated in the temperature range of
200–600 ◦C were herein elucidated.

2. Results and Discussion

2.1. BET Surface Areas, XRD, XPS, H2-TPR, and CO2-TPD Analyses

The results showed that Brunauer–Emmett–Teller (BET) surface areas of the catalysts synthesized
are in the range of ca. 145–189 m2 g−1 (Table 1). Noticeably, there is no directly reciprocal correlation
between the surface area and Ni loading. Unlike the conventional impregnation method, the one-pot
hydrothermal method provided a considerably high surface area of Ni-Ce-ZrOδ catalysts, especially
for the catalysts with such high Ni loadings of 62.5 and 71.5 wt.%, the surface areas of ca. 156 and
158 m2 g−1 could be, respectively, observed. The pore volume of the catalysts still remained high,
indicating that there was no channel blocking due to the formation of bulk metal oxide clusters. It was
noticed that the pore diameter increases with increasing Ni content. As determined, the pore diameters
range from 4.67 to 15.58 nm (Supplementary Figure S1).

Table 1. Textural and crystal structural properties of Ni-Ce-ZrOδ catalysts.

Catalyst
(Ni/Ce Ratio)

Ni Content
(wt.%)

Surface Area
(m2g−1)

Pore Size
(nm)

Pore Volume
(cm3g−1)

Crystallite Size
of CeO2 (nm)

Lattice
Parameter a (Å)

Ni0.15 5.9 188.56 4.67 0.11 67.78 5.4182
Ni0.45 15.8 145.20 6.01 0.15 61.06 5.4182
Ni0.75 23.8 164.44 5.91 0.20 54.97 5.4126
Ni4.0 62.5 156.44 15.01 0.63 31.77 5.4182
Ni6.0 71.5 158.45 15.58 0.74 31.12 5.4108

a Pure CeO2 lattice parameter = 5.4201 Å.

The X-ray diffraction (XRD) patterns of the catalysts are shown in Figure 1. The results showed a
typical cubic fluorite structure of CeO2 indices at 2θ = 28◦, 33◦, 48◦, and 58◦ for all the catalysts with
varied intensity. At lower Ni contents (below ca. 25 wt.%), the absence of anticipated peaks pertaining
to Ni species is observed with a maintained peak intensity of the cubic fluorite structure, indicating
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dissolution of Ni in Ce-Zr mixed oxide structure. However, at higher Ni contents, the appearance
of additional peaks at 37◦, 43◦, 63◦, and 75◦ attributed to NiO phases is observed with a decrease in
peak intensity of the cubic fluorite structure inferring the existence of free NiO species on the catalyst
surface. In addition, it was found that the incorporation of Ni into the Ce-Zr mixed oxide via one-pot
hydrothermal synthesis has a slight influence on the lattice parameter of pure cerium oxides. The CeO2

crystallite size was found to decrease with increasing Ni loading (Table 1). This might be because Ni
ionic radius is smaller than the cerium ionic radius [32].
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Figure 1. XRD patterns of Ni-Ce-ZrO2 catalysts; (a) Ni0.15, (b) Ni0.45, (c) Ni0.75, (d) Ni4.0, and (e)
Ni6.0; the numerical value after Ni represents the Ni/Ce molar ratio as well as a Cubic phase of CeO2.

Figure 2 shows the reducibility of the catalysts obtained by the temperature-programmed reduction
(H2-TPR) technique. The results showed that at Ni loading below 25 wt.%, there was no obvious
reduction peak of NiO. A small broaden peak beginning at ca. 300 ◦C was observed with catalysts
having 15.8 (Ni0.45) and 23.8 (Ni0.75) wt.% Ni. This suggested that at lower Ni loadings, most of Ni
could be incorporated into the Ce-Zr lattice [33] until it reached saturation, resulting in the increased
oxygen surface reduction. Furthermore, the excess nickel might form free small NiO particles well
dispersed on the surface of the Ni-Ce-ZrOδ, which cannot be detected by XRD. At higher Ni loadings,
there is a reduction peak of NiO centered at ca. 490 ◦C, indicating that the NiO species formed a larger
cluster and strongly interacted with Ce/Zr oxides. Noticeably, the peak was more intense as the Ni
loading was increased.

Temperature-programmed desorption (CO2-TPD) technique was used to investigate the basic
strength and basicity of the catalysts. Figure 3 shows two major CO2 desorption peaks located at
100–200 ◦C and 400 ◦C indicating weak and moderate Lewis basic sites, respectively [3]. It was found
that the amount of CO2 adsorption is related to the amount of Ni loading by which the moderate basic
sites were present in the catalysts containing Ni of more than ca. 25 wt.%. According to the X-ray
photoelectron spectroscopy (XPS) data, as shown in Figure 4, it was found that with increasing Ni
content, the amount of OH− groups and surface oxygen vacancies was found to increase (Figure 4a).
The presence of the OH− groups was subjected to the desorption of CO2 at a low temperature [3],
while the surface oxygen species responsible for the desorption at medium temperatures were due
to the enhancement of the NiOx lattice oxygen dominating the overall composition. As evidenced,
the stronger spectrum of Ni2p3/2 (Ni2+) (Figure 4b) was observed with the lessen spectra of Zr3d3/2

(Figure 4c) and Ce3d (Figure 4d). This suggested that the presence of more pronounced surface nickel



Catalysts 2020, 10, 32 4 of 10

species resulting from a high Ni loading by one-pot hydrothermal synthesis would give rise to a better
activity. Moreover, it was found that the Ni6.0 catalyst has larger amounts of both OH− group and
surface oxygen vacancy, which help promote CO2 adsorption. More details related to XPS analysis are
presented in Supplementary Table S1.Catalysts 2020, 10, x FOR PEER REVIEW 4 of 11 
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2.2. CO2 Methanation

Figure 5 illustrates the CO2 conversion and methane selectivity for Ni-Ce-ZrOδ catalysts in the CO2

methanation. Of most catalysts, CO2 conversion is increased with increasing reaction temperature until
its maximum conversion is reached, then, followed by the slight decline approaching the equilibrium
conversion due to the thermodynamic limitations of this reaction. However, the maximum CO2

conversion cannot be observed with the lowest Ni loading catalyst (Ni0.15). A similar trend for CH4

selectivity can be obtained for all the catalysts as they deviated from the maximum value in an adverse
exponential manner when the temperature was raised over 300 ◦C. Noteworthy, each of the catalysts
yields different minimum CH4 selectivity at the same reaction temperature of 600 ◦C. At a given
temperature, Ni-Ce-ZrOδ catalysts with high Ni content demonstrate better performance for CO2

methanation by which the catalytic activity is increased in the order of Ni loading: Ni0.15 < Ni0.45 <

Ni0.75 < Ni4.0 < Ni6.0. Interestingly, the catalyst with 71.5 wt.% Ni loading (Ni6.0) gave the highest
activity even at a low temperature (200 ◦C) with a turnover frequency (TOF) of 0.66 h−1 (Table 2),
whereas the other catalysts yielded a minute activity at such a temperature. This is because the Ni6.0
catalyst possesses the highest amounts of OH− group and surface oxygen species, as evidenced by
CO2-TPD and XPS results (Figures 3 and 4). Since OH− group and oxygen species adsorbed CO2

to form bidentate formate and monodentate formate intermediates, respectively [3], the formation
of these intermediate species could effectively induce the catalytic hydrogenation of CO2 molecules
by consuming active H species existing on the Ni-Ce-Zr surfaces to form a C-H bond [32], thus,
significantly enhancing the CO2 conversion. Moreover, increasing Ni content also provides more
adsorption arenas for the migration of intermediate species, and hence, leading to a high activity [34].
Similar findings on the other supports were reported elsewhere [28–30,35]. According to the obtained
results and analyses, it can be postulated that a decrease in the methanation activity of the catalyst
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would be related to the consumption of active H species. For low Ni content catalysts, this is attributed
to low reaction temperature, which is not conducive to the activation of reactant H2 molecules to
form active H species for the CO2 methanation reaction. Moreover, the formation of monodentate
formate was nearly unattainable for these catalysts due to the lack of medium basic sites. However,
these catalysts achieve high CH4 selectivity. The CH4 selectivity was attained with ca. 100% for all
the catalysts at a low temperature of 200 ◦C. However, it was found to decrease drastically at the
temperature above 500 ◦C because of a reverse water-gas shift reaction. It should be pointed out that
at the temperature above 300 ◦C, low Ni content catalysts seem to promote a reverse water-gas shift
reaction. Nevertheless, this could be explained that at low Ni concentrations, Ni can be incorporated
into Ce-Zr lattice generating more oxygen vacancies on the surface. Since the amounts of active H
species are less with low Ni content on the surface, some intermediates are desorbed as CO without the
formation of C-H bonds [32]. In addition, the Ni6.0 catalyst showed no sign of deactivation during CO2

methanation at 300 ◦C for 48 h (Supplementary Figure S2). The amount of carbon deposition on the
spent catalyst was detected by TG analysis at less than 1 wt.% (not shown), and there was also no clear
evidence of carbon deposition observed by transmission electron microscope (TEM) (Supplementary
Figure S3).Catalysts 2020, 10, x FOR PEER REVIEW 7 of 11 
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Table 2. Summary of the reaction results of CO2 methanation.

Catalyst 200 ◦C 300 ◦C
Ref.

XCO2 (%) TOF (h−1) XCO2 (%) TOF (h−1)

Ni0.15 - - 12.54 1.25

This work
Ni0.45 9.83 0.36 37.57 1.39
Ni0.75 - - 55.56 1.36
Ni4.0 13.13 0.12 85.62 0.81
Ni6.0 80.79 0.66 90.86 0.74

30Ni-Ce0.9Zr0.1O2 10.30 0.31 - -
[36]40Ni-Ce0.9Zr0.1O2 7.80 0.22 - -

50Ni-Ce0.9Zr0.1O2 10.10 0.26 - -
NiO/Ce0.25Zr0.75O2 - - 16 0.39

[37]NiO/Ce0.50Zr0.50O2 - - 21 0.52
NiO/Ce0.75Zr0.25O2 - - 21 0.52

Ni/CZ 3.7 0.01 - - [38]
Ni(4.4)@CZ 9.5 0.01 - -

3. Experimental Section

3.1. Catalyst Preparation

Ni-Ce-ZrOδ catalysts were prepared via one-pot hydrothermal synthesis adopted from what
reported elsewhere [32]. The molar ratio of Ce/Zr was maintained at 3:1 with the alteration of the Ni/Ce
molar ratio. Typically, 0.1 M of metal salt solutions were premixed to the desired ratio of Ni/Ce/Zr.
The resultant solution was then mixed with a 0.4 M of urea solution at the metal-to-urea ratio of
2:1. Then, the solution was transferred to a Teflon lining autoclave and kept at 105 ◦C for 50 h. The
precipitate was washed with ethanol and dried at 105 ◦C prior to calcination at 500 ◦C for 4 h.

3.2. Catalyst Characterization

The catalysts were characterized for Brunauer–Emmett–Teller (BET) surface areas using a
Micromeritics ASAP 2460 apparatus (Norcross, GA, U.S.A.). To ensure the accuracy of the data,
the samples were outgassed at 350 ◦C for 6 h before being subjected to N2 adsorption. X-Ray diffraction
(XRD) patterns were attained and analyzed using a Rigaku Smart Lab X-ray powder diffractometer
(Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation. The XRD patterns were recorded with 2θ
ranged from 10◦ to 90◦. Temperature-programmed reduction (H2-TPR) and temperature-programmed
desorption (CO2-TPD) were carried out using in-house equipment. The catalyst was pretreated under a
flow of N2 at 400 ◦C for 30 min prior to running the TPR and TPD experiments and then cooled down to
room temperature. For H2-TPR, a 5% H2/N2 gas was used as a reducing gas. The sample temperature
was raised at a constant rate of 10 ◦C min−1 from room temperature to 950 ◦C. For CO2-TPD, CO2 as a
reactant gas was introduced with a flow rate of 30 mL min−1 into a sample cell at room temperature
for 1 h, then Ar with a flow rate of 30 mL min−1 was introduced for the desorption experiment
using the same heating rate from room temperature to 800 ◦C. The amounts of H2 consumption
and CO2 desorbed were determined from a TCD signal validated by appropriate calibrations. X-ray
photoelectron spectroscopy (XPS) measurements were carried out on an Axis Supra (Kratos Analytical
Ltd., Wharfside, Manchester, U.K.) using a monochromatic AlKα source. The surface charging effects
were corrected with the C1′s binding energy value of 284.6 eV.

3.3. CO2 Methanation

CO2 methanation was carried out in a continuous flow packed bed reactor (inner diameter (i.d.)
0.6 mm) placed in a tubular furnace equipped with temperature controllers. Typically, 0.05 g of catalyst
was packed between layers of quartz wool. Prior to the reaction, the catalyst was reduced in situ
using H2with a flow rate of 50 mL min−1 at 500 ◦C for 2 h, and then the temperature was cooled to
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150 ◦C in Ar. The CO2 methanation was carried out in the temperature range of 200–600 ◦C with a
GHSV (gas hourly space velocity) of 10,000 h−1. The H2/CO2 molar ratio was 4:1 with a total flow
rate of 50 mL min−1. The water in the product stream was condensed, and the permanent gases were
analyzed using a Shimadzu GC14B gas chromatograph (Shimadzu Corp., Kyoto, Japan) equipped
with a TCD (thermal conductivity detector) and installed with Alltech CTR I and Supelco Carboxen
columns. The CO2 conversion and methane selectivity were calculated by the following equations.

CO2 conversion (%) =
[CO2]in − [CO2]out

[CO2]in
× 100 (4)

CH4 selectivity (%) =
CH4

[CO2]in − [CO2]out
× 100 (5)

4. Conclusions

In conclusion, Ni-Ce-ZrOδ catalysts were successfully prepared via one-pot hydrothermal
synthesis with the maximum Ni loading of up to 71.5 wt.%. The obtained catalysts possess high surface
areas even at high loading Ni contents and provide good catalytic activities and CH4 selectivity for CO2

methanation. It was found that Ni6.0 was the most active catalyst achieving the low-temperature CO2

conversion of ca. 80% at 200 ◦C and 100% CH4 selectivity. This is believed to owe to the two main basic
sites, which facilitate the formation of the intermediates and the ability to activate the active H species
at a low temperature. The presence of OH− groups enhances the catalytic activity at low temperatures
while that of surface oxygen vacancies promotes the catalytic activity at moderate temperatures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/32/s1,
Supplemental Figure S1: Isotherm and pore size distribution (inset) of Ni-Ce-ZrO2 catalysts, Supplemental
Table S1: XPS core level electron binding energy of Ni-Ce-ZrOδ catalysts for different Ni content, Supplemental
Figure S2: The stability of Ni6.0 catalyst at 300 ◦C for 48 h, Supplemental Figure S3: TEM images of (a) fresh and
(b) spent Ni6.0 catalysts. Reaction conditions: GHSV = 10,000 h-1, H2/CO2 = 4, reaction temperature = 300 ◦C and
reaction time 30 min.
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