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Abstract: Feature Selection in High Dimensional Space is a combinatory optimization problem with
an NP-hard nature. Meta-heuristic searching with embedding information theory-based criteria in the
fitness function for selecting the relevant features is used widely in current feature selection algorithms.
However, the increase in the dimension of the solution space leads to a high computational cost and
risk of convergence. In addition, sub-optimality might occur due to the assumption of a certain length
of the optimal number of features. Alternatively, variable length searching enables searching within
the variable length of the solution space, which leads to more optimality and less computational load.
The literature contains various meta-heuristic algorithms with variable length searching. All of them
enable searching in high dimensional problems. However, an uncertainty in their performance exists.
In order to fill this gap, this article proposes a novel framework for comparing various variants of
variable length-searching meta-heuristic algorithms in the application of feature selection. For this
purpose, we implemented four types of variable length meta-heuristic searching algorithms, namely
VLBHO-Fitness, VLBHO-Position, variable length particle swarm optimization (VLPSO) and genetic
variable length (GAVL), and we compared them in terms of classification metrics. The evaluation
showed the overall superiority of VLBHO over the other algorithms in terms of accomplishing lower
fitness values when optimizing mathematical functions of the variable length type.

Keywords: feature selection; high dimensional space; meta-heuristic; solution space; variable length

1. Introduction

Feature Selection becomes a significant process in building most machine learning
systems. The role of feature selection is to exclude non-relevant features and to preserve
only relevant features for the goals of training and prediction [1]. Feature selection appears
in different areas, such as pattern recognition, data mining and statistical analysis [2]. The
process of feature selection is regarded as important for improving the performance of
prediction because less relevant features are excluded, and for increasing both memory
and computation efficiency when the data are classified as high-dimensional data [3].
The literature contains three main classes of methods for feature selection [4]; the first
one is the wrapper [5] and it measures the usefulness of features based on the classifier
performance, such as information gain, the chi-square test, fisher score, correlation and
variance threshold.

The second one is the filter [6], and it measures the statistical properties of features
and their relevance without relying on the classifier for the repeated steps of training and
cross-validation for enabling wrapper-based feature selection such as recursive feature
elimination, sequential feature selection and meta-heuristic algorithms. It is regarded as
efficient, but it is less accurate than the wrapper method. The third one is the embedded
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method [7], which differs in its use as an intrinsic model building during learning, such as
decision tree and L1 regularization. We present the three classes in Figure 1. The usage of
meta-heuristic algorithms in the wrapper methods is observed in the literature. However,
there is a need to study their characteristics and the differences in their performance in
terms of feature selection. One of the recent developments of meta-heuristics that serves
the feature selection is variable length searching.
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Meta-heuristic optimization algorithms are used by researchers for solving optimiza-
tion problems [8]. They use the concept of generating random solutions and incorporating
heuristic knowledge to develop them until reaching a convergence level in the improve-
ment made over the solutions. The term used to describe the solution in the meta-heuristic
algorithm varies from one algorithm to another. It is named a chromosome in genetics, a
particle in particle swarm optimization, a star in black hole optimization, etc. Traditional
meta-heuristic searching algorithms suffer from the limitation of fixed solution space. This
means that the algorithms have an assumption of a fixed solution structure that does not
apply to many research and real word problems. As an example, the clustering or segmen-
tation problem cannot work on the pre-assumption of the number of clusters or segments
in the image that make it a variable length optimization problem. Another example is
the wireless sensor network deployment problem (WSND), which should work on the
variable length of sensors before selecting the best deployment (number of them, their
localization and configuration). A similar example is constellation optimization, which
aims at searching over the space of satellite constellations to optimize coverage-related
metrics [9]. A third example is an optimization of a convolutional neural network (CNN),
which should also operate based on a variable length optimization algorithm because the
number of layers that need to be optimized is fixed [10,11].

Variable length optimization is a sub-field of research with a focus on solving problems
where the number of variables in the optimal solution is not known in advance [12]. The
majority of approaches have been proposed in the literature, such as wind farm layout
problems [13], wireless network design [14] and laminate stacking [15]. Researchers state
that the research of fixed length optimization is mature; however, the research in variable
length optimization is still in its infancy [16]. Some of the questions that are addressed
include the following. Which is the more effective: the fixed or variable length meta-
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heuristic searching algorithm? How are effective operators designed for a variable length
meta-heuristic searching algorithm? How are solutions handled for intra- and inter-class
mobility? Selection methods that aim for some length variety in the set of parent solutions
outperform selection methods that focus purely on objective value, according to [17].
Furthermore, due to the disruptive effects of altering solution lengths, it was shown that
some operators were highly prone to producing an unwanted amount of badly performing
solutions. In the work of [18], length niching selection was proposed. First, the population is
divided into a number of niches based on the length of the solutions. To produce the parent
population for the next generation, a local selection operator is applied independently
to each niche. By choosing solutions from a variety of niches, the population remains
diversified in terms of length. The term metameric was proposed to describe the segmented
structure of the solution that contains similar variables [17]. When dealing with variable
length optimization algorithms, it is important to define the metameric template of the
problem. The meta-variables indicate the decision variables that combine the metameric
variable. The variable length nature of the problem might occur from having solutions
combined of different lengths of metameric variables and/or metavariables.

This article aims to study the recent development of meta-heuristic methods for serving
the application of feature selection in high-dimensional space and the emergence of the
class of variable length searching methods for feature selection. We are interested in three
methods for the evaluation, namely genetic variable length, variable length particle swarm
optimization and variable length black hole optimization with its two modes: position
and fitness. The remainder of the article is organized as follows. In Section 2, we present
the literature survey. Next, the methodology is presented in Section 3. Afterwards, the
experimental results and analysis are presented in Section 4. Lastly, the conclusion and
future works are presented in Section 5.

2. Literature Survey

The genetic algorithm is a type of heuristic algorithm inspired by the theory of evo-
lution. It is used in optimization as a random searching algorithm with the capability of
incorporating heuristic knowledge. Its capabilities come from the power of performing
biological heuristic operators such as selection, mutation and crossover. Its concept is to
build a chromosome that is a candidate solution to solve the problem and its degree of
solving the problem is assessed based on the fitness functions. In the genetic process, a GA
can generate a variety of individual genes and evolve the population. The methods of the
genetic process include selection, mutation and crossover. To pick the superior and elimi-
nate the inferior, the selection process mimics natural selection. The process of mutation
and crossover allows for the creation of new individuals. The technical intricacies of the
mutation and crossover processes are typically determined by the job at hand. For binary
encoding, for example, a mutation operation can be designed to flip a single bit. In the work
of [19], a variable length genetic algorithm (VLGA) for learning path recommendation was
proposed. Because the sizes of the paternal chromosomes differ in VLGA, additional care
must be taken while using the double-point crossover. They used double point crossover
in conjunction with systems that prevent illegality in children’s chromosomes. In the work
of [20], a crossover operator prevents premature convergence by providing viable pathways
with higher fitness values than their parents, allowing the algorithm to converge faster.
The crossover supports variable length genetic optimization for robotic path planning. In
the work of [21], bi-clustering algorithms to identify coherent and nontrivial bi-clusters
were developed based on a variable length genetic optimization algorithm for low mean
squared residue and high row variance. The algorithm uses three operators, namely se-
lection, crossover and mutation with a designed fitness function based on the variable
length strings. In the work of [22], variable length chromosome genetics was proposed
for handling vehicle coordination multi-path problems. The goal of the algorithm is to
organize vehicle arrival sequencing according to preset flow rates. The algorithm assumes
non-symmetric traffic flow and it allows multiple paths instead of the fixed paths of inter-
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section models. This enables any vehicle to go from any input point to any output branch in
the intersection. In addition, the algorithm has designed its specific selection, crossover and
mutation operators with the novel approach of carrying the crossover function between
different-sized individuals. In the work of [23], the problem of unmanned aerial vehicle
(UAV) deployment for the internet of things data collection platform has been handled. The
goal was to optimize the energy consumption of the UAV based on minimizing the number
and locations of stop points of the UAV. The optimization is regarded as a variable length
optimization problem because the number of stops is unknown a priori. Consequently, the
traditional fixed length crossover and mutation are changed. Each stop point’s position
is encoded into a person, and the total population thus symbolizes an entire deployment.
Differential evolution is used to produce offspring throughout evolution. Then, based on
the performance improvement, a strategy for adjusting the population size is devised. The
number of stop points can be increased, decreased or kept constant using this technique. In
the work of [3], a novel variable length particle swarm optimization for feature selection
was proposed. It enables particles to have different lengths that improve the performance
of the searching. In addition, the algorithm incorporates a solution order according to its
performance. The order is based on the relevance of the features contained in the solution.
In addition to evolutionary algorithms, researchers have developed variable length particle
swarms [3]. We present an overview of metaheuristic searching algorithms that support
variable length searching in Table 1.

Table 1. An overview of meta-heuristic articles with supporting variable length changing.

Author Algorithm Application Operator

[19] Variable length genetic Learning path recommendation Modified double-point crossover

[20] Variable length genetic Mobile Robot Path Planning improved crossover operators

[21] multiobjective genetic with
variable length chromosome Biclustering Selection, crossover and mutation

[22] genetic algorithm with
variable length chromosomes

vehicle coordination multipath
problem in intersections

selection, crossover and mutation
operators with supporting

variable length chromosome

[23] Variable length genetic
algorithm

UAV deployment for IoT data
collection Modified crossover and mutation

[3] Variable length particle
swarm optimization High-Dimensional Classification enabling particles to have

different and shorter lengths

[24] Variable length particle
swarm optimization

Feature Selection on High-Dimensional
Classification Length-changing mechanism

[12] Variable length particle
swarm optimization

spaces with a variable number of
dimensions

Modified mobility equation to
change the length of the variable

[25] adaptive variable length
particle swarm optimization

optimization problem with the
objective of minimizing the number of

small base stations (SBSs) while
satisfying both coverage and capacity

constraints

Modified mobility equation

Overall, we find that many researchers have proposed variable length variants of
genetic optimization and swarm optimization to solve various types of problems in various
applications. Studying their performance and comparing them in solving the problem of
feature selection is still an open research gap. Hence, we aim in this article at providing
a framework for comparing variable length meta-heuristic searching in the problem of
feature selection.
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3. Methodology

This section presents the developed methodology for accomplishing the goal of the
article. First, it presents variable length particle swarm optimization. Second, it presents
variable length genetic optimization. Third, it presents variable length black-hole optimiza-
tion. Fourth, it presents variable length black hole optimization.

3.1. Genetic Optimization

Genetic algorithms are based on biological principles. They take cues from Darwin’s
theory of evolution. Natural selection, according to Darwin’s theory, selects the fittest
individuals who then generate children. These individuals’ characteristics are passed
down the generations. If the parents are fit, their children will be fitter and have a better
chance of surviving. This is something that genetic algorithms can learn from. They
can be used to solve challenges related to optimization and search. Candidate solutions
are evolved in genetic algorithms to produce better ones. The goal is to discover the
best solution among a set of solutions that make up a search space. This is analogous
to identifying the fittest person in a group. Genetic algorithms begin with a population
of randomly generated solutions in the search space. Each solution has a chromosome,
which stores information on the solution’s properties. Changes to these chromosomes
are possible. Selection, crossover and mutation are three bio-inspired operators that can
be used on a chromosome in a standard genetic algorithm. Selecting a portion of the
population as candidates for producing offspring and generating more solutions is referred
to as selection. The fittest people are usually chosen. A fitness function can be used to
calculate a solution’s fitness, which indicates how good the solution is. Crossover is the
process of combining the chromosomes of two parents to create a new chromosome for
the offspring. The qualities of both parents’ chromosomes are passed on to the offspring.
Genetic algorithms are straightforward but powerful. They have been used to solve
a variety of research challenges, including vehicle routing [26], power allocation [27],
deep learning hyperparameter optimizations [28] and more. The pseudocode of genetic
optimization is given in Algorithm 1.

Algorithm 1: Pseudocode of genetic optimization:

1. Input;
2. Objective Functions;
3. Number of Iterations;
4. Number of Population;
5. Output;
6. Optimal Solution;
7. Start;
8. Generate initial population;
9. Evaluate initial population;
10. For each iteration until maximum iterations;
11. Select elites using probabilistic model provided from population evaluation;
12. Generate offspring using crossover and mutation and add them to pool of solutions;
13. Evaluation pool of solutions;
14. Select next generation from pool of solutions using environmental selection;
15. End;
16. End.

3.2. Particle Swarm Optimization

Particle swarm optimization is another meta-heuristic algorithm used for random
searching. Its concept is inspired by a swarm or flock collective behavior. For each indi-
vidual in the swarm, the mobility model is responsible for moving it according to two
components: best local and best global. The best local component is a velocity vector
between the individual current position and the best local position. Similarly, the best
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global component is a velocity component between the individual current position and the
best global position. The equation of moving solutions or particles is given as

vi,t = wvi,t−1 + c1r1
(
xi,t − xbli ,t

)
+ c1r1

(
xi,t − xbg,t

)
(1)

xi,t = xi,t−1 + vi,t (2)

where:

w denotes the inertia;
c1, c2 denotes constants;
r1, r2 denotes random numbers between 0 and 1;
xbli ,t denotes best local of solution i at moment t;
xbg,t denotes best global of solution i at moment t.

The pseudocode of particle swarm optimization is given in Algorithm 2.

Algorithm 2: Pseudocode of particle swarm optimization:

1. Input;
2. Objective Functions;
3. Number of iterations;
4. Size of swarm;
5. Output;
6. Start;
7. Generate initial swarm;
8. Evaluate initial swarm;
9. For each iteration until maximum iteration;
10. Select best global;
11. For each solution;
12. Find best local and move solution;
13. End;
14. Evaluation pool of solutions;
15. End;
16. End.

3.3. Variable Length Variants

This section provides the methodology developed for the Comparative Evaluation
of Meta-Heuristic Searching for Variable Length Searching. The methodology consists
of presenting a variable length variant of each genetic optimization and particle swarm
optimization. Afterwards, we provide benchmarking functions with variable length nature
used for comparison. Lastly, we present the evaluation metrics used for our analysis.

The number of variables in variable length optimization problems is not always fixed.
Traditional optimization methods can be used by assuming a limited number of variables
because they were created for fixed-length design structures. Even so, a short length will
result in an inferior solution. The problem-solving space, on the other hand, will vary
depending on the value of the determinant variable, the design vector length. To put it
another way, the unique search space makes the algorithm execution process more unique
for proper space research. On the other hand, control values to accommodate these changes
must be considered. In this section, we present three variants of variable length searching
for meta-heuristic optimization.

3.3.1. Variable Length Particle Swarm Optimization

In this variable of variable length particle swarm optimization, each particle will have a
different length L. The algorithm is based on a special variant of PSO named comprehensive
learning CLPSO, with some modifications. First, in the original CLPSO, any particle can be
used as an exemplar for a dimension of any particle. However, since in the variable length
variants particles have different lengths, the selected particle for a certain dimension must
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have the same length as the corresponding dimension. Hence, the algorithm presents an
exemplar selection mechanism.

The probability of choosing exemplars for each dimension of a particle (Pc) in the
original CLPSO is set depending on its identity or index in the population and remains
constant throughout the evolutionary process. As seen in Algorithm 3, particles with a
lower index have a lower Pc than those with a higher index. As a result, according to
CLPSO’s use of Pc for exemplar selection, small-index particles are more likely to follow
their own pbest. However, particles with higher fitness should learn from particles with
lower fitness in order to find a better position or solution. The probability model of
exemplar assignment is given by Equation (8).

Pci = 0.05 + 0.045
e

10(rank(i)−1)
S−1

e10 − 1
(3)

where:

S denotes the population size;
rank(i) denotes the rank of particle i.

Algorithm 3: The pseudocode of exemplar assignment:

1. Input;
2. Particle i;
3. Output;
4. Exemplar for each dimension of particle i;
5. Start;
6. L← the length of particle i;
7. For each d = 1 until L;
8. Rnd← generate random number from uniform distribution;
9. Pci ← Pc of particle i;
10. If (Rnd ≥ Pci);
11. Exemplar[d]← i;
12. Else;
13. p1 ← randomly selected particle that is different from i and has length longer than d;
14. p2 ← randomly selected particle that is different from i and has length longer than d;
15. Exemplar← the best among p1 and p2;
16. End;

End;
17. Return Exemplar;
18. End.

In addition, the algorithm instead of setting a different length of each particle divides
the solution space into smaller sub-spaces based on Equations (9) and (10).

DivSize =
PopSize
NbrDiv

(4)

ParLenv = MaxLen
V

NbrDiv
(5)

where:

DivSize denotes the number of particles in each division;
PopSize denotes the population size;
NbrDiv denotes the number of divisions;
MaxLen denotes the maximum length or the dimensionality of the problem.
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We observe that the particles in the same division will have the same length.
To arrange the feature ranking, the algorithm sorts the features in descending order

according to their relevance. The literature contains various measures for this purpose such
as symmetric uncertainty, which is a normalized version of information gain. In addition,
the algorithm enables the length-changing mechanism to guide the algorithm toward a
more optimal or promising area in the space.

3.3.2. Variable Length Genetic Optimization

The variable length of the genetic optimization is adapted from the work of [29].
The length of a metameric variable length genome can change, but it can only contain
completely defined metavariables. Recombination and mutation operators can be used to
add or remove metavariables from the genome. As a result, the typical genetic algorithm
operators are ineffective. We use the cut-and-splice recombination, which is similar to
two-point crossover with the exception that the crossover points in the two parents do not
have to match. Therefore, the number of meta-variables in each child may be different
than the number of meta-variables in either parent. For mutation, design-variable mu-
tation and metavariable insertion or deletion are the two types of mutation. The overall
number of design variables in the genome is inversely proportional to the rate of design
variable mutation. Only one design variable is altered on average with each operator call.
When utilizing the hidden-metavariable representation, the mutation rate is not affected
by unexpressed metavariables, and the ‘flag’ variable is not affected by design variable
mutation. A random number generator determines the magnitude of the mutation. A
random number from a normal distribution with a standard deviation equal to 5% of the
domain length of the design variable being altered determines the size of the mutation.
A randomly generated metavariable will be inserted at a random place in the genome
by the metavariable insertion mutation. The metavariable deletion mutation eliminates
a metavariable from the genome at random. The insertion operation can only activate
an unexpressed metavariable in the hidden-metavariable representation, in which case
the design variables will be changed with new random values. The ‘flag’ variable of an
expressed metavariable will be set to ‘off’ by the deletion action. The fixed-length GA does
not use the insertion and deletion procedures.

3.3.3. Variable Length Black-Hole Optimization

Variable length black hole optimization (VLBHO) (add citation) is presented in
Algorithm 4. The algorithm’s inputs are as follows: Max iteration, numOfStars and range-
OfDimension all refer to the maximum number of algorithm iterations that will be carried
out. RangeOfDimension refers to the range of dimensions connected to the search in the
solution space. The algorithm’s result is bho, a representation of a black hole object with
the world’s best gBest and other data.

The algorithm begins by using Max iteration, numOfStars and rangeOfDimension to
initialize the black hole object (BHO). An original black hole object (bho) is returned. In this
initialization () process, the initial population is created. Next, the algorithm iterates until
Max iteration and it loops over the stars one by one to do the following: First, the function
updatePosition () is used to update the star’s location (); second, it uses updateFitness
to update the star’s fitness (); third, it refreshes the best using the global best 4. It uses
UpdateEnergy () to update the energy. The method then runs an inner loop through
each dimension and each exemplar in that dimension to assess the exemplar’s energy,
prohibiting it from serving as an example if the energy is below bho.Emin. The algorithm
locates its follower stars and assigns each of them a new exemplar based on the star’s
dimension in order to deactivate its function as an example. On the other hand, when
stagnation occurs or no progress is achieved for a predetermined amount of time, the
algorithm is in charge of replacing the black hole.
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When the method was seen in action, it was discovered that it adds two concepts: a
black hole, which stands in for the absolute best, and an exemplar, which stands in for a
solution with the same dimension as its predecessor. When the energy of the example falls
below a particular threshold, it loses its function, whereas stagnation causes the black hole
to lose its function.

Algorithm 4: The General algorithm of variable length black hole optimization:

1. Input;
2. Max_iteration;
3. numOfStars;
4. rangeOfDimension;
5. Emin;
6. Output;
7. bho object that includes: gBest and other information;
8. Start;
9. bho = initBHO(Max_iteration,numOfStars,rangeOfDimnesion);
10. for each iteration of Max_iteration;
11. 2.1-for each star of bho.Stars;

a. bho =updatePosition(bho,star);
b. bho = updateFitnessANDpersonalBest(bho,star,itr);
c. bho.gBest = best(bho.stars);
d. bho = UpdateEnergy(bho, star, itr);
e. for each dimension in rangeOfDimension;

e.1 for each exemplar;

i e.1.1. if bho.Stars(star).Energy(dimension) < bho.Emin;

a set_stars = get the stars that use this star as their
exemplar in this dimension;

b for each star in set_stars;
c bho.Stars(star).Exemplar(dimension) =

ExemplarAssignment(bho,star,dimension);
d end;

ii e.1.2.end;

f. e.2end;
g. end;
h. if gBest not improved for a time period;
i. bho = lengthChanging(bho);
j. end;

12. 2.2-end;
13. End;
14. End.

4. Experimental Results and Analysis

The evaluation was conducted on MATLAB 2020b. For evaluation, we implemented
four types of variable length meta-heuristic searching algorithms, namely VLBHO-Fitness,
VLBHO-Position [30], variable length particle swarm optimization (VLPSO) and genetic
variable length (GAVL). The evaluation was conducted on four functions, namely Rosen-
brock, Rastrigin, Rastrigin and sphere.

The configuration is presented in Table 2.
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Table 2. Configuration of the developed method and the benchmarks.

Parameter VLBHO-Fitness VLBHO-Position VLPSO Gavl

Population size 40 40 40 40
Iterations 50 50 50 50

Min-length 1 1 1 1
Max-length 10 10 10 10

Number of divisions 10 10 10 -
W - - 0.5 -
C - - 0.5 -

Alpha - - 7 -
Beta 4 4 4 -

Emax 10 10 - -
Emin 10−3 10−3 - -
EH 2 2 - -

Time_window_length 5 5 - -
T 5 5 - -

elitism_rate - - - 0.1
mutation_rate - - - 0.2

The evaluation was performed based on four mathematical functions, namely Rosen-
brock, Rastrigin, sphere and Griewank [31]. The fitness value was generated for each of the
algorithms after running them for optimizing the functions. As observed in Figure 2, all
algorithms accomplished the same performance for Rosenbrock.
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Figure 2. The fitness values after convergence for VLBHO fitness, VLBHO position, VLPSO
for Rosenbrock.

For Rastrigin, the fitness values are provided in Figure 3. We find that GAVL was the
best because it accomplished the lowest fitness value compared with the other benchmark-
ing algorithms.

The fitness values for algorithms with respect to sphere are presented in Figure 4. As
shown, VLBHO accomplished the best fitness value compared with the other algorithms
followed by GVAL and then VLBHO. Similarly, visualizing the fitness value of Griewank
in Figure 5, we find that VLBHO fitness provided the best performance compared with the
benchmarks.
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Analyzing the presented results, it can be stated that VLBHO fitness was superior to
Griewank, sphere, Rastrigin and the equivalent in Rosenbrock.
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5. Conclusions

This article studied the recent developments of meta-heuristic methods for serving the
application of optimizing variable length space. The study considered three methods for
the evaluation, namely genetic variable length, variable length particle swarm optimization
and variable length black hole optimization with its two modes: position and fitness. The
evaluation showed the overall superiority of VLBHO over the other algorithms in terms
of accomplishing lower fitness values when optimizing mathematical functions of the
variable length type. This research opens the door to adopting and adapting VLBHO for
application in various areas of optimization research when the decision space does not fix
length such as wireless sensor network deployment, data gathering and variable length
feature selection.
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