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Abstract: Existing generative adversarial networks (GANs), primarily used for creating fake image
samples from natural images, demand a strong dependence (i.e., the training strategy of the generators
and the discriminators require to be in sync) for the generators to produce as realistic fake samples
that can “fool” the discriminators. We argue that this strong dependency required for GAN training
on images does not necessarily work for GAN models for network intrusion detection tasks. This
is because the network intrusion inputs have a simpler feature structure such as relatively low-
dimension, discrete feature values, and smaller input size compared to the existing GAN-based
anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional
GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads
involved in excessive training. In our proposed method, the training iteration of the generator (and
accordingly the encoder) is increased separate from the training of the discriminator until it satisfies
the condition associated with the cross-entropy loss. Our empirical results show that this proposed
training strategy greatly improves the performance of both the generator and the discriminator even
in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class
classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network
traffic based on binary classification results instead of calculating expensive and complex anomaly
scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective
to be used in network intrusion detection tasks and outperforms other similar generative methods on
two datasets: NSL-KDD and CIC-DDoS2019 datasets.

Keywords: network intrusion detection; generative adversarial networks; one class classifier

1. Introduction

Network intrusion detection is used to discover any unauthorized attempts to a net-
work by analyzing network traffic coming in and out of the network and looking for any
signs of malicious activity. This is often regarded as one of the most critical network security
mechanisms to block or stop cyberattacks [1].

Traditional machine learning (ML) approaches, such as supervised network intrusion
detection, have shown reasonable performance for detecting malicious payloads included
in network traffic-based data sets labeled with ground truth [2]. However, with the mass
increase in the size of data, it has become either too expensive or no longer possible to label
a huge number of data sets (i.e., big data) [3]. Unsupervised intrusion detection methods
have been proposed as it no longer demands the requirement for labeled data. In addition,
these unsupervised methods can utilize only the samples from one class (e.g., normal
samples) for training to recognize any patterns that deviate from the training observations.
However, the detection accuracy of these unsupervised learning methods tends to suffer as
soon as an imbalanced class appears (e.g., the number of samples in a class is significantly
more or less compared to the number of samples in other classes).
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A number of generative models have been proposed including Autoencoders [4] and
generative adversarial networks (GANs) [5] with the ability to generate realistic synthetic
data sets to improve detection accuracy based on anomaly detection techniques.

Autoencoder (AE) is composed of an encoder and decoder. The encoder can compress
high-dimensional input data into low-dimensional latent space. The decoder generates the
output that resembles the input by reassembling the (reduced) data representation from
the latent space. Typically, a reconstruction loss is computed between the output and the
input and used as a mechanism to identify anomalies. The encoder in AE captures the
semantic attributes of the input data into the latent space, as a form of vector representation,
to represent the corresponding input sample from the real data space.

In particular, GANs have emerged as a leading yet very powerful technique for
generating realistic data sets, especially in the image identification and processing involved
in the natural images despite arbitrarily complex data distributions that exist in the real
data sets. In GANs, two deep neural networks, the generator and the discriminator,
respectively, are involved in the main GANs’ structure. The generator and the discriminator
are trained in turn by playing an adversarial game. That is, the generator produces the
output (i.e., somewhat based on the distribution of real data) while the discriminator takes
the fake data (i.e., the output of the generator) and real data as input and aims to distinguish
them. The goal of the generator is to generate the fake data that resembles as much as
the real data to “fool” the discriminator (i.e., it can’t distinguish the fake data from real
data). The generator and the discriminator are highly dependent on each other to reach
the optima.

Rather than only generating synthetic images that resemble the original input, anomaly
detection-based GAN approaches have been proposed to classify abnormal images whose
feature deviates significantly from the original images [6–8]. Moving from applying
anomaly detection-based GAN on images, several works such as [9,10] attempted to apply
the same principle for network intrusion detection tasks.

However, there are two issues with these existing methods. The first issue is the
strong dependence between the generator and the discriminator. That is, the number of
training iterations both the generator and the discriminator go through are typically in sync.
However, this dependence can be relaxed for the network intrusion tasks because of the
difference in the input structure that is fed to GAN models. For network intrusion inputs,
the dimensionality of features is significantly lower compared to images, the majority
of features in the network intrusion datasets are discrete, as well as the size of inputs
relatively smaller. Due to these reasons, the training of the discriminator does not require as
many iterations to assess the difference between the synthetic data and the real input [10].
The second issue is the complexity of producing anomaly scores that are used to decide
which input samples are normal or not. The existing methods used on images typically
use at least two or more loss functions to accurately produce anomaly scores. However,
text-based network intrusion inputs whose structure is a lot simpler than images, a simpler
loss function can be used.

To address these two issues, we propose a new Bidirectional GAN (Bi-GAN) model
that can effectively detect network intrusions without unnecessary training steps and with
a simpler loss function.

The contributions of our proposed approach are following:

• We relax the requirement for the generator and the discriminator to train them in sync.
The generator (along with the encoder) in our proposed model goes through more
rigorous training iterations in order to produce more reliable synthetic data set that
highly resembles the real traffic samples. This can effectively remove any overheads
associated with the discriminator trained overly. Our proposed model shows that
the generator’s performance is greatly improved by offering the generator (and en-
coder) to train more than the discriminator, which in turn, also actually improves the
discriminator’s performance better.
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• In our promised model, a cross-entropy is used to keep track of the overall balance in
terms of the number of relative training iterations required for the generator and the
discriminator. In addition, we employ a -log (D) trick to train the generator to obtain
sufficient gradient in the early training stage by inverting the label.

• We offer new construction of a one-class classifier using the trained encoder-discriminator
for detecting anomalous traffic from normal traffic instead of having to calculate either
anomaly scores or thresholds which are computationally expensive and complex.

• Our experimental result shows that our proposed method is highly effective in using
a GAN-based model for network anomaly detection tasks by achieving more than
92% F1-score on the NSL-KDD dataset and more than 99% F1-score on the CIC-
DDoS2019 dataset.

The rest of this paper is organized as follows. Section 2 summarizes the review of the
literature relevant to our study. Background knowledge in the generic GAN and BiGAN
that is required to understand our study is presented in Section 3. Section 4 describes the
details of our proposed model. Section 5 describes the data and the data preprocessing
methodologies we used while Section 6 demonstrates our experimental results and provides
analysis. Section 7 provides the concluding remarks along with the future work that is
planned.

2. Related Work

In this section, we review the existing state-of-arts that use two generative deep
learning models, Autoencoder and GAN, to detect anomalies (i.e., including intrusions)
using anomaly-based detection approaches.

The autoencoder-based approaches typically use reconstruction methods where com-
puting a reconstruction error and use it as a threshold to detect anomalies [11–14]. In this
approach, an autoencoder is trained only with the normal samples to learn the distribution
in their latent representation and use the distribution to reconstruct the input. The differ-
ence in the input and output termed reconstruction error is used to detect anomalies that
typically generate high reconstruction loss compared to the normal samples. The work
suggested by [15] confirmed the efficiency of such an anomaly-based autoencoder approach
to be useful by showing a higher accuracy in network intrusion detection compared to ex-
isting (shallow) machine learning techniques. Other improved versions of the autoencoder
approach were suggested to improve network intrusion detection. In [16], the authors used
a Denoising Autoencoder (DAE) to remove the features that potentially degrade the overall
performance, termed as noises, using stochastic analysis. An and Cho (2015) [12] proposed
a Variational Autoencoder (VAE) based approach which used Gaussian distribution of
input samples and use them as a part of reconstruction loss to identify anomalies.

GAN-based models for anomaly detection tasks came later than Autoencoders mostly
from the field of computer vision. Schlegl et al. proposed AnoGAN [6], which was
the first anomaly detection-based model. They further proposed f-AnoGAN [7], which
improved the computational efficiency by adding an encoder before the generator to
enable the mapping from data to the latent space directly thus avoiding expensive extra
backpropagation. GANomaly [8] further improves the performance which adds two
encoders. In their approach, one encoder is used before the generator to learn the latent
space of the original data while the other encoder is used after the generator to learn the
latent space of the reconstructed data.

BiGAN further improved its ability to detect anomalies in a simpler way with the
ability of mapping data to latent space more efficiently. The BiGAN also comprises three
components similar to many previous GAN variants used in anomaly-based detection.
These include the generator, the discriminator, and an encoder, but have a different structure.
In BiGAN, the encoder is independent of the generator as another input source for the
discriminator. In this way, the BiGAN can learn to map the latent space to data (by the
generator) and vice versa (by the encoder) simultaneously.



Computers 2022, 11, 85 4 of 18

Efficient GAN [17] utilized BiGAN’s ability of inverse learning and demonstrated
that it can be effectively used to detect anomalies not only on images but also on network
intrusion datasets such as using the KDD99 dataset. In their approach, they introduced two
similar losses as f-AnoGAN to form the anomaly score function. Since the encoder and the
generator can compose an auto-encoder structure, ref. [10] suggests adding an Autoencoder
style training step to the original BiGAN architecture to stabilize the model.

In the existing GAN approaches, there is a strong dependence between the generator
and the discriminator. That is, the training strategy for the generator and the discriminator
needs to be in sync to produce synthetic data that resembles the original images. This is
necessary for images where the inputs have high dimensions, feature values are complex,
and input size is large. However, network intrusion inputs are simpler, with fewer dimen-
sions, the majority of features are discrete features, and the input size is relatively small.
In this case, the dependence of training between the generator and the discriminator can be
relaxed [10].

In addition, many existing methods require at least two or even more loss metrics to
compute anomaly scores which have proven to be very expensive [7,8,17]. However, it
has been shown in [10,18], that a more straightforward resolution could be used such as
using the discriminator as a one-class classifier to detect anomalies instead of computing
anomaly scores.

3. Background
3.1. Generic GAN

In a generic GAN approach, two neural networks, namely the generator and the
discriminator, respectively, contest with each other in a game approach—generally in the
form of a zero-sum game where one agent’s gain is another agent’s loss. The generative
network (i.e., the generator) generates new data samples from a low dimensional distribu-
tion while the discriminative network (i.e., the discriminator) evaluates them. In another
word, the generator learns to map from random noise to a data distribution of the real data
while the discriminator distinguishes the new datasets generated by the generator (i.e., re-
garded as fake data) from the true data distribution. Figure 1 illustrates the architecture of
the GAN.

Figure 1. Structure of GAN. The generator G map the input z (i.e., random noise) in latent space to
produce a high dimensional G(z) (i.e., fake samples). The discriminator D is expected to separate x
(i.e., real samples) from G(z).

Algorithm 1 demonstrates the procedure involved in the training phase of a generic
GAN model. The generator takes a batch of vectors z (e.g., randomly drawn from a
Gaussian distribution) and maps to G(z) which has the same dimensions as the real
samples x. The discriminator receives two sources of input (i.e., fake samples and real
samples) and tries to distinguish them. The loss between the observation and the prediction
at the discriminator is calculated and subsequently used to update both the generator and
the discriminator until the training is complete.

It must be noted that there is no independent loss function for the generator in
the standard GAN as it is updated indirectly with the objective function linked to the
discriminator. Equation (1) depicts the objective of V(G, D) for measuring the residual and
optimizing both the generator and the discriminator.

min
G

max
D

V(G, D) = Ex∼pX [log D(x)] +Ez∼pZ[log(1− D(G(z)))] (1)
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Algorithm 1: Training in Generic GAN

for number of training iterations do
for k steps do

Sample z (z1, z2....zn) ∼ p(Z);
Sample x (x1, x2....xn) ∈ p(X);
x̂ = G(z);
Update D(x, x̂) by maximizing Equation (1);

end
Sample z (z1, z2....zn) ∼ p(Z);
Update G(z) by minimizing Equation (1) (without updating D).

end

3.2. Bidirectional GAN

Bidirectional GAN or BiGAN is a variant of GAN by adding an encoder to the original
GAN model. With the added encoder, the BiGAN is capable to learn the inverse mapping
from the real data to the latent space [19,20] to better support the generator producing
more semantically rich synthetic datasets. The encoder here plays an importable role
for the BiGAN model by providing the learning the latent representation from the real
data [19]. Figure 2 illustrates the architecture of BiGAN, and Algorithm 2 depicts the
training involved in the BiGAN approach.

Figure 2. Structure of BiGAN. Note that (z and E(x)) and (G(z) and x) have the same dimen-
sions. The concatenated pairs [G(z), z] and [x, E(x)] are the two input sources of the discriminator D.
The Generator G and the encoder E are optimized with the loss generated by the discriminator D.

Like the standard GAN, the training is comprised of two steps. The first step involves
training the discriminator (D) to maximize the objective function described in Equation (2)
without updating the generator (G) or encoder (E). The second step involves training
both the generator and encoder to minimize the same objective function linked to the
discriminator (D).

min
G,E

max
D

L(D, E, G) = Ex∼pX [Ez∼pE(·|x)[log D(x, z)]]

+Ez∼pZ[Ex∼pG(·|z)[log(1− D(x, z))]] (2)

Though the generator (and accordingly encoder) and the discriminator are trained
separately, there is only one single objective function computed by the discriminator D.
Both the generator and the encoder are updated indirectly through discriminator. Different
from the standard GAN approach, a concatenation operation is added in the discriminator.
The concatenation is to link the data x (or G(z)) with its latent space E(x) (or z) and these
two concatenated data are then inputted into the discriminator. When optimized, the G and
the E are the inverses mapping to each other [19,20] which can be shown as x = G(E(x))
and z = E(G(z)).
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Algorithm 2: Training in BiGAN

for number of training iterations do
for k steps do

Sample z (z1, z2....zn) ∼ p(Z);
Sample x (x1, x2....xn) ∈ p(X);
f (z) = G(z); /* f (z).shape = x.shape */
f̂ (x) = E(x); /* f̂ (x).shape = z.shape */
Concatenate ([ f (z), z]);
Concatenate ([x, f̂ (x)]);
Update D([ f (z), z]) and D([x, f̂ (x)] by maximizing Equation (2);

end
Sample z (z1, z2....zn) ∼ p(Z);
Sample x (x1, x2....xn) ∈ p(X);
f (z) = G(z);
f̂ (x) = E(x);
Concatenate ([ f (z), z]);
Concatenate ([x, f̂ (x)]);
Update G(z) and E(x) simultaneously by minimizing Equation (2) (without
updating D).

end

4. Our Proposed Model

Extending from the BiGAN approach, our proposed model offers a new training
strategy for the generator and encoder. By further relaxing the dependence with the dis-
criminator, our proposed model allows the generator and encoder to train until they
produce a set of new data samples that resembles the real distribution of the original data
while maintaining strong semantic relationships that exist in the text-based features of the
original network traffic samples. Our proposed model also offers a new construct for the
trained encoder–discriminator to use as a one-class binary classifier.

4.1. Main Components
4.1.1. Encoder

The encoder in our proposed model is used for learning feature representation [20]
which takes the real samples as inputs and maps them to a low dimensional vector in a
latent space. In our approach, the encoder is a neural network with three dense layers
and has ReLU as the activation function for the hidden layer and the output layer. As
this typically works as an inverse mapping of the generator, the size of the latent space is
typically set at the same dimension size of the input data used for the generator.

4.1.2. Generator

The generator in our approach maps a low-dimensional vector (i.e., random input
values) to a higher-dimensional vector in the latent space. The generator acts exactly
opposite to the encoder. It accepts a n-dimensional noise as the input source and the n is
identical to the dimension size of latent space in the encoder. Our generator draws the
n-dimensional noise from the standard normal distribution. The generator has a neural
network structure of three dense layers. ReLU is used as the activation function for the
hidden layer while the sigmoid function is used as the activation function for the output
layer to restrain the distribution of output within the range of [0, 1]. The output layer of
the generator has the same number of neurons as the input layer of the encoder and the
sigmoid function ensures that the generator’s output has the same data distribution range
as the encoder’s input.
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4.1.3. Discriminator

The discriminator in our approach is to distinguish whether the input data is derived
from the encoder or forged by the generator in the training phase. It comprises a concatenate
layer which receives [x, E(x)] (i.e., the paired input from the encoder) and [G(z), z] (i.e.,
the paired input from the generator), a hidden dense layer with ReLU as the activation
function, and an output layer with only one neuron. The sigmoid activation function is
used for the output layer to produce the binary classification result.

4.2. Training Phase

The ultimate goal of the training strategy involved in a GAN approach is for the
generator and the discriminator to reach Nash equilibrium where their chosen training
strategies maximize the payoffs (i.e., the generator produces the fake data as resembles as
the real data while the discriminator has built up enough knowledge to distinguish the
real from fake samples). In the existing GAN approaches dealing with natural images, this
often requires both the generator and the discriminator to improve their capabilities at a
relatively equivalent speed.

However, this training strategy often does not work in many application scenarios,
because often the semantic relationships of the feature sets require to be maintained in the
data set produced by the generator, and the data set being operated on in the discriminator
differ from each other, which often leaves the training of the generator unstable (i.e., the loss
of the generator fluctuates widely) [21].

In many cases, discriminator converges easily at the beginning of training [22], mak-
ing the generator never reach its optimum. To address this issue for network intrusion
detection tasks, we train the generator (and the encoder accordingly) more iterations than
the discriminator. This new training strategy can prevent an optimum discriminator from
appearing too early in the training stage thus keeping the training to be more balanced
between the generator and discriminator.

Our training strategy is depicted in Algorithm 3 where the training is processed in
mini-batch. In the first stage, the discriminator is trained and updated with a batch of real
samples (input from the encoder) and a batch of fake samples (input from the generator) in
sequence. In the next stage, the discriminator is fixed and the encoder and the generator
are trained k times. Like it was used in [20], we also adopt the “−log(D) trick” [5] to train
the generator and the encoder more efficiently by flipping the target label between the
generator and the encoder. For example, the input from the encoder is labeled as 1 (fake)
while the input from the generator is labeled as 0 (real). Now the result of O(ŷ|y) is reversed
which generates large gradients. This reflects the second part of an iteration in Algorithm 3
(i.e., the inner for-loop).

4.2.1. Training Loss Function

In many cases, Kullback–Leibler (KL) divergence or Jensen–Shannon (JS) divergence
are used to measure the distance between the joint distribution of P(x, E(x)) and P(G(z), z)
in many image-based BiGAN variants which produces the optimum, E = G−1 and the
divergence of 0. This does not work for text-based BiGAN as the divergence of the two
joint distributions of P(x, E(x)) and P(G(z), z) cannot be computed directly but can only
be approximated indirectly using the discriminator. With this understanding, we use the
cross-entropy to approximate the divergence. Equation (3) depicts the cross-entropy of two
distribution P(x) and Q(x) and where P(x) is the actual target (0 or 1) and the Q(x) is the
joint distribution of P(x, E(x)) or P(G(z), z).

H(P, Q) = Ex∼P[log Q(x)] = −
n

∑
x=1

P(x) log(Q(x)) (3)

where P(x) is the actual target (0 or 1) and the Q(x) is the predict. Now we can unify the
updating of the encoder, generator, and discriminator to minimize the result of this loss.
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Algorithm 3: Training Phase of our proposed method

for number of training iterations do
D.trainable = True;
Sample z (z1, z2, . . . , zn) ∼ p(Z);
Sample x (x1, x2, . . . , xn) ∈ p(X);
f (z) = G(z); /* f (z).shape = x.shape */
f̂ (x) = E(x); /* f̂ (x).shape = z.shape */
Concatenate ([ f (z), z]);
Concatenate ([x, f̂ (x)]);
Update D([ f (z), z]) and D([x, f̂ (x)] by maximizing Equation (2);
D.trainable = False;
for k steps do

Sample z (z1, z2....zn) ∼ p(Z);
Sample x (x1, x2....xn) ∈ p(X);
f (z) = G(z);
f̂ (x) = E(x);
Concatenate ([ f (z), z]);
O(ŷ|y)← D([ f (z), z]);
Update G by minimizing − log(D( f (z), z));
Concatenate ([x, f̂ (x)]);
O(ŷ|y)← D([x, f̂ (x)]);
Update E by minimizing − log(D(x, f (x)));

end
end

In the first stage of training, the discriminator is updated in iteration: if the input
comes from the encoder, the second part of the objective function (2) becomes 0. maximizing
the first part of the objective function equals to minimize the cross-entropy values between
P(x = 1) and Q(x) as seen in the following Equation:

H(1, Q) = − log D(x, E(x)) (4)

If the input comes from the generator, the first part of the objective function (2) becomes
0. The second part of the objective function is equivalent to minimizing the cross-entropy
values between P(x = 0) and Q(z), as seen in the following Equation:

H(0, Q) = − log D(G(z), z) (5)

When training the generator and the encoder, the parameters of the discriminator is
fixed. In fact, the two modules are trained separately: the encoder is trained in the encoder-
discriminator joint structure while the generator is trained in the generator-discriminator
joint network. Since the labels of input are swapped, the target label will set to be 0 when
the input is a real sample x∼p(x). Updating the encoder is to minimize the cross-entropy
between P(x = 0) and Q(x):

H(0, Q) = − log D(x, E(x)) (6)

On the other hand, updating the generator is to minimize the cross-entropy between
P(x = 1) and Q(x):

H(1, Q) = − log D(G(z), z) (7)
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4.3. Testing Phase

After the training is completed, the discriminator has full knowledge of the joint
distribution of normal samples. The output probability is close to 0 when the input of the
encoder is normal samples, and far from 0 if the input is anomalous samples.

This knowledge at the discriminator is used in the testing phase. If the probability
value is greater than a given κ, the discriminator has high confidence to label the test
sample anomalous. We follow the convention to set κ = 0.5 to use it as a marker to decide
whether a network traffic record in the testing set is normal or anomalous. In another
words, if O(ŷ|y) > 0.5, the discriminator in our proposed model mark the inputted test
data point as an anomaly. This evaluation process is depicted in Algorithm 4.

Algorithm 4: Testing Phase of our proposed method

Input: Test dataset X = {x1, x2, x3, . . . , xn}
Test Label Y = {y1, y2, . . . , yn}
Encoder Eφ; Discriminator Dθ

Output: O(ŷ|y)
for (x, y) ∈ (X, Y) do

η = Concatenate ([x, E(x)]);
O(ŷ|y)← Dθ(η)

end

The intuition behind this one-class classifier is whether a network traffic sample in
the test data set is normal or anomalous is following. In the training phase, the encoder
only operates on normal data samples with its data distribution represented by p(x) and
learns the distribution in the latent representation (p(E(x)). Now at the test phase where
the encoder receives not only normal data samples but also anomalous data samples (X′),
the encoder still compresses the anomalous inputs to the same latent distribution (p(E(x)).
Since the anomalous input samples falls outside the “normal distribution” (X′ /∈ p(x)),
their latent representations (p(E(X′)) are most likely outliers, that is p(E(X′)) /∈ p(E(x)).
This enables the discriminator to produce a high probability value close to 1, which now
the discriminator can mark them as anomalies.

4.4. Putting It Together

Figure 3 illustrates our proposed approach.

Figure 3. Flowchart of our proposed approach.
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During the training phase, a normal traffic sample x is processed to feed into the
encoder as the input. The encoder maps x to latent representations E(x) as the output.
Their concatenation [x, E(x)] becomes an input to the discriminator representing real data,
labeled with the value 0.

The generator draws a low dimensional vector z and fills it with random values derived
from a standard distribution to generate synthetic samples G(z). Their concatenation
[G(z), z] becomes another input to the discriminator representing fake data, labeled with
the value 1.

The discriminator outputs a probability O(ŷ|y) to estimate whether the input is a “real”
sample or a “fake” sample. For example, if O(ŷ|y) ≈ 0, the discriminator predicts that the
input is the real sample from the encoder, otherwise, the input is the fake sample from the
generator. The cross-entropy is used as the unified loss function to update all the three
modules in our proposed model while flipping labels provide a strong gradients signal for
updating the encoder and the generator.

During the testing phase, the testing samples (x′) containing both normal and abnor-
mal traffic samples are inputted to the encoder which outputs a low dimensional feature
representation of these inputs E(x). The paired vector [x, E(x)] becomes the input to the
discriminator. The discriminator, by now well trained to see which probability values
to associate with the real or fake samples, produces a probability value of each input
sample, and predicts whether the input is normal or anomalous since the anomalous input
produces considerably dissimilar probabilistic values observed during the training on
normal samples.

5. Data and Preprocessing
5.1. Datasets

We used two different datasets in our evaluations, the NSL-KDD dataset and the CIC-
DDoS2019 dataset, respectively. These datasets are not a perfect representative of existing
real networks. However, because of the lack of public datasets available for building
new models for network intrusion detection, they have been widely used as an effective
benchmark to compare different intrusion detection methods. We use two full subsets of the
NSL-KDD dataset where the KDDTrain+ contains the dataset that can be used for training
the model while KDDTest+ contains the dataset for testing the model. Among the total of
125,973 records in the KDDTrain+ dataset, a total 67,343 of records are considered as normal
samples while a total of 58,630 records are categorized as abnormal samples. Similarly,
among the total of 22,544 records in the KDDTest+ dataset, the records are grouped into
a total of 9711 normal samples and 12,833 abnormal samples, respectively. The details of
NSL-KDD is shown in Table 1.

Table 1. Records of two NSL-KDD datasets: KDDTrain+ and KDDTest+.

NSL-KDD Total Normal Others

KDDTrain+ 125,973 67,343 58,630
KDDTest+ 22,544 9711 12,833

Each traffic record in the NSL-KDD dataset contains a total of 41 features, including
38 numeric (e.g., “int64” or “float64”) and 3 symbolic values (e.g., “object”). Table 2 shows
the details of all 41 features including the name of the feature and data type.
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Table 2. NSL-KDD dataset features: 38 numeric and 3 symbolic.

No Features Type No Features Type

0 duration int64 21 is_guest_login int64
1 protocol_type object 22 count int64
2 service object 23 srv_count int64
3 flag object 24 serror_rate float64
4 src_bytes int64 25 srv_serror_rate float64
5 dst_bytes int64 26 rerror_rate float64
6 land int64 27 srv_rerror_rate float64
7 wrong_fragment int64 28 same_srv_rate float64
8 urgent int64 29 diff_srv_rate float64
9 hot int64 30 srv_diff_host_rate float64

10 num_failed_logins int64 31 dst_host_count int64
11 logged_in int64 32 dst_host_srv_count int64
12 num_compromised int64 33 dst_host_same_srv_rate float64
13 root_shell int64 34 dst_host_diff_srv_rate float64
14 su_attempted int64 35 dst_host_same_src_port_rate float64
15 num_root int64 36 dst_host_srv_diff_host_rate float64
16 num_file_creations int64 37 dst_host_serror_rate float64
17 num_shells int64 38 dst_host_srv_serror_rate float64
18 num_access_files int64 39 dst_host_rerror_rate float64
19 num_outbound_cmds int64 40 dst_host_srv_rerror_rate float64
20 is_host_login int64

The CIC-DDoS2019 dataset contains a total of 13 different types of DDoS attacks. It is
a highly imbalanced dataset with more than 50 million attack samples while proportionally
a very few BENIGN samples. In our experiment, we extracted all 56,425 unique benign
samples and made them as the training set. We randomly sampled 5% of attack samples
and some portions of the benign samples and made them the test set to evaluate our
approach. Table 3 shows the number of sample sizes used for training and test.

Table 3. Records of CIC-DDoS2019 training and test set.

CIC-DDoS2019 Total BENIGN ATTACKS

Training 56,425 56,425 -
test 977,830 2811 975,019

5.2. Data Preprocessing

For the NSL-KDD dataset, we first encoded 3 symbolic features using one-hot-encoding
and converted them into 84 unique features. This resulted in the input source of the encoder
having a total of 122 features. After applying one hot-encoding, outliers are removed fol-
lowing the operation applied in [14]—that is, the instances that contain the top 5% values of
any feature (including encoded categorical features) are disposed of. By removing outliers
after the one hot-encoding, all features are now treated equally, regardless of their data
types, thus reducing the bias associated with an imbalanced number of particular data
types. Furthermore, the Minmax Scaler is used to normalize the data into the range of [0, 1].

As for the input to the generator, the vectors are randomly drawn from a normal
distribution of the real dataset to match the size of the latent space dimension (e.g., 10 input
vectors according to the latent space with the size of 10). The output size of the generator is
decided according to the size of features (e.g., 122 neurons according to the total size of
features in the training dataset). As our encoder does the inverse mapping of the generator,
the input size corresponds to the size of the total features (e.g., 122) while the output size
is the size of the latent space (e.g., 10). The input size of the discriminator is equal to the
concatenation of the output of the generator and its input (e.g., 132) while the output size is
a single neuron (e.g., as a binary classifier). Figure 4 illustrates the data flow of the three
components of our BiGAN model based on the analysis of the NSL-KDD dataset.
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As for the CIC-DDOS2019 dataset, the preprocessing includes feature reduction,
outlier removal, and data normalization, similar to the process of NSL-KDD. In the feature
reduction phase, we first drop uninformative (e.g., NaN) and all-zero features. We encoded
the “protocol” as a categorical feature since it only contained three values (i.e., 0, 6, 17
which represent HOPOPT, TCP, and UDP, respectively) which were eventually encoded
as three individual features. In the outlier removal phase, we use the same strategy to
remove the top 5% values of all features and therefore select only 29,731 BENIGN samples
for training. Then, we normalize the data to the range of [0, 1].

Figure 4. BiGAN data flow. Encoder: input dimensions (122), output dimensions (10); Generator: input
dimensions (10), output dimensions (122); Discriminator concatenates the input and output of Encoder
or Generator to form the input and functions as a binary classifier.

6. Experimental Results
6.1. Setup Environment

Our experiments were carried out on the Kaggle platform using GPU for model
training. The system setup is collected in Table 4 while the hyper-parameters we used
in our study are shown in Table 5. (Source code is available at https://github.com/
cyberteamnz1/GAN-Anomaly-Detection, accessed on 1 May 2022.)

Table 4. Implementation environment specification.

Unit Description

Processor 2 Cores, 2.0 Ghz

GPU Tesla P100

RAM 16 GB

OS Linux 5.10.68+

Packages used TensorFlow 2.6.0

https://github.com/cyberteamnz1/GAN-Anomaly-Detection
https://github.com/cyberteamnz1/GAN-Anomaly-Detection
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Table 5. Training parameters.

Parameters Values Description

Batch Size 64 The number of training examples in one forward/backward pass

Learning rate 0.002 Learning rate is used in the training of neural networks—range
between 0.0 and 1.0.

N-iterations 1000 Total numbers of iterations in the training process
Steps 5 The compensated training iterations for Generator and Encoder

6.2. Performance Metrics

We use the classification accuracy, precision, recall, and F1 score as the performance
metrics to evaluate the performance effectiveness of our proposed model. We use: True
Positive (TP) indicates the number of correctly predicted anomalies, True Negative (TN)
indicates the number of correctly predicted normal instances, False Positive (FP) indicates
the number of normal instances that are misclassified as anomalies, and False Negative
(FN) indicates the number of anomalies that are misclassified as normal.

We use True Positive Rate (also known as Recall) to estimate the ratio of the correctly
predicted samples of the class to the overall number of instances of the same class using
Equation (8). Typically, the higher TPR ∈ [0, 1] indicates the good performance of the model.

TPR(Recall) =
TP

TP + FN
(8)

We use Precision to measure the quality of the correct predictions which is computed
by the ratio of correctly predicted samples to the number of all the predicted samples for
that particular class as seen in Equation (9).

Precision =
TP

TP + FP
(9)

F1-Score computes the trade-off between precision and recall. Mathematically, it is the
harmonic mean of precision and recall as shown in Equation (10).

F1 = 2×
(

Precision× Recall
Precision + Recall

)
(10)

Similar to F1-score, we use Accuracy (Acc) to measure the total number of data samples
correctly classified in terms of all the predictions made by the model using Equation (11).

Acc =
TP + TN

TP + TN + FP + FN
(11)

We also use the area under the curve (AUC) to compute the area under the receiver
operating characteristics (ROC) curve plotting the trade-off between the true positive rate
(i.e., typically depicted on the y-axis) and the false positive rate (i.e., on the x-axis across
different thresholds) using Equation (12).

AUCROC =
∫ 1

0

TP
TP + FN

d
FP

TN + FP
(12)

6.3. Results

We report the analysis of the observation we have made during our experiments.

6.3.1. Training Loss and PCA

The training loss is an important indicator of model performance. In adversarial
networks, the training loss of the discriminator is expected to be opposite to the generator
in general, but both of them converge into a narrow range. In our proposed approach, we
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train the generator (as well as the encoder) more times to match the converging pace of
the discriminator.

We take the training process of NSL-KDD dataset as an example to demonstrate the
convergence. Figure 5 illustrate the trend of the training losses associated with our main
components. In this experiment, the training of the encoder, generator, and discriminator
has gone through 1000 iterations. As expected, the training losses for the encoder (i.e., Eloss
depicted by the green line) and generator (i.e., Gloss depicted by the orange line) were not
stable in the first 170 iterations but become stead when the training passed 200 iterations.
As the encoder is the inverse mapping of the generator, the trend in the training loss patterns
is pretty similar between the two. The training loss for discriminator (i.e., Dloss depicted
by blue line) becomes stabilized much earlier only after 50 iterations, and remains steady.

Figure 5. Training losses vs. iterations. Eloss, Gloss, and Dloss represent the training loss trend of
encoder, generator, and discriminator, respectively.

We also visualize the PCA results as a metric for model analysis. Figure 6 illustrates the
2-D visualization of the distribution among the normal and abnormal samples in KDDTrain+
and KDDTest+. As it illustrates, there are two distinct clusters in the KDDTrain+ dataset,
one belongs to normal samples and the other belong to abnormal data samples. The feature
values are pretty widely spread across each cluster both in the normal and abnormal dataset.
In contrast, the clusters around normal and abnormal samples in the KDDTest+ are less
distinct as there are many overlapping data points across the normal and abnormal samples.
The feature distribution of the normal dataset is within a narrow range while the feature
distribution of the abnormal dataset is much wider.

(a) (b)

Figure 6. The PCA visualization of data distribution in (a) KDDTrain+ and (b) KDDTest+ dataset.

Figure 7 illustrates the PCA results of the encoder and the generator after training
when: (a) represents two paired concatenated outputs when trained on the NSL-KDD
dataset while (b) represents the results on the CIC-DDoS2019 dataset. As shown in the two
graphs, the real samples are condensed into clusters while the generated samples surround
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those real samples with overlapping. This indicates that the generator can simulate the
data distribution of normal/BENIGN samples of the datasets to some extent. However,
the fake samples scatter around a much broader area than the real samples which can be
regarded as the anomalies for the discriminator in the training process.

(a) (b)

Figure 7. The PCA visualization of concatenated outputs of the encoder and the generator after
training on (a) NSL-KDD and (b) CIC-DDoS2019.

6.3.2. Testing

The performance of our proposed model on the two datasets using the 4 performance
metrics we specified earlier is depicted in Table 6. The F1-score for the NSL-KDD dataset
achieves more than 92% while the CIC-DDoS2019 dataset achieves more than 99% with
very competitive rates for both precision and recall. We also present the training runtime—
the average time it takes for 1000 iterations in milliseconds. Note that at each iteration,
the generator goes through 5 times more iterations than the discriminator as the training
iteration of these two does not need to be in sync.

Table 6. Performance of our approach.

Dataset Accuracy Precision Recall F1 Score Time (µ ± σ)

KDDTest+ 91.12% 87.27% 98.81% 92.68% 118 ms± 25 ms

CIC-DDOS2019Test+ 99.68% 99.85% 99.82% 99.84% 59 ms± 23 ms

To illustrate a more detailed analysis of the performance, the experimental results
based on the confusion matrix are shown in Figure 8. For the NSL-KDD dataset shown in (a),
among the total of 22,544 records used for the testing, 20,542 records were correctly classified
according to their label while slightly over 2000 records (i.e., less than 9% of the total records)
were misclassified as either FP (1849) or FN (153). For the CIC-DDoS2019 dataset shown in
(b), among the total of 989,780 testing samples, 974,669 records were correctly classified
(i.e., greater than 99% of the total records) while 3161 samples were misclassified.

From another angle to measure the performance of our proposed model, Figure 9
depicts the AUC_ROC curve to clearly demonstrate the trade-off between true positive rate
and false-positive rate. The AUC score for the NSL-KDD dataset is 0.953 which confirms
that our proposed model is highly effective in accurately classifying network intrusions.
On the other hand, the model reports a relatively low AUC score of 0.816 on the CIC-
DDoS2019 dataset. This is due to the high false positives in the classification of BENIGN
samples due to the low number of samples being trained.
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(a) (b)

Figure 8. Confusion matrix result of (a) NSL-KDD and (b) CIC-DDoS2019.

(a) (b)

Figure 9. AUC_ROC curve of our proposed model on (a) NSL-KDD and (b) CIC-DDoS2019.

6.3.3. Benchmarking with Other Similar Models

We compared the performance of our proposed model with other generative deep
neural network models such as Autoencoder and GAN-based approaches test against to
similar network intrusion dataset similar to the NSL-KDD dataset (e.g., KDD99). The bench-
marking result is shown in Table 7. Overall, GAN-based approaches show slightly better
performance in terms of different performance metrics compared to the Autoencoder-based
method. Among different GAN-based methods, our proposed model shows the best
performance by achieving more than 92% F1-score.

Table 7. Performance of our approach and other state-of-art approaches

Method Accuracy Precision Recall F1 Score Dataset

AE [23] 84.21% 87% 80.37% 81.98% NSL-KDD
AE [15] 88.98% 87.92% 93.48% 90.61% NSL-KDD
DAE [16] 88.65% 96.48% 83.08% 89.28% NSL-KDD
AnoGAN [24] - 87.86% 82.97% 88.65% KDD99
BiGAN [9] - 93.24% 94.73% 93.98% KDD99
BiGAN [10] 89.5% 83.6% 99.4% 90.8% KDD99
Our approach 91.12% 87.27% 98.81% 92.68% NSL-KDD

7. Conclusions

In this study, we proposed a new Bidirectional GAN model more suited to detect
network intrusion attacks with less training overheads and a less expensive one-class
classifier. Unlike existing GANs used in natural image processing which demand a strong
dependence between the generator and the discriminator to produce realistic fake images,
our proposed model allows the generator and the discriminator to be trained without
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needing to be in sync in their training iterations. By relaxing the dependence between these
two, the generator and encoder working together, we can produce more accurate synthetic
text-based network traffic samples without excess training overheads of the discriminator.
This approach is more suited to the network intrusion inputs that exhibit less complex
feature structures with a few feature dimensions, mostly discrete feature values, and the
size of input relatively smaller compared to the existing GAN variants used for anomaly
detection tasks on images.

Our model is also equipped with a one-class binary classifier for the trained encoder
and discriminator to use for detecting anomalous traffic from normal traffic. By offering
a one-class (binary) classifier, a complex calculation involved in finding a threshold or
anomaly score can be avoided.

Our proposed model, evaluated on extensive experimental results on two separate
datasets, demonstrates that it is highly effective for the generator to produce a synthetic
network traffic dataset that can contribute to detecting anomalous network traffic. Our
benchmarking result shows that our proposed model outperformed other similar generative
models by achieving more than 92% F1-score on the NSL-KDD dataset and more than 99%
F1-score on the CIC-DDoS2019 dataset.

Many existing network intrusion datasets currently used to develop many deep
learning models suffer from high false positives due to the presence of minority classes.
To address this issue, we plan to extend our work as a general data argumentation technique
to produce more synthetic data samples that resemble actual samples. We may consider
employing a similarity function such as Pearson Correlation or flocking methods proposed
by [25,26], or other statistical analysis methods to evaluate the similarity between the syn-
thetic data and actual samples from many different aspects of data distribution. Eventually,
we plan to test such GAN-based data augmentation technique for our previous works on
DDoS attack classification [27], Android-based malware detection [28,29], or ransomware
detection and classification tasks [30–32] by improving the quality of rare minority classes.
We also plan to apply our technique for other application areas, such as finding defects
in X-ray images [33] to evaluate the feasibility, extensionability, and generalizability of
our approach.
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