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Simple Summary: In order to advance cancer research and personalized care, the Allegheny Health
Network Cancer Institute (AHNCI) established a clinical data program (CDP) consisting of a com-
prehensive biobank and data repository. This includes details on socio-demographic characteristics,
diagnosis, tumor characteristics, treatments, and prognosis. By understanding individual patient
characteristics, such as genetics, lifestyle, and environmental factors, researchers can determine more
effective treatments and preventive interventions. The CDP aids in predicting therapy responses
and clinical outcomes through the utilization of cancer-related biomarkers across various disease
sites. The CDP supports the initiative by providing comprehensive patient information, such as
demographic characteristics, diagnosis details, and treatment responses, which, when combined
with genomic data, can enhance the understanding of disease progression and treatment outcomes,
thereby facilitating personalized care and precision medicine.

Abstract: Advancing cancer treatment relies on the rapid translation of new scientific discoveries
to patient care. To facilitate this, an oncology biobank and data repository program, also referred to
as the “Moonshot” program, was launched in 2021 within the Integrated Network Cancer Program
of the Allegheny Health Network. A clinical data program (CDP) and biospecimen repository
were established, and patient data and blood and tissue samples have been collected prospectively.
To date, the study has accrued 2920 patients, predominantly female (61%) and Caucasian (90%),
with a mean age of 64 & 13 years. The most common cancer sites were the endometrium /uterus
(12%), lung/bronchus (12%), breast (11%), and colon/rectum (11%). Of patients diagnosed with
cancer, 34% were diagnosed at stage I, 25% at stage II, 26% at stage III, and 15% at stage IV. The
CDP is designed to support our initiative in advancing personalized cancer research by providing a
comprehensive array of patient data, encompassing demographic characteristics, diagnostic details,
and treatment responses. The “Moonshot” initiative aims to predict therapy responses and clinical
outcomes through cancer-related biomarkers. The CDP facilitates this initiative by fostering data
sharing, enabling comparative analyses, and informing the development of novel diagnostic and
therapeutic methods.

Keywords: clinical data program; minimal common oncology data elements (mCODE); oncology
biobank; personalized cancer care; genomic profiling
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1. Introduction

In 2019, cancer was a leading cause of death in the United States, with the most
prevalent cancer types being breast, prostate, lung and bronchus, and colorectal cancers [1].
In recent years, there have been significant strides in improving cancer care and advancing
research. Between 1999 and 2019, there was a noticeable decline in the rates of these major
cancer-related deaths [2]. However, the incidence of various cancer types has increased
among individuals under 50 years old, which may be attributed to lifestyle changes,
environmental hazards, and heightened genetic susceptibility [3]. This trend highlights the
pressing need for a more tailored approach to personalized cancer treatments that consider
individual characteristics, such as genetics, lifestyle, and environmental factors.

Genomic profiling is crucial for personalizing cancer treatments and ultimately improv-
ing patient outcomes. For tumors, next-generation sequencing (NGS) is used to perform
comprehensive genomic profiling (CGP), where hundreds of genes are assessed, including
relevant cancer biomarkers and genomic signatures as established in guidelines and clinical
trials, for therapy guidance [4]. NGS can also be used to identify DNA variations in patients
with established familial cancer histories to determine those individuals with elevated
cancer risk due to an inherited mutation [5]. Routine germline and somatic testing for
appropriate patients enables the practice and benefit of precision medicine by identifying
those patients who may be eligible for targeted therapy for their cancer, and high-risk
screening and management options for those with hereditary risks [6]. Evidence from
diverse studies calls for broader germline testing beyond familial cases [7-12]. Restricting
germline genetic testing to a subset of cancer patients at high risk of developing hereditary
cancer hampers clinical trial participation, worsens treatment disparities, restricts therapy,
and prevents access for patients and at-risk families [11]. Bridging this gap in detecting
relevant mutations requires a systematic collection of biological, genetic, and clinical data.

Sharing patient data from cancer care centers will better our understanding of individ-
ual patients’ needs and advance clinical practices that will improve patient outcomes [13].
However, significant hurdles impede the effective sharing of uniform clinical oncology
information across care providers. Research-grade data are typically confined to the limited
pool of patients engaged in clinical trials, necessitating labor-intensive and financially
unsustainable manual data extraction from unstructured sources. This disparity is par-
ticularly pronounced in handling genomic data, as most electronic health records (EHRs)
inadequately accommodate the demands of precision oncology.

The “Moonshot” program commenced in October of 2021 and is a collaborative effort
spanning across all 21 Allegheny Health Network (AHN) Cancer Institutes, hospitals,
and affiliated sites in Pennsylvania (Table 1). A pivotal component of this initiative is the
establishment of the clinical data program (CDP) which was strategically devised to address
existing disparities in accessing research-grade data. The CDP assumes a pivotal role within
this initiative, systematically undertaking the collection, analysis, and dissemination of
patient clinical, biological, and genetic data.

To ensure the uniformity and efficient exchange of collected data, we leveraged the
Minimal Common Oncology Data Elements (mCODE) framework. This framework was
collaboratively developed by a diverse group of experts under the guidance of the Ameri-
can Society of Clinical Oncology (ASCO), a federally funded research and development
center (MITRE, Bedford, MA), a National Cancer Institute-sponsored clinical trials research
consortium (Alliance for Clinical Trials in Oncology), and the US Food and Drug Ad-
ministration. Operating as a consensus data standard for oncology, mCODE specifies a
computable set of data elements based on clinical use cases (codex.hl7.org, accessed on
1 December 2023). It also functions as both a common language and a model, facilitating a
comprehensive approach to patient care and informing research by enabling the analysis of
data across the entire journey of a cancer patient and among diverse patient cohorts [14].
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Table 1. Allegheny Health Network hospitals and research sites.

Site Code Site Name
AHNCI—AGH AHN Cancer Institute—AGH
AHNCI—B AHN Cancer Institute—Beaver
AHNCI—BU AHN Cancer Institute—Butler
AHNCI—C AHN Cancer Institute—Canonsburg
AHNCI—F AHN Cancer Institute—Forbes
AHNCI—GC AHN Cancer Institute—Grove City
AHNCI—H AHN Cancer Institute—Hempfield
AHNCI—] AHN Cancer Institute—Jefferson
AHNCI—NC AHN Cancer Institute—New Castle
AHNCI—SV AHN Cancer Institute—Saint Vincent
AVH Allegheny Valley Hospital
BPH&WP Bethel Park Health & Wellness Pavilion
CH Canonsburg Hospital
EN Federal North
Forbes Forbes
GCH Grove City Hospital
Hé&WP Erie Allegheny Health & Wellness Pavilion Erie
JH Jefferson Hospital
PTH&WP Peters Township Health & Wellness Pavilion
SG Suburban General
SVH Saint Vincent Hospital
WAGH WPAON—AIllegheny General
WAV WPAON—AIllegheny Valley
WBO WPAON—Butler Office
WF WPAON—Forbes
WH&WP Wexford Health & Wellness Pavilion
WHO WPAON—Hansen Office
WJO WPAON—]efferson Office
WNC WPAON—New Castle
WPH West Penn Hospital
WPO WPAON—Peters Office
WPU WPAON—Punxsutawney
WR WPAON—Robinson
WWP WPAON—West Penn

AHN, Allegheny Health Network; AGH, Allegheny General Hospital; WPAON, West Penn Allegheny
Oncology Network.

Addressing the critical need for improved health data interoperability in oncology,
mCODE serves as an open-source set of structured data elements, establishing minimum
standards for health record information. The framework enables integration of clinical,
biological, and genetic data (Figure 1), fostering a holistic approach to personalized cancer
care. Leveraging the Fast Healthcare Interoperability Resources standard, mCODE ensures
standardized and efficient information exchange. The ability to share patient data by
engaging diverse stakeholders and harnessing existing data standards benefits both clinical
care delivery and cancer research [15].

To provide a broader context for our biobanking initiative, we acknowledge the note-
worthy achievements of established large-scale biobank integration efforts. The European
Cancer Moonshot Center [16] and the UK Biobank stand as significant endeavors in the
field [17], contributing valuable insights to the landscape of biobanking in oncology research.

In this report, we provide a comprehensive overview of the oncology biobank and data
repository program, with a specific emphasis on the CDP within this initiative. The primary
objective is to highlight the development of the CDP. We share the methods, challenges,
and impact the CDP has on advancing cancer research and improving personalized care.
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Figure 1. mCODE conceptual framework © 2024+ HL7 International. Reprinted with permis-
sion from HL7 CodeX under the Creative Commons license (source: codex.hl7.org, accessed on
1 December 2023).

2. Materials and Methods
2.1. Building the Oncology Biobank and Data Repository

AHN patients identified by their physician as either being likely to have or having
cancer are eligible for enrollment. Identification occurs during routine medical care at all
AHN Cancer Institute offices and affiliate offices by the physician or the oncology care
team. Potential participants are approached with detailed information about the trial and
the biobank during their medical consultations. This process ensures that individuals
have a comprehensive understanding of the study, including the purpose, potential risks,
and benefits. Written informed consent is obtained from the participants, granting AHN
permission to collect longitudinal data up to 16 years later. We have recorded screening
and recruitment numbers from 2020 to 2023. Patient samples and data are stored within
laboratory facilities situated across AHN and its partner sites. Study enrollment will
conclude upon reaching an approximate cohort size of 10,000 subjects.

Patients who have agreed to voluntarily provide a blood sample are then asked to
contribute approximately 40-50 mL of additional blood for the biobank. This blood draw
preferably occurs when patients are already having blood drawn at an AHN or AHN-
affiliated draw site for standard-of-care labs. For surgical patients, a 50 mL (whole) blood
draw is performed around the time of surgery, while for other patients, a 40 mL blood draw
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Patient consent

Blood draw

is scheduled at appropriate times under the direct supervision of the PI and/or delegated
key study personnel.

Additionally, a subset of consenting patients, specifically those undergoing surgical
tumor resection, is asked to provide portions of the tumor and neighboring lymph nodes, if
available, for further analysis. The collection of these biomaterials follows a specific protocol
to ensure both quality and relevance to the research. For those unable to provide immediate
samples, archival tissues are used. All specimens undergo coding for secure storage, with
exclusive access granted to authorized personnel. This comprehensive protocol ensures
secure, ethical, and patient-centric collection, storage, and utilization of tissue specimens
for advancing oncology research (Figure 2).

Enrollment i Tissue

in other specimen
availability
2

Total No. of draws: 11 (first year)

lite] and every 2 months for 2-16 years

trial?

Sample/specimens
Require . Coded
frequent Blood/labs for biobank: pause Stored *Samples destroyed upon

blood /stop! Tracked by key personnel completion of study
draw/labs?

Figure 2. Illustration of patients” enrollment, sample acquisition protocol, and biobank processing.
* according to Institutional policy.

2.2. Developing the Clinical Data

The development of clinical data involves a process orchestrated by a dedicated team
of data stakeholders. This team extracts and integrates comprehensive patient information
from 6 key data sources: Epic Clarity, EPIC reports, genomic lab data, biomarker data,
and the AHN Oncology Registry. Epic Clarity incorporates enrollment details, consent
dates, and comorbidities, while EPIC captures and reports crucial temporal aspects related
to blood sample dates. Genomic lab data delve into genetic nuances, and the biomarker
data group contributes insights into early detection, risk stratification, prognostication, and
thereby informing personalized and timely interventions. The Oncology Registry provides
essential cohort- and cancer-related information. Figure 3 illustrates the framework of
development and dispatch of clinical data.

We use the mCODE framework to ensure the uniform and efficient exchange of the
collected data [15]. Implementing the mCODE framework in the CDP is a strategic decision
to ensure the quality of oncology data. It ensures that the data align with recognized
interoperability standards which enhance meaningful utilization across diverse platforms
and institutions. A bi-weekly meeting is conducted with the dedicated team of data
stakeholders to ensure streamlined data integration, creating a central master dataset
aligning with the mCODE framework. This adaptive architecture promotes continuous
improvement and addresses challenges in data engineering and governance.
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Enrollment

EHR (Epic data) EHR (Tumor registry) Data analytics

Clinical Data Program

Dissemenation to clinical research groups Genomic and biomarker data Master data warehouse

]

O7)

A

o

Figure 3. Clinical data workflow: Patient enrollment initiates data extraction from Epic/electronic
health record (EHR) and tumor registry. Following analytics, a master dataset is formed and
forwarded to the genomic and biomarker lab. Processed data are dispatched to the clinical re-
search teams.

The confidentiality of all data and records generated throughout this study will be
maintained in accordance with institutional policies and HIPAA guidelines on subject
privacy. The utilization of such data and records for purposes other than conducting the
study or collaborating with fellow researchers will be strictly prohibited by the investigator
and other site personnel.

3. Results

Our program has enrolled 2920 patients out of 6942 screened individuals. Among
the 2756 patients who provided blood or tissue specimens, 552 contributed blood sam-
ples (blood group) and 685 provided tissue specimens (tissue group) prior to treatment
(Figure 4). Figure 5 demonstrates the general demographics and clinicopathological char-
acteristics. The study participants had a mean age of 64 & 13 years. The majority of
participants were female (61%) and Caucasian (91%). In the total population, the most
common cancer sites were the endometrium/uterus (12%), lung/bronchus (12%), breast
(11%), and colon/rectum (11%). The common primary cancer histology types included
adenocarcinoma (60%), carcinoma not otherwise specified (NOS) (19%), squamous cell
carcinoma (10%), and melanoma (6%). Across the stages, 34% were diagnosed at stage I,
25% at stage II, 26% at stage III, and 15% at stage IV.

For patients who provided both blood and tissue specimens to the Genomics wing of
the program, NGS and ctDNA testing revealed a high level of agreement (97.0 & 0.9%) in
detecting genomic variants in both tumor tissue and correlative blood samples. Addition-
ally, ctDNA assays identified specific mutations that were undetected in tumor specimens
likely due to tumor heterogeneity, highlighting the potential for blood-based biomarker
discoveries pertinent to patient care [18].
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6942 patients screened

|

2920 patients enrolled

l

2756 patients provided blood/tissue specimens

|

l

2516 patients provided blood
specimens

l

552 patients provided blood
before chemotherapy

l

1830 patients provided tissue
specimens

l

685 patients provided tissue
before chemotherapy

Figure 4. The flow chart illustrates patient enrollment status in the Moonshot program in the
Allegheny Health Network. Of the 6942 patients screened so far, 2756 of them provided blood and/or

tissue specimens.
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Figure 5. Demographics and clinicopathological data of patients enrolled in the Moonshot program:
(A) Distribution of patients by age groups. (B) Distribution of cancer sites. (C) Distribution of
common tumor histologies. (D) Distribution of tumor stages.

4. Discussion

Establishing an ideal dataset for longitudinal studies of cancer treatment and outcomes
is a complex challenge, and no clear consensus has yet emerged on what would constitute
the optimal set of clinical and underlying biological information. Existing population
datasets, such as the National Cancer Database (NCDB), are fundamentally important in
epidemiologic research into broader trends in cancer incidence and treatment. However,
they have serious limitations in the integration of tumor biology and treatment response at
the level of individual patients. The existing national databases lack longitudinal treatment
data, critical for a comprehensive understanding of treatment outcomes. Furthermore,
the dearth of clinically relevant endpoints within the database hinders specific types of
research and analysis. Challenges related to interoperability and data standardization
further complicate data collection across diverse institutions. Significantly, the unique
constraints of the existing big databases preclude the extraction of conclusive findings from
a singular source [19]. This vacuum has led many cancer centers to devise idiosyncratic
“homegrown” datasets to support their research efforts in clinical oncology. The CDP has
addressed this gap by integrating clinical and biological data into a comprehensive format,
updated in real time during routine clinical practice, for identifying and validating biomark-
ers. Longitudinal surveillance of disease facilitates evaluation of treatment, evaluation of
cancer progression, and identification of signs of recurrence [20]. Moreover, this initiative
promotes advances in genomics, proteomics, and other new technologies that enhance our
understanding of the molecular properties of cancer.
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The CDP aims to address known issues with data collection. Data collected during
routine medical care lack a research-ready structure: stained tissue specimens often require
manual location and scanning, while radiological images are stored in systems with lim-
ited clinical annotation. Data modeling is also complicated by institution-specific biases
ranging from technical variation to discrepancies in clinical data ontologies. In addition,
data collection initiatives are often restricted by barriers to long-term data acquisition,
including patient compliance and trust in the program, accessing granular clinical data
from disparate healthcare systems, and logistically tracking and following patients over
extended periods [21].

Another important consideration is a lack of ethnic diversity. Biobanks tend to exclude
Indigenous people, socially disadvantaged individuals, and those with diverse cultural
and linguistic backgrounds [22]. The predominant enrollment of Caucasian and female
participants in our data collection highlights a discernible pattern in the demographic
composition. It is crucial to acknowledge that such trends may not fully capture the
diverse spectrum of cancer types and their prevalence among various ethnic groups,
thereby emphasizing the necessity to explore and address potential disparities in cancer
incidence and outcomes across different demographics. Addressing the ethnic gap in
our biobank is vital for upholding ethical standards, enhancing the scientific validity of
research, promoting health equity, and ensuring that the benefits of biobank research are
accessible and applicable to all individuals.

As our program expands through its affiliated network sites along different states, we
are committed to implementing strategies to enhance diversity and inclusion. Collaborative
efforts with healthcare systems and research institutions include tailored communication,
education, and continuous evaluation aimed at addressing the under-representation of
certain ethnic groups. The ongoing commitment to inclusivity is integral to the program’s
evolution, ensuring that our research practices are not only diverse but also representative
of the broader population. As we extend our reach, our goal is to establish a more compre-
hensive and inclusive dataset that accurately reflects the diversity of individuals affected
by cancer across various demographic backgrounds, fostering a truly equitable foundation
for advancing cancer research and personalized care.

4.1. Data Standardization

Data standardization is a core function of the CDP and will aid us in addressing the
challenges listed above. The elements of mCODE are designed using standard, widely
available medical terminology to enable searchability. This meticulous approach to data
collection encompasses various facets of clinical information, socio-demographic char-
acteristics, and diagnosis and treatments details. However, not all EHRs use mCODE,
which limits its interoperability [10]. While the CDP utilizes the mCODE framework to
harmonize clinical data, the mCODE project is still in its early stages with pilot implemen-
tations actively in progress. Our program not only underscores the novelty of employing
mCODE in the context of longitudinal cancer studies but also contributes to the evolving
landscape by actively implementing and refining this framework to bridge existing gaps in
comprehensive data integration.

The CDP consolidates disparate sources and concurrently ensures the uniformity
and compatibility of the information. This has allowed us to develop a standardized
and interoperable data exchange process. However, the framework may not consistently
accommodate all the variations in how cancer data are collected and stored across different
institutions and systems. Therefore, integrating clinical cancer data in a multimodal context
requires data engineering and curating and provisions for data access and governance.
These challenges apply to both retrospective studies aiming to identify biomarkers from
standard-of-care data and prospective studies concentrating on tailored data types.

By providing a master data repository, the CDP has not only streamlined internal
operations but has also become a valuable resource for researchers by building a computable
set of data elements based on clinical use cases. This can advance future cancer research
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and personalized cancer care, especially since the data repositories can be leveraged across
time. By capturing data points at various time points, the CDP facilitates longitudinal data
analysis, enabling a nuanced understanding of the dynamic aspects of cancer progression
and treatment responses. The integration of multimodal data—ranging from genomic
profiling to radiological and histological imaging—will offer a holistic understanding of
cancer dynamics. This comprehensive analysis of every cancer is critical in achieving
increased levels of precision in cancer treatment [23,24].

For instance, the advancement in genomic profiling of tumor tissue has significantly
improved the precision of clinical decision-making, and the resulting genomic data serve
as a valuable molecular repository for further investigations [25]. Subsequently, this fosters
more comprehensive insights into the cancer genome, drug sensitivity [26], resistance mech-
anisms [27], and their prognostic implications [28]. Likewise, studies in cancer progression
and recurrence are supplemented by the increasingly digitalized serial radiological images,
tissue specimen profiling, and before and after intervention documentation [29].

4.2. Artificial Intelligence and Machine Learning

In the ever-evolving landscape of data-driven oncology, artificial intelligence (AI) has
emerged as a transformative tool. Machine learning tools are essential for interpreting
complex omics data, posing new challenges to the field and leading to a transformative
change in liquid biopsy research [30]. Moreover, the dynamic and evolving nature of cancer
treatment necessitates adaptive models that can continuously learn from new information.
The fundamental prospect of multimodal data integration is that the data derived from dif-
ferent sources complement each other, thereby enhancing the information content beyond
what any single source can provide [29].

The CDP operates in the realm of multimodal integration of clinical data, with ad-
vanced molecular diagnostics, radiological, and histological imaging, to advance precision
oncology beyond certain genomic and molecular techniques. This integration in the CDP
not only provides a holistic perspective on cancer dynamics but also facilitates the devel-
opment of a new category of multimodal biomarkers driving innovations in the field of
precision oncology. These complementary datasets provide an opportunity to learn from
the collective history of large cohorts of patients, facilitating innovative personalized cancer
care. As Al applications in clinical oncology continue to advance, the implications of Al and
its use in digital pathology, biomarker development, and treatment optimization present
both integration challenges and unprecedented opportunities [31].

4.3. Next Steps

Establishing collaborations between healthcare systems and research institutions is
crucial for facilitating improved data sharing and access. These partnerships with other
biobanks, data repositories, and research consortia worldwide will promote data sharing
and collaborative research efforts and expand the program to a global initiative. Such work
is already underway: Investigators in biomarker studies were supported by the master
dataset provided by the CDP. Likewise, the CDP empowered a team working on a breast
cancer project by disseminating comprehensive data on breast cancer patients.

We acknowledge the limitations of the current manuscript in terms of providing
direct links to the study repository and detailed real-world examples illustrating the
impact of the CDP. As the initiative is in its early stages, our primary focus has been on
establishing the foundation for a comprehensive biobank and data repository. However,
future studies will address these limitations by incorporating direct links to the study
repository, providing more in-depth and interactive engagement for readers. Additionally,
we are actively working on accumulating real-world examples and success stories to
underscore the practical implications of the CDP on medical knowledge, patient outcomes,
and scientific advancements. Our commitment extends to providing precise instructions
for accessing and creating value, thereby enhancing the inherent user-friendly experience
within our initiative.
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5. Conclusions

In conclusion, the development of the CDP showcases a proof of concept for the
effective integration of clinical, biological, and genetic data in a large integrated cancer
network. As the program evolves, the continuous refinement of data collection methods
and data sharing adopted by the CDP will propel the AHN “Moonshot” initiative towards
its goal of advancing cancer research and personalized care. The venture set by the CDP
is not just a scientific pursuit: it is a commitment to innovation and a beacon of hope for
countless patients.
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