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Simple Summary: High-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS) is an advanced form
of brachytherapy or interventional radiotherapy involving the use of a remote after-loading system
to transport an encapsulated radioisotope source to within or near a tumor with MRI precision.
An HDR MARS can be used for treating both primary and recurrent prostate cancer with fewer
treatment-related toxicities and comparable survival rates. Image-guided HDR brachytherapy has
been linked with better local tumor control and overall survival. Magnetic resonance imaging (MRI) is
more effective than computed tomography (CT) and ultrasonography in distinguishing the boundaries
of a tumor versus the surrounding normal tissues. However, localizing the applicator and source
is more challenging with MRI because conventional fiducial markers are not positively visualized
on MRI. The aim of our study was to investigate the MRI signal intensities and characteristics of
a newly developed positive-contrast MRI line marker (C4:S) for HDR MARS. We found that C4:S MRI
line markers were positively visualized on both T1- and T2-weighted MRI sequences. Our findings
indicate the value of C4:S line markers for HDR MARS.

Abstract: Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal
dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this
purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the
lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted
MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional
radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with
saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured
on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR
brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in
a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated
that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good
T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio > 1;
r2/r1 = 1.43) and body temperature (relaxivity ratio > 1; r2/r1 = 1.38). These measurements were
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verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy
line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of
the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line
marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible
with these novel line markers for HDR MARS for several types of cancer.

Keywords: MRI-assisted radiosurgery; brachytherapy; interventional radiotherapy; image guidance;
magnetic resonance imaging; positive-contrast marker; high dose rate

1. Introduction

The application of high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS) involves
the use of a remote after-loading system to precisely transport an encapsulated radioisotope
source to within or near an MRI-delineated tumor, with the goal of delivering high,
well-conformed radiation doses to tumors while minimizing the exposure of surrounding
normal tissues [1]. The radiation dose is determined from calculations of the source
position and dwell time. With modern-day MRI image guidance, HDR MARS can be used
as primary, adjunct, or salvage treatment for cancer of the prostate, cervix, breast, and other
organs [2–6]. HDR brachytherapy or interventional radiotherapy is an attractive choice for
treating both primary and recurrent prostate cancer, either as monotherapy for low-risk
or, in some cases, intermediate-risk disease, or as dose escalation with external-beam
radiation therapy (EBRT) for high-risk disease, with good quality of life outcomes [2,7–14].
Compared with radical prostatectomy, HDR brachytherapy for prostate cancer leads to
fewer instances of treatment-related impotence and urinary disorders as well as comparable
10-year survival rates [2,15]. HDR brachytherapy with EBRT has also led to improved
survival rates in cervical cancer [16–22], and HDR brachytherapy has produced favorable
outcomes with fewer treatment-related side effects than traditional EBRT after lumpectomy
for breast cancer [2,23–25].

In HDR MARS, the radiation source is placed either within or close to the MRI-defined
tumor being treated, and high radiation doses are delivered over short periods. Therefore,
any errors in source positioning can have significant negative effects on both tumor
control (from inadequate dose delivery) and toxicity to surrounding normal tissues (from
high-dose exposure), highlighting the importance of the accuracy of both the placement
of the implant and the ability to visualize the tumor boundary. HDR brachytherapy has
a somewhat higher risk than other radiation modalities of errors related to poor image
quality, particularly in catheter reconstruction or catheter/indexer length [7,26–29]. Indeed,
mislabeled catheters and incorrect catheter reconstruction are two primary sources of
inaccuracy in HDR [7,28,30]. Accurate delineation of the anatomy, tumor, and implanted
catheters or applicators (and therefore safe and precise dose delivery) has relied on
image guidance by computed tomography (CT), transrectal ultrasonography, or magnetic
resonance imaging (MRI) [1,31–33]. Image-guided HDR brachytherapy has been linked
with better local tumor control and overall survival [2,33–36]. Ultrasonography can be
problematic because of poor visualization of the catheters or applicators, especially toward
the catheter tips [7]. CT is often used for image-guided HDR radiotherapy because it can
visualize the applicators, sources, and source path [37,38].

However, CT is less effective than MRI for distinguishing anatomic structures, especially
soft tissues, which limits the accuracy of CT for visualizing the boundaries of the tumor
versus the surrounding normal tissues. As a consequence, tumor delineations based
on CT can significantly overestimate the tumor width relative to MRI [3,39]. Moreover,
interobserver variability is less of an issue with MRI than with CT [40].

The high soft-tissue contrast possible with MRI has led to it being recommended
as a gold-standard modality for visualizing tumor volumes [41–44], especially cervical
and prostate cancers [3,37,45,46]. MRI was also recently named a preferred imaging
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modality for image-guided HDR brachytherapy, especially for gynecologic and prostate
cancer [3,33,46,47], because MRI can guide interventional procedures (including catheter
insertion) and assist in detecting interventional devices [2,26,31,48–51]. Several studies
have shown that MRI-guided HDR brachytherapy leads to better cervical cancer-related
survival and treatment-related toxicity relative to conventional or CT-guided HDR
brachytherapy [2,21,52–59].

Although MRI is superior to CT for target volume delineation at several anatomic
sites [3,33,40], localizing the applicator and source is more challenging with MRI than
with CT [33,37,38], leading to the inaccurate reconstruction of the source pathways and
subsequent dosimetric uncertainties in the tumor and surrounding normal tissues [37,60].
Because conventional fiducial markers do not appear as positive contrast on MRI,
positive-contrast MRI markers are being developed to improve the accuracy of applicator
and source localization and thus improve the precision of dose distribution in HDR
MARS [61–63].

Markers such as copper sulfate (CuSO4) and C4 (cobalt chloride complexed with
water and N-acetylcysteine) can be positively visualized on T1-weighted MRI, and saline
can be visualized on T2-weighted MRI; both have shown promise for identifying source
pathways [46]. Because both T1-weighted and T2-weighted MRI sequences are used for
HDR MARS in cervical and prostate cancer, markers that appear as positive contrast on both
T1- and T2- weighted MRI sequences would be ideal. To meet this need, we investigated the
magnetic relaxation characteristics and MRI signal intensities, on both T1- and T2-weighted
images, of a newly developed positive-contrast MRI line marker for HDR, in which C4 is
complexed with saline (C4:S).

2. Materials and Methods
2.1. Preparation of Test Solutions

The MRI marker C4, which shows a positive signal on T1-weighted sequences, consists
of cobalt chloride complexed with 6 water molecules (CoCl2·6H2O, Fluka Sigma-Aldrich
60820, Lot 1313139, St. Louis, MO, USA) and the chelating antioxidant N-acetylcysteine
(NAC, Sigma-Aldrich 47250-1006, Lot 051M1820V), prepared as described previously [64].
Briefly, the ingredients were dissolved in distilled water in a weight-by-volume percentage
(w/v%, where 1% = 1 g/100 mL) of C4, that is, 1% CoCl2·6H2O: 2% NAC. Saline was
created by dissolving 9 g of sodium chloride (NaCl) in 1000 mL of distilled water. The C4
was complexed with saline to create the positive-signal marker C4:S (under both T1- and
T2-weighted sequences). The C4:S solutions tested were generated from the following
proportions of C4 and saline: 10%:90%; 20%:80%; 30%:70%; 40%:60%; 50%:50%; 60%:40%;
70%:30%; 80%:20%; and 90%:10%. Because the standard units for relaxivity calculations
are millimolar concentrations in solution (mM−1) and time (in seconds−1), the above
w/v% concentrations of the tested solutions were converted to the corresponding mM
concentrations of cobalt dichloride, i.e., 4.229 mM, 8.458 mM, 12.687 mM, 16.916 mM,
21.145 mM, 25.374 mM, 29.603 mM, 33.832 mM, and 38.061 mM.

2.2. MRI Scan Acquisition Parameters and Image Analysis

MRI scans were performed on a 1.5 T scanner (Siemens Healthineers, Erlangen,
Germany) and images were analyzed as described previously [64]. Briefly, the C4:S
solutions (total volume of 25 mL each) were placed in nine 50 mL polypropylene centrifuge
tubes (inner diameter was 26.6 mm; thickness was 1.06 mm). Three additional tubes,
two filled only with water and the other filled only with oil, were used as controls. The
12 tubes were placed in an acrylic box, as shown in Figure 1. The box was then placed
in a 20-channel phased-array head-and-neck coil and centered about the isocenter of the
bore, with the length of the vials perpendicular with the static B0 field, and filled with
water to reduce susceptibility artifacts. The relaxation parameters of the C4:S solutions
were determined both at body temperature (37 ◦C) and at room temperature (20 ◦C) in
three conventional scan orientations (coronal, sagittal, and axial). MATLAB v9.3.0. (The
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MathWorks, Inc., Natick, MA, USA) was used to analyze the acquired images. The area of
each image analyzed was a 20-pixel-by-20-pixel square region of interest (ROI), which was
placed away from the edge to ensure signal homogeneity within the ROI. The mean and
standard deviation of the signal within the ROIs were recorded at each time point.
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Figure 1. Test solutions for magnetic resonance imaging (MRI). Each of the C4/saline (C4:S) solutions,
with C4:S concentrations varying from 10%:90% to 90%:10%, were placed in nine 50 mL polypropylene
centrifuge tubes. Three additional tubes, two filled only with water and the other filled only with oil,
were used as controls. The 12 tubes were placed as shown in an acrylic box, which was filled with
water and placed at the center of the MRI scanning field.

2.3. Spin–Lattice (Longitudinal) Relaxation Time (T1) Measurements

For the T1 measurements, an inversion recovery turbo spin echo sequence was
used [64], with TI = 50, 100, 200, 400, 600, 800, 1200, 1600, and 2400 ms; matrix
size = 192 × 192; FOV = 20 cm; TR/TE = 8000 ms/7.6 ms; pixel bandwidth = 285 Hz;
NEX = 1; ETL = 11; and slice thickness = 5 mm. The signal for inversion recovery is
expressed as S = K

(
1 − 2e−

TI
T1 + e−

TR
T1

)
, where K is a scaling factor, T1 denotes the

inversion time, and TR is the repetition time. For an inversion recovery scan at a specific
C4:S concentration, the signal is represented as the mean signal in the ROI, with standard
deviation used to estimate uncertainty. In our experiments, TR and K were constants. The
curve was fitted to the inversion recovery measurements, and the Levenberg–Marquardt
least-squares algorithm [65,66] was used to determine T1.

2.4. Spin–Spin (Transverse) Relaxation Time (T2) Measurement

For T2 measurements, two turbo spin echo sequences were used. The sequence used
to investigate the influence of temperature on T2 relaxation time was based on traditional
Cartesian sampling, with TR = 5000 ms; TE = 10, 30, 50, 70, 90, 110, 130, 150, 170, 190,
210, 230, 250, 270, 290, and 310 ms; matrix size = 192 × 192; pixel bandwidth = 170 Hz;
ETL = 19; FOV = 20 cm; and slice thickness = 5 mm. To investigate the effect of scanning
orientation on T2 relaxation time, the sequence used was a fast radial sampling, with
TR = 3610 ms; TE = 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, and
352 ms; matrix size = 384 × 384; pixel bandwidth = 130 Hz; ETL = 16; FOV = 20 cm; and slice
thickness/gap = 5/5 mm. In the current study, the measured echo signal intensity values
were fit to S = Ke−

TE
T2 . The initial estimate of T2 for each ROI was obtained by first-degree

polynomial fitting of the turbo spin echo logarithmic signals plotted against echo time.
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2.5. Relaxivity Calculation

Relaxivity was calculated as described previously [64]. Briefly, using the initial detected
T1 or T2 as a starting point, nonlinear regression was applied to the signal plotted against
each inversion/echo time, and the least-squares method was iteratively applied to evaluate
T1 and T2. Relaxivity was defined as the change in relaxation rate per unit of C4:S; the
relaxation rates were calculated and plotted against the cobalt dichloride concentration. As
a result, the slopes from the linear fit to this plot (r2/r1) indicated the relaxivity values.

2.6. C4:S Marker Implantation and MRI Scanning

To test visualization of the C4:S marker on MRI, we filled an HDPE tube with C4:S
to create a “line marker” that was then implanted in a tissue-equivalent female ultrasound
training pelvis (Model 404A) phantom (Figure 2). Image data were acquired with an 18-channel
phase-array body coil along with a built-in 32-channel spine coil. MRI scanning was performed
with 3D T1-weighted imaging (Fast Low Angle SHot [FLASH]: TR/TE = 6/2.4 ms; NEX = 3;
pixel bandwidth = 500 Hz; flip angle = 25 deg; FOV = 18 cm; matrix size = 256 × 256;
reconstruction voxel size = 0.35 × 0.35 × 1.25 mm3) and 3D T2-weighed imaging (Sampling
Perfection with Application optimized Contrasts using different flip angle Evolution [SPACE]:
TR/TE = 1500/279 ms; NEX = 2; ETL = 120; pixel bandwidth = 490 Hz; FOV = 18 cm; matrix
size = 256 × 256; reconstruction voxel size = 0.35 × 0.35 × 1.25 mm3).
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Figure 2. (A) Tissue-equivalent female ultrasound training pelvis phantom, model 404A. (B) High-
density polyethylene (HDPE) tube (thickness: 0.26 mm; outer diameter: 1.0 mm). (C) HDPE tubing
as visualized on kV imaging.

3. Results
3.1. Relaxation Time and Relaxivity of C4:S at Different Temperatures

Because molecules move differently at different temperatures, and because temperature
can influence the characteristics of chemical reactions, our first step was to determine the
influence of temperature on the C4:S MRI signal over time. T1 and T2 relaxation times were
measured at room temperature (20 ◦C) and at body temperature (37 ◦C) in the coronal scanning
orientation. At both temperatures, the T1 relaxation time decreased as the proportion of C4
increased; for a 50:50 C4:S solution, the T1 signal intensity was about 119% at room temperature
and 116% at body temperature relative to the signal intensity of oil (Figures 3A and 4A,B).
Similarly, the T2 relaxation times at both temperatures decreased as the proportion of C4
increased; for a 50:50 C4:S solution, the T2 signal intensity was about 77% at room temperature
and 68% at body temperature relative to the signal intensity of water (Figures 3B and 4A,B).
Regarding the effects of temperature on C4:S relaxation rates, no difference was observed in
either 1/T1 or 1/T2 between room temperature and body temperature when the proportion
of C4 in the C4:S solution was low (e.g., the concentration of cobalt dichloride was less than
16.916 mM, which is a less than 40:60 C4:S solution), but when proportions of C4 exceeded
40%, the 1/T1 and 1/T2 values at body temperature were lower than those at room
temperature (all p < 0.05) (Figure 3C,D). Relaxivity was slightly lower at body temperature
(r2/r1 = 1.38) than at room temperature (r2/r1 = 1.43). Moreover, C4:S solutions with a C4:S
ratio of 40:60 or 50:50 had the most optimized balance of T1- and T2-relative positive signal
intensity, at both room temperature and body temperature (Figure 4).
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the coronal orientation.

3.2. Relaxation Time of C4:S at Different MRI Scanning Orientations

Next, to investigate the effects of scanning orientation on C4:S MRI signal artifacts, we
measured the T1 and T2 relaxation times of various C4:S ratios in the coronal, axial, and sagittal
orientations at room temperature. In all three orientations, the T1 relaxation times became
shorter as the proportion of C4 increased, and the times did not differ among orientations
(Figure 5A). Similarly, in all three orientations, the T2 relaxation times also became shorter as
the proportion of C4 increased, again with no differences noted among orientations (Figure 5B).
Similar findings were noted in that orientation did not affect the C4:S relaxation rates (1/T1
and 1/T2), which increased with increasing C4 concentrations (Figure 5C,D).
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Figure 5. (A) Spin–lattice relaxation time (T1), (B) spin–spin relaxation time (T2), (C) spin–lattice
relaxation rate (1/T1), and (D) spin–spin relaxation rate (1/T2) as a function of C4 concentration, at
room temperature, in different magnetic resonance imaging (MRI) scanning orientations. Scans were
obtained by using a clinical 1.5 T MRI unit.

3.3. Positive-Contrast Visualization of C4:S Line Marker under MRI Scanning in a Phantom

As a final test of whether the C4:S marker could be used as a positive-contrast MRI
signal marker for HDR, we used a clinical 1.5 T MRI scanner to visualize an HDPE tube
filled with C4:S (a “line marker”) that had been implanted in a tissue-equivalent female
ultrasound training pelvis phantom. The C4:S (in a 50:50 solution) appeared as a positive
signal on both T1- and T2-weighted images, and on T2-weighted images, its visualization
was better than C4 (Figure 6).
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Figure 6. The visualization of C4 and C4:S in MRI images. C4 or C4:S (a 50:50 proportion of C4 and
saline) in HDPE tubes implanted in a phantom of a female pelvis were positively visualized in both
T1- and T2-weighted sequences; the visualization of C4:S was better than that of C4 in the T2 image.
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4. Discussion

Our results showed that MRI scanning orientation does not affect the relaxation time
or relaxation rate of the C4:S marker. Both the T1 and T2 relaxation times decreased as
the proportion of C4 in the C4:S solution increased, both at room temperature and at body
temperature, with the relaxation time being slightly higher at body temperature than at
room temperature when the C4 concentration was low. Both the T1 and T2 relaxation
rates were lower at body temperature than those at room temperature in C4:S solutions
with higher C4 concentrations. Moreover, the C4:S 40:60 and 50:50 solutions had the most
optimized T1- and T2-relative positive signal intensity, both at both room temperature and
at body temperature. Finally, HDPE tubing filled with a 50:50 solution of C4:S was positively
visualized on both T1- and T2-weighted MRI sequences, which suggests that C4:S may be
an effective positive-contrast MRI marker for visualizing the positions of applicators and
catheters in HDR MARS for prostate, cervical, and possibly other types of cancer.

MRI is superior to CT in distinguishing anatomic structures and soft tissues; therefore,
the improved MRI visualization of applicator and source pathways is meaningful in HDR
brachytherapy clinical practice because it can improve the accuracy and diminish the
uncertainties of dose distribution in the tumor and surrounding normal tissues.

The ability of MRI to distinguish anatomic structures depends on the differences in MR
signal intensity between the various tissues. The two most common types of MR sequences
used in clinical practice are T1-weighted (which often highlights fat tissue) and T2-weighted
(which often highlights both fat and water). On an MR image, the signal intensity is directly
related to the magnitude of the detected MR signal. The MRI signal intensity of different
tissues or materials depends on their magnetic properties, including the T1 (longitudinal)
and T2 (transverse) relaxation times. The T1 relaxation time refers to the time constant
for regrowth of the longitudinal component of tissue magnetization toward its initial
maximum value; tissues or materials with short T1 relaxation times produce high-intensity
signals that appear as bright spots on a T1-weighted MR image. On the other hand, the T2
relaxation time represents the time constant for the MRI signal to decay in the transverse
plane; tissues or materials with short T2 relaxation times have low-intensity signals and
appear as dark regions on T2-weighted MR images [67]. Considering that T1 is always
greater than T2, an ideal positive MRI marker that would show hyperintensity on both T1-
and T2-weighted images should have a relatively short T1 relaxation time and a relatively
long T2 relaxation time.

To generate an MRI marker that is easily visualized on both T1- and T2-weighted
sequences, we began with C4, a previously developed marker with positive visibility on
T1-weighted sequences [64], complexed with saline solution to create C4:S, which can be
visualized on both T1- and T2-weighted sequences. Here, we tested and characterized the
relaxation properties of C4:S for this purpose. We found that the relaxation times of both T1
and T2 were decreased as the proportion of C4 increased, which indicated the possibility
of selecting optimized tumor and normal tissue differentiation conditions by modulating
MRI intensities through adjusting the ratio of C4 versus saline.

The magnetic properties of tissue or materials reflect not only their chemical characteristics
but also their physical orientation relative to the primary magnetic field [68,69]; indeed,
orientation-dependent brachytherapy seed artifacts have been observed on MR images [70].
Thus, we tested the effect of MRI scanning orientation on the magnetic properties of the C4:S
solution, which included the relaxation times and relaxation rates obtained at coronal, sagittal,
and axial orientations. Our results indicated that all of the magnetic properties of the C4:S
solution were similar in all three orientations, a finding that agrees with our previous studies
of the C4 marker [64]. From this result, we anticipate that a C4:S solution encapsulated to
mark either a seed or a line (i.e., an applicator) would not induce marker orientation-based
artifacts on either T1- or T2-weighted MRI scans, which would help to ensure the accuracy of
placement of the radiation seeds and the HDR brachytherapy applicator.

Because T1 and T2 relaxation times are strongly affected by temperature [71–73], the
T1 and T2 relaxation time values derived from in vitro measurements are not necessarily
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representative of in vivo conditions. Moreover, the effects of temperature on the relaxation
time of an agent also depend on the characteristics of the material [71]. Therefore, we tested
the influence of temperature on the magnetic properties of C4:S (relaxation time, relaxation
rate, and relaxivity). Both the T1 and T2 relaxation times at body temperature were slightly
longer than those at room temperature in a 10:90 C4:S solution, and no differences in the T1
or T2 relaxation times were observed at body temperature versus room temperature in the
other C4 concentrations tested. This finding suggests that in vitro tests of C4:S solutions
when the C4 component is higher than 10% are applicable to in vivo conditions; it also
suggests that a 10:90 C4:S solution may have a higher signal intensity under T1-weighted
imaging and a slightly lower signal intensity under T2-weighted imaging than in in vivo
conditions. Moreover, both the T1 and T2 relaxivities of C4:S solutions at room temperature
were similar to those at body temperature (i.e., the difference was only 0.05 mM−1s−1),
further indicating the feasibility of using in vitro tests to study C4:S MRI properties that
may approximate the in vivo conditions well. These results, which are similar to those of
studies of the original C4 marker [64], indicate that, unlike some other materials [71–73],
the experimental data derived from in vitro measurements of C4:S will generally be similar
to those present under in vivo conditions.

To further mimic in vivo conditions, we tested whether a 50:50 C4:S solution could
be visualized within a tube in a tissue-equivalent phantom of the female pelvis. As
expected, the C4:S was positively visualized under clinically used T1- and T2-weighted
MRI sequences, and the signal intensity on the T2-weighted image was considerably higher
than the intensity of C4. This result indicated the potential of a C4:S line marker to be
a clinically applicable MRI positive-contrast marker for HDR interventional radiotherapy
guided by MRI using commonly used clinical MRI sequences.

The limitation of this study is that our study was only performed on a 1.5 Tesla MR
scanner. Even though the 1.5 Tesla MR scanner is the most widely used field strength
for clinical MRI, including MR-Linac systems, 3 Tesla MR scanners are the other field
strength widely used for clinical MRI. Although the T1 and T2 of the tissues are field
strength-dependent, their changes are fairly small, with T1 increasing by about 25% and T2
becoming only slightly shorter from 1.5 Tesla to 3 Tesla. We expect that the C4:S markers
will remain clearly visible on both T1- and T2-weighted images on a 3 Tesla MR scanner,
and we will test this hypothesis in our future studies.

5. Conclusions

Accurate and precise dose delivery in HDR MARS for cervical or prostate cancer
requires the use of both T1- and T2 -weighted MRI sequences [74–79]. Therefore, it is
essential to be able to visualize the markers under both T1- and T2-weighted sequences.
Since a shorter T1 relaxation time usually leads to an increased signal intensity in T1-weighted
images, whereas a shorter T2 relaxation time results in a decreased signal intensity in
T2-weighted images [67,80], a material with a shorter T1 relaxation time and a longer T2
relaxation time would be an appropriate MRI marker for use in both T1- and T2-weighted
sequences. Because the relaxivity ratios of C4:S in our study were greater than 1 at room
temperature (r2/r1 = 1.43) and at body temperature (r2/r1 = 1.38), we conclude that C4:S
shows promise as a positive-contrast marker for both T1- and T2-weighted MR images and,
as such, may be feasible to guide HDR MARS. Further investigations involving the clinical
use of C4:S to assist HDR MARS are warranted.
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