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Simple Summary: Circulating biomarkers for the identification of patients with “actionable” nodules
may increase screening uptake and decrease false-positive rates associated with low-dose computed
tomography (LDCT). Novel autoantibody biomarkers were identified utilizing a HuProt™ protein
microarray. Luminex assays were developed for the targeted measurement of identified biomarkers
within a large Biomarker Development Cohort (n = 841). Each individual biomarker’s performance
was assessed. The Biomarker Development Cohort was split into three separate cohorts: Training,
Validation 1, and Validation 2. Utilizing a Training cohort, a random forest model for identifying
patients with “actionable” nodules from those with “non-actionable” nodules was built. The random
forest model performance characteristics were determined for both a Validation 1 and the Validation
2 cohort. From these steps we have developed a risk-stratification method that assesses circulating
levels of a panel of novel autoantibody biomarkers to serve as a companion diagnostic method for
lung cancer screening.

Abstract: Due to poor compliance and uptake of LDCT screening among high-risk populations, lung
cancer is often diagnosed in advanced stages where treatment is rarely curative. Based upon the
American College of Radiology’s Lung Imaging and Reporting Data System (Lung-RADS) 80–90%
of patients screened will have clinically “non-actionable” nodules (Lung-RADS 1 or 2), and those
harboring larger, clinically “actionable” nodules (Lung-RADS 3 or 4) have a significantly greater
risk of lung cancer. The development of a companion diagnostic method capable of identifying
patients likely to have a clinically actionable nodule identified during LDCT is anticipated to improve
accessibility and uptake of the paradigm and improve early detection rates. Using protein microarrays,
we identified 501 circulating targets with differential immunoreactivities against cohorts characterized
as possessing either actionable (n = 42) or non-actionable (n = 20) solid pulmonary nodules, per
Lung-RADS guidelines. Quantitative assays were assembled on the Luminex platform for the 26 most
promising targets. These assays were used to measure serum autoantibody levels in 841 patients,
consisting of benign (BN; n = 101), early-stage non-small cell lung cancer (NSCLC; n = 245), other
early-stage malignancies within the lung (n = 29), and individuals meeting United States Preventative
Screening Task Force (USPSTF) screening inclusion criteria with both actionable (n = 87) and non-
actionable radiologic findings (n = 379). These 841 patients were randomly split into three cohorts:
Training, Validation 1, and Validation 2. Of the 26 candidate biomarkers tested, 17 differentiated
patients with actionable nodules from those with non-actionable nodules. A random forest model
consisting of six autoantibody (Annexin 2, DCD, MID1IP1, PNMA1, TAF10, ZNF696) biomarkers was
developed to optimize our classification performance; it possessed a positive predictive value (PPV)
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of 61.4%/61.0% and negative predictive value (NPV) of 95.7%/83.9% against Validation cohorts 1
and 2, respectively. This panel may improve patient selection methods for lung cancer screening,
serving to greatly reduce the futile screening rate while also improving accessibility to the paradigm
for underserved populations.

Keywords: screening; biomarkers; autoantibodies; low-dose computed tomography

1. Introduction

Lung cancer is the leading cause of cancer-related mortality, largely due to late di-
agnosis. One key contributor to the particularly poor outcomes seen in patients with
NSCLC is that almost half of all NSCLC cases are not detected until after they are ad-
vanced [1,2]. While LDCT scans have a sensitivity of 93.7%, they are plagued with a high
false positivity rate. Only 3.6% of the initial positive scans are eventually classified as
lung malignancies [3,4]. LDCT is only offered to limited patients based on relatively strict
eligibility criteria, specifically those who have a 20 pack–year smoking history, are between
the ages of 50–80, and are either current smokers or those who have quit smoking within
the last 15 years. Based on the smoking status alone, it is estimated that at least half of the
patients diagnosed with lung cancer would not qualify for screening [3]. Compounding
this issue, among those who are eligible for screening, compliance has been exceptionally
low, estimated at 4–14% [5,6]. Screening rates can vary widely based on where a patient is
resides and their socioeconomic status [5,7].

In the latest screening recommendation, the United States Preventative Task Force
(USPSTF) noted a need for biomarkers that can identify patients at high-risk of developing
lung cancer and lower the rate of false positives [5]. To this end, our laboratory identified
circulating biomarkers that can be used as molecular indicators to identify individuals
likely to have clinically “actionable” solid pulmonary nodules. Actionable nodules, based
upon the Lung-RADS v1.1 and v2022 definition (Lung-RADS 3 or 4), consists of individuals
with solid pulmonary nodules that are equal to or greater than 6 mm [8,9]. These patients
are considered high risk for lung cancer, and it is recommended that they be screened
more frequently or undergo additional testing, which is often invasive. One study found
that approximately 80.6% of patients had clinically “non-actionable” nodules and a low
risk of lung malignancy (<0.1%). This can be compared to a lung malignancy risk of 0.9%
in patients with “indeterminate” nodules (≥6 mm, <8 mm, Lung-RADS 3), and 9.6% for
those with positive LDCT (≥8 mm, Lung-RADS 4) [9]. With a biomarker test that can
identify patient populations with actionable nodules, we can identify patients who would
benefit most from LDCT scans. This method could potentially increase uptake of screening
in underserved populations as blood-based tests are more readily accessible, serve to
ameliorate those with screening hesitancy since the test could be administered in primary
care, and help lower false-positive rates.

This study is focused on developing a panel of circulating autoantibody biomarkers to
answer this clinical need. We begin with a discovery effort that uses high-throughput pro-
tein microarrays to identify candidate biomarkers with differential signal between patients
with clinically actionable and non-actionable nodules. These candidate biomarkers are
then assessed in tandem with other potential biomarkers for this application with custom
Luminex assays built ‘in house’ with a larger cohort of patients. Machine learning was
then used to identify the optimal combination of autoantibody biomarkers for discerning
actionable and non-actionable nodules, which can serve as a companion risk-stratification
method in conjunction with current lung cancer screening protocols.

2. Materials and Methods

The overall methodology of this paper can be divided into three steps, which are laid
out in Figure 1. These steps will be referred to throughout the Section 2.
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 Figure 1. Experimental workflow. Illustration of all experiments and methodology with annotations.
Step 1 involves the discovery of novel candidate biomarkers for discerning actionable versus non-
actionable nodules utilizing HuProt™ microarrays with our “Discovery” cohort (n = 62 total samples;
divided into 10 sample pools). A total of 26 candidate biomarkers were identified: 20 from microarray
studies and 6 from our previous work. In Step 2, custom Luminex immunobead assays are developed
for the candidate biomarkers identified in Step 1 and used to assess their performance against our
Biomarker Development Cohort (n = 841). Each marker was statistically evaluated for its individual
value for discerning actionable versus non-actionable nodules. In Step 3, the data from the Biomarker
Development Cohort (n = 841) is split into three cohorts: Training, Validation 1, and Validation 2. The
random forest algorithm was used to develop a biomarker panel based on the optimal combination of
six features. The model’s performance characteristics for discerning actionable versus non-actionable
cases were evaluated and optimized using Validation cohorts 1 and 2.
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2.1. Patient Cohorts

All serum samples were obtained from the Rush University Cancer Center Bioreposi-
tory. This facility operated under full Rush IRB approval and enrolled all patients used in
this study with written, informed consent prior to biospecimen collection. Whole blood
samples were collected from all patients enrolled in this study, post LDCT screening but
prior to surgical intervention or treatment. Whole blood was collected using red-top va-
cutainers by a trained phlebotomist. The blood was processed upon centrifugation per
standard techniques and as reported previously [10]. The serum was stored aliquoted in
a −80 ◦C freezer until being pulled for evaluation. All samples were collected between
2013–2019. Cases denoted as having lung malignancy or as benign were classified based
on a pathological diagnosis of tissue obtained from anatomic resections. The high-risk
screening cohort was comprised of patients who qualified for lung cancer screening based
on USPSTF guidelines but did not have lung malignancy at the time of the blood draw.
The patient samples included in this study are reflective of the “real world” population of
patients who are screened or undergoing surgical resection for benign/malignant nodules
at Rush University Medical Center in Chicago, IL. No other histological or molecular
criteria were applied during patient selection, and therefore, the population assessed is
effectively random.

Two separate cohorts were collected for the purposes of this study. The first is a
Discovery cohort (n = 62) used in our experiments to identify novel candidate biomarkers
via the HuProt microarray (Figure 1, Step 1). The second cohort we termed the Biomarker
Development cohort (n = 841), as illustrated in Figure 1, Step 2. This cohort was randomly
divided into Training (n = 565), Validation 1 (n = 93), and Validation 2 (n = 183; aka a ‘test’
cohort) cohorts to permit the development and validation of a multi-analyte panel for
classifying patients based on actionable nodule status, as shown in Figure 1, Step 3.

Cases for this study were classified as actionable versus non-actionable based on
nodule sizes annotated in the radiology report by a board-certified radiologist. All cases
with solid nodules ≥6 mm were considered actionable, consistent with Lung-RADS v1.1
and v2022 [2,3]. For instances of nodules that fell between 4 mm to 6 mm, Lung-RADS
scores were pulled from the radiologist reports and are reflective of the time of screen-
ing/sample collection. These Lung-RADS scores were based on either Lung-RADS v1.0
or v1.1, depending on the time of screening/specimen collection. Cases which were not
classified as actionable were classified as non-actionable.

2.2. High-Density Protein Microarrays (Illustrated in Step 1 of Figure 1)

Patient sera from the Discovery cohort were evaluated on high-density HuProtTM

v4.0 Protein Proteome microarrays by CDI Laboratories. HuProtTM v4.0 Protein Proteome
microarrays have been found to be a reproducible mechanism for discovery of autoantibody
targets within malignancy samples and have been the basis of other studies exploring the
development of machine learning models for malignancy prognosis and diagnosis [11,12].
A total of 10 microarrays were run on pooled samples for this study; the samples were then
divided into ‘non-actionable’ and ‘actionable’ nodule categories. Non-actionable nodules
were assessed as two groups (n = 10 per group), whereas actionable nodules were assessed
as eight groups: four from Squamous Cell Carcinoma (SqCC; n = 3/3/6/5) patients and
four from Adenocarcinoma (AdCa; n = 6/6/6/7) patients. One microarray was run per
group, and groups of the same histological type were treated as biological replicates.

After protein microarray results were obtained, raw GPR files were converted to a raw
excel file which contained the signal intensity for 23,059 proteins (>21,000 of which were
unique, with 2000 technical replicates) for each of the sample pools. To help mitigate any
batch effect variation, data was normalized. A total of six different normalization method-
ologies were utilized to ensure robust results. These included Cyclic-Loess, Log2, trimmed
mean of m-values (TMM), and Quantile, and Robust Linear Model (RLM) processed
through a widget developed for analyzing protein microarray data, called PAWER [13,14].
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For each of the normalization methods, differential analyses using empirical Bayesian
statistics (implemented via the limma package of Bioconductor), were performed compar-
ing each actionable group (AdCa, SqCC, or combined AdCa and SqCC treated as biological
replicates) versus the non-actionable high-risk screening [14]. Adjusted p-values were
calculated using the Benjamini-Hochberg method.

Of the 23,059 autoantibodies compared, a total of 501 markers had p-values < 0.05,
based on the moderated t-tests run comparing the actionable cohorts to the non-actionable
cohorts. From these 501 markers, we identified 8 promising candidate biomarkers for dis-
cerning non-actionable against actionable nodules (either as entire category or an individual
histological sub-type).

2.3. Custom Luminex Immunobead Assay Development (Development of Assays Used in Figure 1
Step 2 (a))

To maximize the coverage of this study and complement the 8 biomarkers discov-
ered via the microarray studies described, an additional 18 biomarkers were assessed via
Luminex assays. Of the 18, 12 were discovered via protein microarrays for a malignancy re-
currence question and the other 6 were from a panel our laboratory had published, based on
two-dimensional western blots and tandem mass-spectrometry [15]. This resulted in a total
of 26 biomarkers of interest for further assessment via targeted Luminex assays. A custom
Luminex immunobead assay was built for each of the 26 selected targets using methods we
previously reported [16–18]. Briefly, assay construction was accomplchemistryconjugation
of each recombinant protein (antigen) on a unique MagPlex bead region via standard
sulfo-NHS/EDC chemistries. Conjugation efficiencies and (analytical) characteristics for
each assay were evaluated against a 7-point standard curve of the corresponding anti-target
antibody (rabbit polyclonal; see Table A1 for details) and read with a PE-conj, goat anti-
IgG. Assay characteristics determinations included ‘working range’ assessments (limits
of detection and quantitation), optimal sample dilution determinations, and assessments
of performance characteristics (sensitivity, specificity, etc.). Assays were then tested for
their ability to be combined into multiplex panels, using ‘leave-one-out’ testing to identify
cross-reactivity issues, as we previously described [15,16]. From these efforts, 14 single-plex
or multiplex panels were qualified for specimen testing that were optimized for sample
dilution, primary incubation times, and secondary incubation times.

2.4. Cohort Testing (Figure 1 Step 2 (a) Testing of a Large Cohort)

Custom Luminex assays developed in the previous section for the 26 candidate
biomarkers were then used to assess serum from our Biomarker Development cohort (all
samples in Training, Validation 1, and Validation 2). The Biomarker Development cohort
consisted of 841 cases that were either screened by our Diagnostic Radiology Department
for lung cancer or received an anatomic resection by our Department of Cardiothoracic
Surgery. Prior to processing, subaliquots were made for each sample to ensure samples
did not undergo more than two freeze–thaws. All samples were processed on 384-well
plates with duplicate sampling and had a 7-point standard curve on each plate, as we
previously described [17]. For overnight primary incubation, samples were diluted 1:25 in
assay buffer (1X PBS/1% BSA/0.01% Tween), and 12.5 µL of diluted sample were added
to the wells with 12.5 µL of MagPlex beads utilizing a ‘semi-automated’ workflow with
an Agilent Bravo liquid handler. Detection of patient autoantibodies was accomplished
using PE-conj., rabbit anti human IgG antibodies (obtained from Fisher Scientific manu-
factured by Southern Biotech). Each plate was read on a FlexMap 3D (Luminex Corp.,
Austin, TX, USA) to obtain median fluorescence intensity (MFI) values in xPonent v4.3
(Luminex Corp.). The concentrations of each marker for each sample in the large cohort
was calculated using Belysa v1.1 Software. The software mapped the MFI signal from the
sample well to the 4PL logistic curve produced based on the 7-point standard curve of
the anti-target antibody. Replicates which had a coefficient of variation equal to or greater
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than 50% were removed, as were reads which had <30 beads/well, based upon thresholds
recommended by Luminex and others [19].

2.5. Luminex Data Pre-Processing and Analysis (Figure 1 Step 2b) Assessment of Targets
Individual Performance for Discerning Actionable from Non-Actionable Samples)

Boxplots comparing actionable nodule patients to non-actionable nodule patients
were produced for all biomarkers tested via Luminex assays, with p-values determined
via Mann–Whitney (two-sided) U [20–22]. Outliers were removed for the creation of the
boxplots and for the determination of the individual marker p-values. ROC/AUC curves
were produced for each of the individual biomarkers utilizing the pROC package in R [23].
The top 10 most significant biomarkers were selected based on the Mann–Whitney U
test results. For these biomarkers, a generalized linear model was trained on 70% of the
data, with an optimal cut-off selected that produced the highest true positive rate. The
developed models were then applied to the remaining 30% of the cohort, and performance
characteristics were assessed.

2.6. Development of a Multianalyte Panel for Patient Risk Stratification (Figure 1 Step 3)

Prior to any machine learning, data from the Biomarker Development cohort was split
randomly into three separate sets: Training (n = 565), Validation 1 (n = 93), and Validation
2 (n = 183; aka a ‘test’ cohort). Biomarkers with at least 80% non-missing values were
considered for panel development.

For the purposes of variable selection, each possible 6 or 7 marker combination of
19 biomarkers was considered. A random forest prediction model was developed for each
of the combinations using the “Training” cohort [15,24]. Prediction performance of each
of the random forest models developed were determined based on the OOB error of the
model in the training set and the prediction accuracy of the model in the Validation 1 cohort.
The marker combination that resulted in a random forest model with the best performance
metrics was selected as the final panel.

The final random forest model was trained using the Training set, based on the
6-marker panel selected. The performance characteristics of this model at classifying
actionable from non-actionable nodules was calculated for both the Validation 1 and
Validation 2 cohort.

An optimal cut-off was created to minimize ‘false-negative’ results given that sensitiv-
ity was considered paramount to our application. The actionable “vote” score cut-off was
the proportion of decision trees in the model which assessed the case as actionable; their
predictive performances in the Validation 1 cohort were used to create an ROC curve [24].
An optimal threshold was determined by detecting a “vote” score cut-off which offered
>95% sensitivity in the Validation 1 cohort, while minimizing the amount of ‘false positives’.
This cutoff value was then used to recalculate panel performance characteristics against the
Validation 2 cohort [25]. This process is defined in Figure 1 Step 3c. Finally, the performance
metrics were further evaluated in the clinically distinct groups for each of the different
cohorts tested.

3. Results

3.1. Patient Population for the HuProtTM Microarrays for the Discovery of Novel Lung Cancer
Early Detection Targets

A total of 62 samples were included in the Discovery cohort used for the protein
microarray study, with patient clinical and demographic information provided (Table 1).
These samples were combined into 10 sample pools (8 ‘actionable’ and 2 ‘non-actionable’)
that were utilized to probe the microarrays.
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Table 1. Clinical characteristics of the Discovery Cohorts used for the HuProt™ protein microarray
studies. Basic clinical characteristics of all samples comprising the Discovery Cohort are provided as
used for the HuProt microarray studies. The adenocarcinoma (AdCa) and squamous cell carcinoma
(SqCC) samples are each divided across four sample pools, whereas the non-actionable samples are
divided across two sample pools.

Group Actionable Non-Actionable

AdCa SqCC
(n = 25) (n = 17) (n = 20)

Age (years) Median (Range) 70 (56–83) 75 (60–79) 65 (58–71)
Gender Male (%) 13 (50%) 8 (47.1%) 10 (52.6%)
Lesion Size
(mm) Median (range) 24.8 (11–38) 28 (11–35) 3 (2–10)

AJCC Stage IA1 1 N/A
IA2 8 6
IA3 4 7
IB 12 3
IIB N/A 1

To diversify the coverage of the biomarkers selected, a range of common lung patholo-
gies and malignancies relevant to lung cancer screening were included in this cohort, given
the potential these would have unique molecular profiles. Within the lung malignancy
cases, all samples included had actionable nodules based on Lung-RADS v1.1 and Lung-
RADS v2022. Additionally, all malignancy cases were confined to T1–3N0M0. All patients
with non-actionable nodules qualified for lung cancer screening based on current USPSTF
guidelines (i.e., were between the ages of 50–80, had at least a 20 pack–year smoking
history, and were current smokers or had quit within the last 15 years) at the time of sample
collection. A single sample possessing a non-malignant nodule was inadvertently included
in one of the ‘non-actionable’ groups.

3.2. Autoantibodies with Differential Signal in Patients with ‘Actionable’ vs. ‘Non-Actionable’
Nodules via HuProt™ Protein Microarrays

Normalized data from the HuProt™ protein microarrays were processed using empir-
ical Bayesian statistics and displayed with volcano plots to contrast autoantibodies that
differentially associate with ‘actionable’ or ‘non-actionable’ nodules, as shown in Figure 2a.
Further delineation of the ‘actionable’ group based on histology provided similar plots for
AdCa (Figure 2b) and SqCC (Figure 2c) relative to the ‘non-actionable’ group. A total of
501 markers were found to be differentially recognized (p < 0.05) in the actionable sample
pools (AdCa, SqCC, or AdCa and SqCC) compared to non-actionable sample pools.

Candidate biomarkers were preferentially selected for further development if the
marker was (1) relevant to more than one of the comparisons of interest (i.e., AdCa versus
high-risk and SqCC versus high-risk), (2) significant after a Benjamini–Hochberg correction
(i.e., adjusted p-value), (3) significant in more than one normalization method, (4) if they
were elevated in the actionable group compared to the non-actionable group.

Based on these criteria, eight candidate biomarkers (GPBP1, HNRNPD, NAT9, PNMA1,
RAB27A, TAF10, Ubiquillin 2, ZNF696) were selected for development based on ability to
distinguish ‘actionable’ from ‘non-actionable’ nodules, with ‘box and whisker’ plots (or
boxplots) for these biomarkers shown in Figure 2d.
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Figure 2. Candidate Biomarker Performance for Actionable Versus Non-actionable Nodules within
the HuProt Microarray. Novel biomarkers for discerning actionable versus non-actionable nodules
were determined by comparing autoantibody signal levels between microarrays utilizing empirical
Bayesian statistics with the Bioconductor package in R. Adjusted p-values were determined utilizing
the Benjamini–Hochberg method. Volcano plots were created for comparisons made between high-
risk screening patients with non-actionable nodule sample pools and different actionable nodule
subsets, those with (a) NSCLC (both AdCa and SqCC) (b) AdCa, and (c) SqCC. Autoantibodies with
differential signals that had an absolute value Log Fold Change (LFC) > 0.6 and p-values < 0.05 are in
red if elevated in the non-actionable group, and in green if they are elevated in the actionable group.
Biomarkers which are labeled had p-values < 0.01 and absolute value log-fold change > 2. (d) Specific
biomarkers selected for further analysis are displayed as boxplots.

To maximize the study’s coverage of biomarkers, 18 additional biomarkers were
assessed, which our laboratory found had relevancy to early detection of lung cancer but
were not discovered for the express purpose of discerning actionable versus non-actionable
nodules. Utilizing Luminex assays, we tested a total of 26 different biomarkers within
the patient cohort. These biomarkers included the 8 candidate biomarkers discovered
via the microarray for discerning actionable versus non-actionable cohorts, 12 candidate
biomarkers with relevance to lung cancer screening questions described in methods, and
6 biomarkers that our laboratory had previously published [15]. Biomarkers were tested
with a total of 14 different multiplexes/single plexes, as shown in Table 2.
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Table 2. Candidate biomarkers tested with panel composition indicated. In Table 2 each target for
which a Luminex assay was developed and used to test the Biomarker Development cohort is listed
out. The targets are organized by their multiplex/single plex group. Multiplexed markers can be
measured in tandem within patient serum.

Single-Plex Assay Multiplex Assay

Annexin 2 Annexin 1 and NIP30
KEAP1 CFAP36, MID1IP1

HNRNPD DCD, MED21, TAF10, ZNF696
IMPDH2 Dr1, HSP70
NAP1L5 GPBP1, MYBPH, PGAM1

Ubiquillin 1 IKZF5, NAT9, PNMA1
Ubiquilllin 2 RAB27A, SGPL1, TP53

3.3. Charactersitics of the Biomarker Development Cohort with Subgroups for the Classification
Model Development and Assessment Provided

Custom Luminex assays were used to assess levels of each biomarker within the
Biomarker Development cohort (n = 841). Of the 841 patients within the cohort, 449 patients
had actionable nodules and 392 patients had non-actionable nodules. Pathological (histo-
logical) diagnostic classifications of the cohort include patients grouped as histologically
benign nodules (BN) (n = 101), early-stage NSCLC (n = 245), high-risk screening (n = 466),
and patients with other malignancies (n = 29) who qualify for screening based on current
USPSTF guidelines. Within the lung malignancy samples, a total 265 samples were tested
(including small-cell lung cancer and carcinoid cases), 162 samples were T1a-bN0M0, 52
were T2a-bN0M0, 29 were T3N0M0, and 11 were T4N0M0. Patient demographic information
and pathological (histological) diagnostic information for this cohort are provided in Table 3.
Further breakdown of the nodule development, metastasis, and histological grouping can
be seen in Table A2.

Table 3. Biomarker Development Cohort. In Table 3, the cohort that was tested for the 26 potential
biomarkers via Luminex assays is broken down by patient demographics.

Patient Demographic Total Non-Actionable Actionable

n = 841 n = 392 n = 449

Gender
Male (%) 353 (41.97%) 161 (41.07%) 192 (42.76%)
Age, years Median 67 65 69

Minimum 41 47 41
Maximum 88 82 88

Diagnosis
NSCLC 245 1 244

AdCa 1 160
SqCC 0 73

AdCa/SqCC Mixed 0 9
NSCLC (Not Specified) 0 2

Malignancy, non-NSCLC 29 1 28
Carcinoid (G1/G2) 0 8

Large-Cell/SCLC (G3) 0 12
Metastasis (Not Lung Cancer) 1 8
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Table 3. Cont.

Patient Demographic Total Non-Actionable Actionable

n = 841 n = 392 n = 449

Benign 101 11 90
Granuloma 2 27

Hamartoma 0 14
Fibrosis/Scar/Inflammation 9 37

Infection/Org. Pneumonia 0 5
Other 0 7

Not Assessed * 466 379 87
Stable or Resolving 123 31

Interval Increase in Size 2 4
New Nodule/Unknown Growth 202 50

Mix of New/Stable Nodules 1 0
No Nodule/Non-Specified 51 2

* Patient did not undergo surgery, and thus, results are based on radiological presentation.

Of the 26 candidate biomarkers tested, 17 were significant for discerning actionable
cases from non-actionable cases, with p-values < 0.05. Looking specifically at the perfor-
mance of the eight novel markers discovered utilizing the HuProt microarray (GPBP1, HN-
RNPD, NAT9, PNMA1, RAB27A, TAF10, Ubiquillin 2, ZNF696) for discerning actionable
versus non-actionable nodules, seven were significant with p-values < 0.05. Performance
for all 26 biomarkers tested are listed in Table 4, whereas boxplots for the top 10 most
significant markers are shown in Figure 3.

Table 4. Performance of 26 Biomarkers for Discerning Between the Actionable and Non-actionable
Cohorts. Individual biomarker performances were compared between actionable and non-actionable
nodules via the Mann–Whitney U Test.

Protein Name Uniprot ID Non-Actionable
Median (Range), ng/mL

Actionable
Median (Range), ng/mL p-Value

MID1IP1 Q9NPA3 71.25 (17.85–388.06) 142.49 (0.14–397.30) 4.30 × 10−29

PNMA1 Q8ND90 15.59 (0.19–94.31) 30.99 (0.25–93.93) 1.05 × 10−20

PGAM1 P18669 5.25 (0.11–30.96) 9.74 (0.02–31.27) 4.86 × 10−15

HNRNPD Q14103-1 13.23 (0.19–85.85) 23.71 (0.09–90.12) 7.83 × 10−14

MED21 Q13503 45.12 (1.59–229.99) 65.03 (0.1–231.13) 1.60 × 10−9

IMPDH2 P12268 316.41 (30.23–1685.81) 481.49 (8.89–1686.36) 1.83 × 10−7

SGPL1 O95470 7866.32 (6.02–77,865.4) 14,005.25 (0.15–78,349.22) 3.65 × 10−7

ZNF696 Q9H7X3 112.12 (4.38–404.82) 87.71 (21.5–393.02) 2.18 × 10−6

GPBP1 Q86WP2 42.09 (0.18–275.87) 65.18 (0.05–278.53) 2.39 × 10−5

Annexin 2 P07355 17.27 (0.01–228.71) 26.81 (0.28–245.76) 4.15 × 10−5

NAT9 Q9BTE0 1155.48 (45.72–4082.57) 1551.26 (7.44–4304.02) 8.67 × 10−5

TP53 P04637 43.78 (0.75–234.93) 59.04 (0–236.63) 0.0003
Annexin 1 P04083 0.96 (0.01–8.44) 1.34 (0–8.51) 0.014

NIP30 Q9GZU8 4.91 (0.03–29.18) 5.96 (0.01–29.71) 0.014
TAF10 Q12962 164.68 (5.48–584.71) 147.65 (26.31–567.49) 0.023

RAB27A P51159 0.54 (0.01–2.70) 0.67 (0.01–2.73) 0.027
KEAP1 Q14145 6.12 (0.06–29.3) 8.24 (0.01–30.98) 0.041

Ubiquillin 1 Q9UMX0 4.73 (0.2–42.17) 484.48 (9.02–5403.48) 0.077
HSP70 P0DMV9 0.7 (0–2.73) 0.8 (0.09–2.74) 0.163

MYBPH Q13203 436.92 (3.36–1721.33) 385.88 (0.66–1760.32) 0.211
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Table 4. Cont.

Protein Name Uniprot ID Non-Actionable
Median (Range), ng/mL

Actionable
Median (Range), ng/mL p-Value

NAP1L5 Q96NT1 587.41 (2.02–2535.53) 632.27 (0.51–2399.45) 0.234
IKZF5 Q9H5V7 46.96 (0.06–331.96) 49.68 (0.07–338.83) 0.258

Ubiquillin2 Q9UHD9 99.87 (2.39–499.05) 84.37 (0.65–506.10) 0.454
Dr1 Q01658 18.05 (0.01–97.89) 20.58 (0.02–94.76) 0.507

DCD P81605 2022.34 (71.6–6775.07) 2120.54 (345.25–6768.67) 0.539
CFAP36 Q96G28 27.08 (0.04–109.11) 27.74 (0.03–112.46) 0.631
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Figure 3. Boxplots for the Highest Performing Biomarkers for Discerning Between the Actionable
and Non-actionable Cohorts. The top 10 most significant biomarkers of the 26 biomarkers assessed
within the large cohort are shown as ‘box-and-whisker’ plots (or boxplots).

3.4. Performance of Logistic Regression Produced from Top Biomarkers

After determining the significance of each marker, we wanted to ascertain each
marker’s individual ability to discern between actionable and non-actionable cases based
on generalized linear models. Logistic regression models were trained for each of the
top 10 most significant biomarkers based on 60% of the total collected data, with 40% of
the data left for a testing set. ROC curves created for the training set are illustrated in
Figure 4a, and calculated performance metrics listed in Figure 4b. Performance metrics
were determined for the training and testing sets of the generalized linear models based
on the optimal cut-off determined from the training set. AUCs for the top biomarkers
ranged from 0.58–0.72, with MID1IP1 having the highest AUC (0.72). Interestingly, while
MID1IP1 had the highest AUC, MED21 had the highest sensitivity, with 79% sensitivity in
the training cohort and 83% sensitivity in the testing. While accuracy is an important metric
for determining a model’s performance, due to the nature of the test we are developing,
high sensitivities are of higher importance as false negatives result in delayed diagnosis of
cancer, whereas a false positive leads to test follow-up through LDCT.
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Figure 4. Assessment of Logistic Regression Models for Top Performing Biomarkers. The performance
characteristics of general logistic regression models developed for each of the top 10 most significant
biomarkers are provided. Panel (a) illustrates a ROC curve for each of the biomarkers based on a
training cohort. Area under the curve (AUC) values can be seen next to the marker name in the
legend. Panel (b) details the performance metrics for each of the general logistic models are shown
for the training set used to create an optimal cut-off value and an independent test set.

To further assess the performance of the individual biomarkers, we broke down the
performance by clinically distinct cohorts: benign cohort, malignant, or high-risk screening
cohort. Breakdowns by total accuracy in classification can be seen in Table A3 for the top
five most significant biomarkers. For lung malignancy, the accuracy of the models based
on the individual biomarkers ranged from 50–82%, with the best marker being HNRNPD.
For histologically benign cases, the accuracy was 44–82%, with HNRNPD and MID1IP1
both having an actionable classification accuracy of 82%. Finally, for the screening cohort,
the classification of samples into actionable or non-actionable subsets was 45–68%, with the
highest accuracy within the IMPDH2 biomarkers.

3.5. Creation of Random Forest Model for Determining Actionable versus Non-Actionable Nodules

After determining the performance of the individual biomarkers, we aimed to develop
a panel of biomarkers to obtain optimized performance characteristics for identifying pa-
tients with actionable versus non-actionable nodules. For this, our Biomarker Development
Cohort was subdivided into Training, Validation 1, and Validation 2 sub-cohorts, as defined
in Section 2.5 and with characteristics shown in Table A4.

Machine learning models have been shown to help improve overall performance
of biomarker panels and have become standard for the purpose of developing clinical
biomarker tests. Our laboratory had previously published a panel in which we utilized
a random forest machine learning model to develop a model with good sensitivity and
specificity for discerning between four clinically distinct groups: early-stage lung cancer,
osteoarthritic, non-neoplastic nodules, and COPD/asthma patients [15]. Based on this, we
decided to attempt to develop a random forest model for discerning between actionable
and non-actionable nodules.
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3.6. Development of an Preliminary Biomarker Panel via Machine Learning

The objective of this step was to determine the optimal combination of biomarkers
for risk-stratifying patients for potential identification of an actionable nodule via LDCT-
based screening protocols. For feature selection, we calculated performance for every
unique combination of 6 and 7 biomarkers of 19 biomarkers identified from our microarray
and from our previously published panel. A total of 19 biomarkers were utilized as 7
of the 26 biomarkers were eliminated from this analysis (DR1, IMPDH2, NAT9, IKZF5,
KEAP1, RAB27A, Ubiquillin 2) due to >20% missing data-based on percent coefficient
of variation and low bead counts. For the rest of the biomarkers, imputation was used
within the training cohort to maximize the number of samples that could be used for model
development. We examined each combination of six and seven biomarkers, training a
random forest model and recording its performance metrics seen within the Training and
Validation 1 cohort. The exploration with all possible six marker combinations tested a total
of 27,132 different combinations, and the one with all possible seven marker combinations
tested a total of 50,388 different combinations. The top outputs of each 6- and 7-marker
combination were compared, and, given that the accuracy was less than 2% different
between the models, we opted to utilize the 6-marker model to economize future studies
with this panel.

The panel which showed the greatest accuracy within the Validation 1 cohort was
Annexin 2, DCD, MID1IP1, PNMA1, TAF10, and ZNF696. Three of these biomarkers
(PNMA1, TAF10, and ZNF696) were chosen based on the HuProt microarray discovery
outlined in Sections 3.1 and 3.2. Annexin 2 was part of a biomarker panel our laboratory
had previously published, with DCD and MID1IP1 both holding value for early detection
based on previous laboratory studies. Of the biomarkers chosen, four (MIDIP1, PNMA1,
Annexin 2, and ZNF696) had individual p-values < 0.01, one (TAF10) had a p-value < 0.05,
and, interestingly, one (DCD) was not significant (p > 0.05) for discerning actionable from
non-actionable cases in the Biomarker Development cohort. We further tested the panel
on the Validation 2 cohort which was not utilized for panel determination or optimization
purposes. The Validation 2 cohort consisted of 183 patients, with 84 patients at high-risk of
lung cancer with non-actionable nodules and 99 patients with actionable nodules (solid
pulmonary nodules > 6 mm). The accuracy within the third cohort was 72.48%, with a
sensitivity of 76.62% and specificity of 68.06%.

3.7. Performance of Final Optimized Panel for Patient Risk Startification

Given that the objective of this study was to develop a risk stratification tool to pre-
screen individuals for LDCT-based lung cancer screening protocols, we aimed to focus on
minimizing ‘false negative’ findings to reduce the potential of missing a malignancy at
the cost of some ‘false positives’. To this end, we created an ROC curve on the Validation
1 cohort. Assessing different cut-points used for the ROC curve, we selected the cut-off
which had >95% sensitivity within the Validation 1 cohort with the least cost to specificity.
The resulting risk cut-off was 0.334 as opposed to the standard 0.5, for which the model
was originally trained.

The performance characteristics were recalculated within the Validation 1 and Valida-
tion 2 cohort, with the resulting ROC curve illustrated in Figure 5a. Within the Validation 1
and Validation 2 cohorts, sensitivity was high, at 97.2% and 93.5%, respectively. With the
increase in sensitivity there was a decrease in specificity to 50% and 36.1%, respectively.
Figure 5b depicts the accuracy of the model against different racial and gender break-
down. Notably, negative predictive values (NPVs) between white and African-American
subgroups were comparable.
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 Combined  Validation 1  Validation 2 Validation 1  Validation 2 

Metastasis 1/1 (100%) NA 1/1 (100%) NA NA 
AdCa 42/44 (95.5%) 15/16 (93.75%)  27/28 (96.43%) NA NA 
AdCa/SqCC Mixed 1/1 (100%) 1/1 (100%) NA NA NA 
SqCC 18/20 (90.0%) 6/6 (100%)  12/14 (85.7%) NA NA 
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Figure 5. Assessment of Sensitivity Optimized Classification Model. (a) The ROC developed from
predicted risks determined by the random forest model in the Validation 1 cohort. From these
predicted risk values, thresholds (or ‘cut-offs’) were chosen, which allowed for the highest specificity
with a sensitivity of 95%. (b) The model performance when utilizing the optimized cut-off value in
Validation 1 and Validation 2 cohorts, with further resolution by race and gender.

The panel was further assessed for its performance for different clinically distinct sub-
groups. The Validation 1 and Validation 2 cohorts were further subdivided into three main
groups: malignancy cases, histologically benign cases, and high-risk screening cases. These
subgroups were then evaluated based on histological diagnosis and nodule presentation.
The accuracy of the classification of each of these subgroups is shown in Table 5.

For the malignancy cases (n = 71), there was an overall classification accuracy of 94.4%,
with all malignancy cases designated as actionable nodules (i.e., >6 mm). Performance
was high across all subsets of lung malignancy, with ranges from 90% to 100% accuracy.
In the future, it may be of interest to assess additional biomarkers which hold value for
discerning SqCC to help supplement the current panel and improve performance within
this subset of patients.

Histologically benign cases are made up of serum samples obtained from patients who
underwent lung resection and were determined by pathology to have “benign” nodules.
Within this cohort, there was a high accuracy of 83.3%. Notably, within the benign cases,
the non-actionable cases were the only cases that were misclassified. This suggests that this
panel may perform very well at identifying patients with a benign lung disease.
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Table 5. Performance of Sensitivity Optimized Model broken Down by Clinically Distinct Cohort.
Performance characteristics of the sensitivity optimized biomarker panel are broken down by clinically
distinct groups.

Subgroups Overall
Accuracy Accuracy (Actionable) Accuracy (Non-Actionable)

Combined Validation 1 Validation 2 Validation 1 Validation 2

Metastasis 1/1 (100%) NA 1/1 (100%) NA NA
AdCa 42/44 (95.5%) 15/16 (93.75%) 27/28 (96.43%) NA NA
AdCa/SqCC Mixed 1/1 (100%) 1/1 (100%) NA NA NA
SqCC 18/20 (90.0%) 6/6 (100%) 12/14 (85.7%) NA NA
NSCLC (General) 1/1 (100%) NA NA|1/1 (100%) NA NA
Carcinoid 2/2 (100%) 1/1 (100%) 1/1 (100%) NA NA
Small-Cell 2/2 (100%) 1/1 (100%) 1/1 (100%) NA NA

Malignancy Totals 67/71 (94.4%) 24/25 (96.0%) 43/46 (93.5%) NA NA
Granuloma 3/3 (100%) 1/1 (100%) 2/2 (100%) NA NA
Hamartoma 2/2 (100%) NA 2/2 (100%) NA NA
Fibrosis/Scarring/Inflammation 12/16 (75%) 2/2 (100%) 10/10 (100%) 0/2 (0%) |0/2 (0%)
Infection/Pneumonia 1/1 (100%) NA 1/1 (100%) NA NA
Other Non-Malig. Nodule 2/2 (100%) 1/1 (100%) 1/1 (100%) NA NA

Benign Totals 20/24 (83.3%) 4/4 (100%) 16/16 (100%) 0/2 (0%) 0/2 (0%)
Stable or Resolving Nodule 24/57 (42.1%) 5/5 (100%) 6/7 (85.7%) 6/16 (37.5%) 7/29 (24.1%)
Interval Increase in Size 0/1 (0%) NA|0/1 (0%) 0/1 (0%) NA NA
New Nodule/Unknown
Growth 37/61 (60.7%) 3/3 (100%) 7/7 (100%) 11/19 (57.9%) 16/32 (50%)

No Noted Nodule 8/16 (50%) NA NA 5/7 (71.4%) 3/9 (33.3%)
Control Totals 69/135 (51.1%) 8/8 (100%) 13/15 (86.7%) 22/42 (52.4%) 26/70 (37.1%)

Finally, we assessed the performance in the high-risk screening cohort. The high-risk
screening cases made up the majority of the non-actionable cases assessed in this study.
Of the screening cohort, 51.1% of the cohort was properly classified as having actionable
or non-actionable nodules. The performance within the screening cohort with actionable
nodules was high, with 21/23 samples within Validation 1 and Validation 2 properly
classified. Within the screening cohort with non-actionable nodules, performance was
worse, with only 48/112 cases being identified as non-actionable. This is likely a result of
the panel being optimized for the identification of actionable nodules, with false positives
having less importance due to the availability of other testing mechanisms. Additionally,
for 56 of the 64 misclassified non-actionable cases, subsequent LDCT screening results
were available and assessed. During subsequent screens, 6/56 had actionable nodules,
with three being classified as 4A, two being classified as 4B, and one classified as 3 via
Lung-RADS v1.1 or v1.0, depending on date of screening. Taking these cases into account,
this would potentially increase the specificity of this test to 54.5% in the Validation 1 cohort
and 41.7% in the Validation 2 cohort.

4. Discussion

NSCLC is the leading cause of cancer related mortality world-wide, much of which
can be attributed to late diagnosis. Screening is key to detecting malignancies early, and
the current mechanism for screening is annual LDCTs within high-risk populations. While
LDCT can be extremely sensitive for the detection of lung nodules, with estimates reported
from 59% to 100%, specificity of LDCT tends to be lower, with estimates which can vary
dramatically from 26.4% to 99.7% [26]. These detection ranges highlight the variability with
this screening method, as radiologists’ training may dramatically impact test performance.
Improved methods for identifying patients of interest for LDCT screening, based on circu-
lating biomarkers, might help enhance the specificity of the overall lung cancer screening
paradigm. To this end, we developed a blood-based biomarker test which could aid in the
identification of patients with actionable nodules. It is estimated that only about 10–20% of
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high-risk patients will have actionable nodules [9,27], so identifying these patients using
this test might avoid many unnecessary (or ‘futile’) LDCTs and reduce ‘false-positive’ rates.
A simple blood-based test would be much more accessible than LDCT, thus increasing the
convenience of the initial evaluation (a ‘pre-screen) and potentially increasing uptake rates,
which are currently low (6–14%) among patients [5,26]. We have developed a blood-based
test which has a sensitivity of 93.5%, with a specificity of 36.1%. According to multiple
studies, approximately 80–90% of patients who qualify for screening do not harbor action-
able nodules [5,8,27]. This means that our test could decrease the number of futile scans by
approximately 30% while maintaining the sensitivity levels observed in LDCT.

Our efforts to identify markers that held value for discerning patients with actionable
versus non-actionable nodules were focused on the discovery of circulating autoantibodies.
To avoid autotoxicity, B-cells generally have a central and peripheral tolerance, which
prevents them from producing autoantibodies targeted at self-antigen [28]. However, it
is believed that B-cells can overcome their peripheral tolerance when tumors produce
autoantigens that are overly expressed, expressed in areas of the body they typically are
not, or are a result of a mutation that leads to an antigenic (or neoantigenic) protein [29].
Thus, studies have noted the presence of autoantibodies within cancer and at very early
stages of tumor development, making them ideal screening biomarker candidates [29].

Multiple papers have focused on the development of blood-based autoantibody
biomarker tests for lung malignancy detection [30]. Our laboratory previously published
an autoantibody panel which consisted of Annexin 1, Annexin 2, IMPDH2, HSP70, PGAM1,
and Ubiquillin 1, and properly classified 93% within five clinically distinct groups: os-
teoarthritis, “cancer-free” control, asthma/COPD, benign nodule, and NSCLC [16]. These
markers were included within this study. Other laboratories have also studied autoanti-
bodies for lung cancer. Two studies by Huang et al. (2020) and Jia et al. (2014) assessed
autoantibodies used in tandem with LDCT nodule size results to create a lung malignancy
predictive model with sensitivities of 70.1% and 80% and specificities of 72.6% and 89%
respectively [31,32]. One of the most extensively studied examples of an autoantibody lung
cancer biomarker tests is Early-CDT. Early-CDT has consistently high specificity (80–90%),
however, its sensitivity is lower at approximately 33–39% [33,34]. While all of these tests
hold merit for complimenting LDCT, none have value as a pre-screening tool as they lack
the sensitivity required for a pre-screening test. To our knowledge, this study is the first
to describe a method capable of impacting patient selection criteria for LDCT based on
a panel of biomarkers trained to identify patients with actionable nodules according to
Lung-RADS criteria.

One limitation of our study is that, at the time of model training, Lung-RADS report
information was not available for nodules between 4 mm and 6 mm, so it could not
be determined if they would be actionable. Thus, four cases were misclassified as non-
actionable within our Training cohort. This misclassification may have resulted in slightly
worse performance in the Validation 1 and Validation 2 cohorts; however, since these
samples only made up 4/565 samples, this is unlikely. Another study limitation that may
have led to misclassifications is the limited availability of patient follow-up information for
those without a definitive pathological diagnosis (i.e., the high-risk screening cohort). To
minimize this source of error, all available follow-up reports in our electronic medical record
system were assessed, which totaled 459 out of the 466 high-risk screening patients. Within
the high-risk screening patient group, seven patients did not return to Rush University
after their initial appointment; thus, no follow-up was available. Follow-up ≥1 year was
available for 456/466 patients, and only two patients went on to develop lung origin
malignancy post-blood draw. One of these patients had lung malignancy 2 years after
blood draw, with another 4 years after. Three patients had their latest reported follow-up
<1 year after sample collection but were cancer free at that point. Since reports were found
for most high-risk screening patients, and no documented lung malignancy within a year of
blood draw was recorded, we believe this was unlikely to affect the outcomes of our study.
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5. Conclusions

With the completion of this study, we have identified biomarkers for the purposes of
discerning actionable versus non-actionable nodules, utilizing protein microarrays. We then
determined individual biomarker performance metrics for discerning between actionable
and non-actionable cohorts based on general linear models. Finally, we developed a
machine learning model based on circulating levels of six biomarkers (Annexin 2, MID1IP1,
PNMA1. TAF10, and DCD) that have high sensitivity (97.2% in Validation 1 and 93.5% in
Validation 2) for the purposes of identifying patients with actionable nodules.

Within the eligible screening population, only about 10–20% have actionable pul-
monary nodules. Patients with actionable nodules have a risk 9–96 times higher for
developing lung cancer compared to the rest of the high-risk screening cohorts. Those at
high-risk without actionable nodules are estimated to have a similar lung cancer rate, 0.1%,
as never-smokers; estimates are 0.1% in females and 0.2% in males [9,35]. This suggests
that our biomarker test could identify a small population (10–20%) within the general
screening population who would benefit from LDCT. The majority of the screening patients
may only need the annual biomarker blood test, which is simple, cost-efficient, and more
easily accessible.

This panel of biomarkers may help improve the current initial lung cancer screening
paradigm. In future, more validation studies with a larger patient cohort consisting of
high-risk screening patients will be of interest for model optimization on large populations
with more reflective population breakdowns.
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Appendix A

Table A1. Table of Immunoreagents used in Biomarker Development.

Marker Uniprot Single-
Plex/Multiplex Antibody Catalog Source

Annexin 1 P04083 1 21990-1-AP Proteintech
NIP30 Q9GZU8 1 LS-C667168 Lifespan Biosciences

Annexin 2 P07355 2 11256-1-AP Proteintech
CFAP36 Q96G28 3 LS-C664461 Lifespan Biosciences
MID1IP1 Q9NPA3 3 LS-C80861 Lifespan Biosciences

DCD P81605 4 LS-C754340 Lifespan Biosciences
MED21 Q13503 4 CSB-PA070304 Cusabio
TAF10 Q12962 4 H00006881-D01P Novus Biological

ZNF696 Q9H7X3 4 LS-C101596 Lifespan Biosciences
Dr1 Q01658 5 LS-C755318 Lifespan Biosciences

HSP70 P0DMV9 5 14887-1-AP Proteintech
KEAP1 Q14145 6 TA590238 OriGene
GPBP1 Q86WP2 7 LS-C753825 Lifespan Biosciences

MYBPH Q13203 7 LS-C500819 Lifespan Biosciences
PGAM1 P18669 7 16126-1-AP Proteintech

HNRNPD Q14103-1 8 LS-C211799 Lifespan Biosciences
IKZF5 P04083 9 HPA051574 Atlas Antibodies
NAT9 Q9BTE0 9 ABIN631510 Antibodies-online

PNMA1 Q86WP2 9 H00009240-D01P Novus Biological
IMPDH2 P04083 10 LS-C666439 Lifespan Biosciences
NAP1L5 P04083 11 LS-C680924 Lifespan Biosciences
RAB27A Q86WP2 12 LS-C662585 Lifespan Biosciences
SGPL1 O95470 12 H00008879-D01P Novus Biological
TP53 Q9NPA3 12 PAB12719 Abnova

Ubiquillin 1 Q9NPA3 13 23516-1-AP Proteintech
Ubiquillin 2 Q9NPA3 14 LS-C661407 Lifespan Biosciences

IgG Goat anti-Human, R-PE, Polyclonal RRID:
AB_2795648 N/A OB204009 Fisher Scientific

IgG Goat anti-Rabbit, R-PE, Polyclonal P01870 N/A OB403009 Fisher Scientific

Table A2. Breakdown of staging of lung malignancy cases within the Training, Validation 1 and
Validation 2 Cohorts.

Stage AdCa AdCa/SqCC SqCC NSCLC Carcinoid Large Cell

T1a 24 1 5 1 2 4
Not
Available 0 0 1 0 1 0

N0 24 1 4 0 1 4
N1 0 0 0 1 0 0
T1b 65 4 16 0 2 1
Not
Available 2 0 1 0 0 0

N0 63 4 15 0 2 1
N1 0 0 0 0 0 0
T1c 16 1 14 0 2 4
Not
Available 1 0 0 0 0 0

N0 15 1 14 0 2 4
N1 0 0 0 0 0 0
T2a 25 1 9 0 1 2
Not
Available 0 0 0 0 0 0

N0 24 1 9 0 1 2
N1 0 0 0 0 0 0
N1, M1b 1 0 0 0 0 0
T2b 4 0 9 1 0 0
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Table A2. Cont.

Stage AdCa AdCa/SqCC SqCC NSCLC Carcinoid Large Cell

Not
Available 0 0 0 0 0 0

N0 4 0 9 1 0 0
N1 0 0 0 0 0 0
T3 11 2 14 0 1 1
Not
Available 1 0 1 0 0 0

N0 10 2 13 0 1 1
N1 0 0 0 0 0 0
T4 6 0 5 0 0 0
Not
Available 1 0 2 0 0 0

N0 5 0 3 0 0 0
N1 0 0 0 0 0 0
Not
Available 10 0 1 0 0 0

Table A3. Performance of GLM for the ‘Top Five’ Biomarkers.

SUBGROUP DIAGNOSIS IMPDH2 HNRNPD PGAM1 PNMA1 MIDIP1

MALIGNANCY

Lung Metastasis 0.67 (4/6) 1 (8/8) 0.88 (7/8) 0.86 (6/7) 0.75 (6/8)
AdCa 0.48 (47/97) 0.81 (114/140) 0.74 (105/142) 0.68 (92/135) 0.8 (118/148)

Mixed AdCa/SqCC 0.6 (3/5) 0.75 (6/8) 0.71 (5/7) 0.63 (5/8) 0.67 (6/9)
SqCC 0.57 (24/42) 0.94 (61/65) 0.88 (58/66) 0.82 (53/65) 0.85 (57/67)

NSCLC (Unspecified) 0 (0/1) 0 (0/1) 0.5 (1/2) 0.5 (1/2) 0.5 (1/2)
Carcinoid 0 (0/4) 0.5 (4/8) 0.43 (3/7) 0.38 (3/8) 0.5 (4/8)

Small-Cell Lung Cancer 0.33 (2/6) 0.44 (4/9) 0.44 (4/9) 0.44 (4/9) 0.56 (5/9)
Total Performance 0.5 (80/161) 0.82 (197/239) 0.76 (183/241) 0.7 (164/234) 0.78 (197/251)

BENIGN

Granuloma 0.46 (6/13) 0.96 (24/25) 0.77 (20/26) 0.77 (20/26) 0.88 (23/26)
Hamartoma 0.5 (3/6) 0.86 (12/14) 0.75 (9/12) 0.92 (12/13) 0.92 (12/13)

Fibrosis/Scarring/Inflammation 0.5 (12/24) 0.72 (33/46) 0.74 (34/46) 0.76 (31/41) 0.76 (34/45)
Infection/Pneumonia 0.33 (1/3) 1 (3/3) 1 (3/3) 1 (3/3) 1 (4/4)

Other Non-Malignant Nodule 0.17 (1/6) 0.86 (6/7) 0.83 (5/6) 0.83 (5/6) 0.71 (5/7)
Total Performance 0.44 (23/52) 0.82 (78/95) 0.76 (71/93) 0.8 (71/89) 0.82 (78/95)

CONTROL

Stable or Resolving 0.73 (72/99) 0.52 (71/137) 0.5 (72/143) 0.59 (86/145) 0.59 (86/147)
Interval Increase in Size 0.25 (1/4) 0.33 (2/6) 0.83 (5/6) 0.5 (3/6) 0.67 (4/6)
New Nodule/Unknown

Growth 0.66 (103/156) 0.5 (113/228) 0.6 (144/239) 0.65 (156/241) 0.66 (159/242)

Mix of New and Stable
Nodules 1 (1/1) 1 (1/1) 1 (1/1) 0 (0/1) 1 (1/1)

No Finding 0.7 (21/30) 0.27 (13/48) 0.56 (24/43) 0.59 (29/49) 0.57 (26/46)
Total Performance 0.68 (198/290) 0.48 (200/420) 0.57 (246/432) 0.62 (274/442) 0.62 (276/442)
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Table A4. In Table A1, we show the breakdown of pathological tumor stage for the malignancy
cases comprising the Training, Validation 1, and Validation 2 cohorts. Not Available refers to the
availability of the staging category within the patient’s medical information uploaded to Epic.

Training Cohort Validation 1 Cohort Validation 2 (Testing) Cohort
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n = 565 n = 260 n = 305 n = 93 n = 48 n = 45 n = 183 n = 84 n = 99

Gender

Male (%) 242
(42.8%)

105
(40.4%)

137
(44.9%)

38
(40.9%)

22
(45.8%)

16
(35.6%)

73
(40.0%)

34
(40.5%)

39
(39.3%)

Age, years Median 67 64 69 67 63 71 67 65 68

Minimum 41 48 41 47 47 51 44 53 44

Maximum 87 82 87 83 77 83 88 82 88

Diagnosis

NSCLC 159 1 158 31 0 31 55 0 55

AdCa 1 103 0 21 0 36

SqCC 0 47 0 9 0 17

AdCa/SqCC Mixed 0 7 0 1 0 1

NSCLC (Not Specified) 0 1 0 0 0 1

Malignancy, non-NSCLC 22 1 21 2 0 2 5 0 5

Carcinoid (G1/G2) 0 6 0 1 0 1

Large-Cell/SCLC (G3) 0 9 0 1 0 2

Metastasis (Not Lung
Cancer) 1 6 0 0 0 2

Benign 73 6 67 6 2 4 22 3 19

Granuloma 1 21 0 1 1 5

Hamartoma 0 12 0 0 0 2

Fibrosis/Scar/Inflammation 5 25 2 2 2 10

Infection/Org. Pneumonia 0 4 0 0 0 1

Other 0 5 0 1 0 1

Not Assessed * 311 252 59 54 46 8 101 81 20

Stable or Resolving 74 18 17 5 32 8

Interval Increase in Size 2 3 0 0 0 1

New Nodule/Unknown
Growth 143 36 20 3 39 11

Mix of New/Stable
Nodules 1 0 0 0 0 0

No Nodule/Non-Specified 32 2 9 0 10 0

* Patient did not undergo surgery, and thus, results are based on radiological presentation.
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