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Simple Summary: Liver cancer is a prevalent gastrointestinal carcinoma and is closely linked to
chronic inflammation, including both hepatic and extrahepatic inflammations. However, the genetic
association between inflammatory traits and liver cancer has not been systematically investigated. In
this study, we aimed to explore the potential causal associations between immune-mediated diseases,
circulating inflammatory biomarkers and cytokines, and liver cancer using Mendelian randomization
(MR) analysis. To our best knowledge, this is the most comprehensive MR study on this topic to
date, involving more than 200 inflammatory traits. This is an important contribution to the field, as it
provides insights into the potential causal inflammatory factors of liver cancer.

Abstract: Liver cancer is closely linked to chronic inflammation. While observational studies have
reported positive associations between extrahepatic immune-mediated diseases and systemic inflam-
matory biomarkers and liver cancer, the genetic association between these inflammatory traits and
liver cancer remains elusive and merits further investigation. We conducted a two-sample Mendelian
randomization (MR) analysis, using inflammatory traits as exposures and liver cancer as the outcome.
The genetic summary data of both exposures and outcome were retrieved from previous genome-
wide association studies (GWAS). Four MR methods, including inverse-variance-weighted (IVW),
MR-Egger regression, weighted-median, and weighted-mode methods, were employed to examine
the genetic association between inflammatory traits and liver cancer. Nine extrahepatic immune-
mediated diseases, seven circulating inflammatory biomarkers, and 187 inflammatory cytokines were
analyzed in this study. The IVW method suggested that none of the nine immune-mediated diseases
were associated with the risk of liver cancer, with odds ratios of 1.08 (95% CI 0.87–1.35) for asthma,
0.98 (95% CI 0.91–1.06) for rheumatoid arthritis, 1.01 (95% CI 0.96–1.07) for type 1 diabetes, 1.01
(95% CI 0.98–1.03) for psoriasis, 0.98 (95% CI 0.89–1.08) for Crohn’s disease, 1.02 (95% CI 0.91–1.13)
for ulcerative colitis, 0.91 (95% CI 0.74–1.11) for celiac disease, 0.93 (95% CI 0.84–1.05) for multiple
sclerosis, and 1.05 (95% CI 0.97–1.13) for systemic lupus erythematosus. Similarly, no significant
association was found between circulating inflammatory biomarkers and cytokines and liver cancer
after correcting for multiple testing. The findings were consistent across all four MR methods used
in this study. Our findings do not support a genetic association between extrahepatic inflammatory
traits and liver cancer. However, larger-scale GWAS summary data and more genetic instruments are
needed to confirm these findings.
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1. Introduction

Liver cancer is a common digestive system malignancy, with approximately 906,000 new
cases and 830,000 deaths reported worldwide in 2020 [1]. It has been determined that
liver cancer is derived from sustained hepatic inflammation caused by a suite of factors
including viral hepatitis, alcohol consumption, and/or fatty liver disease [2]. Moreover,
mounting evidence has suggested that extrahepatic chronic inflammations also increase
the risk of liver cancer. For instance, previous epidemiological studies have reported a
positive association between periodontitis and the risk of liver cancer [3,4]. A population-
based cohort study showed that psoriasis, psoriatic arthritis, and rheumatoid arthritis were
associated with an increased risk of liver cirrhosis [5]. Based on the UK Biobank cohort,
He et al. reported that inflammatory bowel disease and its subtypes Crohn’s disease and
ulcerative colitis are significantly associated with an elevated risk of liver cancer [6]. On
the other hand, in addition to liver enzymes, numerous blood inflammatory biomarkers
have been found to be associated with liver cancer risk. For example, Zhu et al. found that
serum levels of C-reactive protein (CRP) are associated with the risk of liver cancer in a
dose–response manner [7]. A similar positive association was observed between levels
of IL6 and liver cancer [8]. These findings suggested that chronic inflammation is closely
involved in hepatic tumorigenesis.

Despite mounting evidence from previous observational studies, it is hard to conclude
that chronic immune-mediated diseases and inflammatory biomarkers are causal with the
onset of liver cancer because of potential unmeasured confounders or reverse causality
in observational studies. The inherent pitfalls of observational studies to some extent
impede a full understanding of the association between chronic extrahepatic inflammation
and liver cancer, which merits further investigations from other perspectives. Mendelian
randomization (MR) analysis that leverages genetic information can serve as a valuable
complement to observational studies [9] and has been widely used to explore the causal
associations between exposures and diseases [10–13].

To date, many MR analyses have been performed to assess the association between in-
flammatory biomarkers and diseases [11,14–16]. However, only a few MR analyses have been
conducted to assess the association between inflammation and liver cancer [7,17]. Moreover,
these MR studies considered only a limited number of inflammatory biomarkers. Given the
close relationship between chronic inflammations and liver cancer, it is necessary to system-
atically examine their impact on liver cancer. To this end, in the current study, we applied
two-sample MR methods to assess the genetic associations of ten extrahepatic immune-
mediated diseases, seven circulating inflammatory biomarkers (e.g., CRP and leukocyte
count), and 228 blood inflammatory cytokines with the risk of liver cancer. Our findings not
only provide important complementary information to previous epidemiological studies
but also offer novel insights into the pathogenesis of liver cancer.

2. Methods
2.1. Study Design

We conducted a two-sample MR analysis, where the extrahepatic immune-mediated
diseases were considered primary exposures, and circulating inflammatory biomarkers
and cytokines were secondary exposures. The outcome of interest was liver cancer. For this
analysis, we utilized GWAS summary data of the exposures and the outcome from study
populations with the same ethnic background (i.e., Europeans), but without any overlap in
individuals, to ensure their independence.
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2.2. GWAS of Exposures

We examined ten immune-mediated diseases in this study, namely asthma [18],
rheumatoid arthritis [19], type 1 diabetes [20], psoriasis [21], Crohn’s disease [22], ulcerative
colitis [22], celiac disease [23], multiple sclerosis [24], systemic lupus erythematosus [25],
and periodontitis [26]. We also retrieved GWAS summary data of seven circulating inflam-
matory biomarkers, including CRP [27], leukocyte count, eosinophil count, basophil count,
neutrophil count, lymphocyte count, and monocyte count [28]. The details of the selected
GWAS for the exposures are presented in Supplementary Tables S1 and S2. All selected
GWASs were conducted on individuals of European ancestry, with large sample sizes, and
quality control procedures were implemented. Further information on these GWASs can be
found in the respective studies.

For circulating inflammatory cytokines, we retrieved the GWAS summary data from a
plasma proteome GWAS study that involved 4907 aptamers in 35,559 Icelanders [29]. All
plasma samples were measured with the SomaScan version 4 assay (SomaLogic), which
contains 5284 aptamers providing a measurement of the relative binding of the plasma
sample to each of the aptamers in relative fluorescence units. The genotype information
was derived from Illumina SNP chips, long-range phased, and imputed based on the
sequenced dataset. After quality control processes, 27.2 million imputed variants with
minor allele frequency (MAF) > 0.01% and imputation information > 0.9 were analyzed in
GWAS. Each of the 4907 aptamers that were tested underwent rank-inverse normalization,
with adjustment for age, sex, and sample age for both the deCODE Health study and the
remaining studies. The resulting residuals were then standardized again using rank-inverse
normalization and used as phenotypes for genome-wide association testing via a linear
mixed model implemented in BOLT-LMM. Our study retrieved GWAS summary data of
228 inflammatory cytokines, including 37 chemokines, 82 interleukins, 44 growth factors,
22 interferons, 37 tumor necrosis factors (TNF), and 6 other types.

2.3. GWAS of Outcome

The summary genetic statistics of liver cancer were retrieved from the FinnGen re-
search project (https://r7.finngen.fi/, accessed on 20 January 2023; Version R7). FinnGen
is a public–private partnership project combining genotype data from Finnish biobanks
and digital health record data from Finnish health registries. The GWAS for liver cancer,
defined as malignant neoplasm of the liver and intrahepatic bile ducts in the FinnGen study,
included 518 cases and 238,678 controls without any type of cancer. More information about
the GWAS in the FinnGen study can be found on their website
(https://finngen.gitbook.io/documentation/, accessed on 20 January 2023). Briefly, DNA
samples were genotyped with Illumina (Illumina Inc., San Diego, CA, USA) and Affymetrix
arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). In sample-wise quality control
steps, individuals with ambiguous gender, high genotype missingness (>5%), excess het-
erozygosity, and non-Finnish ancestry were excluded. In variant-wise quality control steps,
variants with high missingness (>2%), low HWE p-value (<1 × 10−6), and low minor allele
count (<3) were excluded. Age, sex, 10 principal components, and FinnGen 1 or 2 chip or
legacy genotyping batch were used as covariates in the GWAS, which was implemented
using Regenie software (V2.2.4).

2.4. Mendelian Randomization Analysis
2.4.1. Selection of Instrumental Variables

We used a multistep process to select the genetic instrumental variables (IVs). First, we
extracted SNPs that were associated with the exposures at the conventional genome-wide
association study (GWAS) threshold (p < 5 × 10−8). Next, we clumped the SNPs based on
linkage disequilibrium (LD) estimates from the European samples in the 1000 Genomes
project, using an LD threshold of R2 < 0.01 and a window size of 10,000 kb. We then
extracted the corresponding beta coefficients and standard errors of the selected SNPs from
the GWAS of liver cancer. For SNPs that were not present in the GWAS of liver cancer,

https://r7.finngen.fi/
https://finngen.gitbook.io/documentation/
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we retrieved data on an SNP proxy with an LD estimate of R2 > 0.8 with the requested
SNP. Finally, we corrected or excluded ambiguous SNPs with inconsistent alleles and
palindromic SNPs with ambiguous strands. To ensure the reliability of IVs, we calculated
the F-statistics to assess the strength of the relationship between IVs and phenotype using
the following equation [30]:

F =
R2/k

(1 − R2)/(n − k − 1)

where R2 is the proportion of phenotype that can be explained by the genetic information, k
is the number of instruments used in the model, and n is the sample size. An F-statistic > 10
indicates the suitability of the IVs, namely, meeting the first assumption of MR analysis [31].

2.4.2. Statistical Analysis and Sensitivity Analysis

We conducted a two-sample MR analysis using the following steps to investigate the
potential causal relationship between immune-mediated diseases and circulating inflam-
matory biomarkers and liver cancer [32]: (1) harmonizing the exposure data and outcome
data by matching the SNPs; (2) using the inverse-variance-weighted (IVW) method to test
for between-SNP heterogeneity, with a p value greater than 0.05 for the Q-statistic indicat-
ing an absence of heterogeneity; (3) employing the MR-Egger regression intercept test to
identify horizontal pleiotropy; (4) using the IVW method to examine the genetic association
between exposure and outcome. We also conducted sensitivity analyses using MR-Egger
regression, weighted-median, and weighted-mode methods. The MR-Egger regression is
based on the InSIDE (INstrument Strength Independent of Direct Effect) assumption and
consists of three parts: (i) a test for directional pleiotropy, (ii) a test for a causal effect, and
(iii) an estimate of the causal effect [33]. The weighted-median and weighted-mode meth-
ods are more robust than IVW and MR-Egger methods when over 50% of SNPs are invalid
instruments [34,35]. We also calculated the statistical power for MR analysis using the
mRnd website (https://shiny.cnsgenomics.com/mRnd/, accessed on 20 March 2023) [36].

For inflammatory cytokines, we first assessed their relationship with liver cancer using
the IVW method with multiple IVs or the Wald ratio test with only one IV. Cytokines
that showed significant associations with liver cancer after correcting for multiple testing
were further validated using MR-Egger regression, weighted-median, and weighted-mode
methods. To validate the results, we performed a repeated analysis using GWAS of liver
cancer from the UK Biobank, in which 539 cases and 419,992 controls were included.
(https://pan.ukbb.broadinstitute.org/phenotypes/index.html, accessed on 16 May 2023).

All statistical analyses were performed using the R program (v4.1.1). MR analysis
was performed using TwoSampleMR and MendelianRandomization packages. The Bonferroni
method was employed to correct for multiple testing.

3. Results
3.1. Association between Immune-Mediated Diseases and Liver Cancer

In this study, we utilized a different number of IVs for each immune-mediated disease,
with 225, 117, 131, 84, 106, 76, 11, 55, and 48 IVs used for asthma, rheumatoid arthritis, type
1 diabetes, psoriasis, Crohn’s disease, ulcerative colitis, celiac disease, multiple sclerosis,
and systemic lupus erythematosus, respectively (Table 1). We excluded periodontitis from
the analysis due to the unavailability of valid IVs. All nine exposures had mean-F statistics
greater than 10, suggesting a low probability of weak IV bias. Additionally, there was no
between-SNP heterogeneity or horizontal pleiotropy detected for any of the exposures
using the IVW method or the MR-Egger regression intercept test (Table 1). The statistical
power was greater than 95% for detecting an odds ratio (OR) less than 0.9 or greater than
1.1, which decreased to 24–88% when identifying an OR between 0.9 and 1.1.

https://shiny.cnsgenomics.com/mRnd/
https://pan.ukbb.broadinstitute.org/phenotypes/index.html
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Table 1. Statistics of Mendelian randomization analysis for immune-mediated diseases and liver cancer.

Exposures No. of IV F-Statistics

Between-SNP
Heterogeneity

Horizontal
Pleiotropy Statistical Power to

Detect OR <0.9 or
>1.1 (%)

Statistical Power
to Detect OR

between 0.9 and
1.1 (%)Q-Value p Value Egger-

Intercept p Value

Immune-
mediated
diseases

Asthma 225 588.9 217.8 0.453 0.0043 0.785 100 88

Rheumatoid
arthritis 117 98.5 114.4 0.470 −0.0093 0.431 97 24

Type 1
diabetes 131 674.5 112.0 0.809 0.0038 0.732 100 80

Psoriasis 84 255.6 79.7 0.104 −0.019 0.331 99 41

Crohn’s
disease 106 322.1 100.4 0.306 −0.0189 0.385 100 64

Ulcerative
colitis 76 98.5 73.1 0.284 0.0019 0.936 100 84

Celiac
disease 11 21.5 7.7 0.655 −0.0635 0.465 100 32

Multiple
sclerosis 55 266.8 42.3 0.852 −0.0361 0.217 100 55

Systemic
lupus
erythe-

matosus

48 198.9 54.0 0.225 −0.0352 0.218 100 62

Circulating
inflamma-

tory
biomarkers

C-reactive
protein 291 458.9 365.2 0.002 −0.0036 0.674 100 85

Leukocyte
count 185 225.3 209.1 0.099 0.0224 0.095 100 87

Eosinophil
count 208 198.5 203.5 0.556 −0.0028 0.822 100 90

Basophil
count 83 110.3 97.8 0.112 −0.0027 0.883 100 71

Neutrophil
count 162 196.6 194.3 0.038 −0.0024 0.871 100 80

Lymphocyte
count 193 288.3 186.8 0.592 0.0013 0.922 100 84

Monocyte
count 266 300.7 282.3 0.223 −0.0070 0.447 100 92

IV, instrumental variables; OR, odds ratio.

According to the IVW method, there was no significant association between any of
the nine immune-mediated diseases and the risk of liver cancer. The OR estimates were as
follows: 1.08 (95% CI 0.87–1.35) for asthma, 0.98 (95% CI 0.91–1.06) for rheumatoid arthritis,
1.01 (95% CI 0.96–1.07) for type 1 diabetes, 1.01 (95% CI 0.98–1.03) for psoriasis, 0.98
(95% CI 0.89–1.08) for Crohn’s disease, 1.02 (95% CI 0.91–1.13) for ulcerative colitis, 0.91
(95% CI 0.74–1.11) for celiac disease, 0.93 (95% CI 0.84–1.05) for multiple sclerosis, and
1.05 (95% CI 0.97–1.13) for systemic lupus erythematosus (Figure 1). The results obtained
using the other three MR methods, namely MR-Egger regression, weighted-median, and
weighted-mode, were consistent with those of the IVW method. Figure 2 displays the
scatter plots depicting the SNP effects on both the exposures and the outcome.
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Figure 1. Genetic association between immune-mediated diseases and liver cancer according to
Mendelian randomization analysis (IV, instrumental variable; IVW, inverse-variance-weighted method).

3.2. Association between Circulating Inflammatory Biomarkers and Liver Cancer

Table 1 displays the number of instrumental variables (IVs) used for each inflammatory
biomarker in the MR analysis: 291 for CRP, 185 for leukocyte count, 208 for eosinophil
count, 83 for basophil count, 162 for neutrophil count, 193 for lymphocyte count, and 266 for
monocyte count. We observed no evidence of weak-IV bias based on the mean F-statistics,
and there was no significant horizontal pleiotropy for any of the exposures. However, we
detected significant between-SNP heterogeneity for CRP (p = 0.002) and neutrophil count
(p = 0.038). The statistical power was high, with >70% power to detect an odds ratio (OR)
between 0.9 and 1.1 and >95% power to detect an OR > 1.1 or <0.9.

Our MR analysis did not reveal any significant associations between circulating in-
flammatory biomarkers and liver cancer, with an OR of 1.13 (95% CI 0.81–1.57) for CRP,
0.82 (95% CI 0.59–1.14) for leukocyte count, 0.82 (95% CI 0.63–1.07) for eosinophil count,
1.53 (95% CI 0.93–2.51) for basophil count, 0.80 (95% CI 0.56–1.15) for neutrophil count,
0.81 (95% CI 0.59–1.10) for lymphocyte count, and 0.93 (95% CI 0.74–1.16) for monocyte
count (Figure 3). The results were consistent across the other three MR methods. Figure 4
displays scatter plots of SNP effects on both exposures and outcomes.
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Figure 2. Scatter plot showing the SNP effects on both immune-mediated diseases and liver cancer
(The gray error bars denote the 95% confidence intervals of the effects).

3.3. Association between Circulating Inflammatory Cytokines and Liver Cancer

After performing quality control, we included 187 inflammatory cytokines (30 chemokines,
72 interleukins, 31 growth factors, 17 interferons, 31 TNFs, and 6 others) for MR analysis
(Supplementary Table S3). Among these, 166 cytokines had two or more valid genetic
variants, while the remaining 21 cytokines only had one valid IV. We observed signif-
icant associations between the risk of liver cancer and three cytokines: interleukin-23
receptor (OR = 0.60, 95% CI 0.38–0.95, p = 0.028), interleukin-27 receptor subunit alpha
(OR = 1.16, 95% CI 1.01–1.13, p = 0.036), and C-X-C motif chemokine 16 (OR = 0.78, 95% CI
0.61–1.00, p = 0.046) (Figure 5; Supplementary Table S3). However, these associations were
not statistically significant after Bonferroni correction for multiple testing (0.05/187). The
repeated MR analysis using GWAS summary data from the UK Biobank yielded consistent
results compared to our main results (Supplementary Table S4). Although a few suggestive
association was detected, for example, CXCL17 (OR = 1.45, 95 CI% 1.06–1.79, p = 0.011), no
significant association remained after correcting for multiple testing.
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Figure 3. Genetic association between circulating inflammatory biomarkers and liver cancer according
to Mendelian randomization analysis (CRP, C-reactive protein; IV, instrumental variable; IVW, inverse-
variance-weighted method). 

4 

 

 

 

 

 

 

 

 

 

Figure 4. Scatter plot showing the SNP effects on both circulating inflammatory biomarkers and liver
cancer (The gray error bars denote the 95% confidence intervals of the effects).
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Figure 5. Genetic association between circulating inflammatory cytokines and liver cancer according
to Mendelian randomization analysis (We only show the point estimate in this plot. The red dotted
line denotes the threshold of p value < 0.05).

4. Discussion

In this study, we conducted a comprehensive analysis of the genetic association
between a range of chronic inflammatory diseases, biomarkers, and cytokines with the
risk of liver cancer. Our study included nine extrahepatic inflammatory diseases, seven
circulating inflammatory biomarkers, and 187 inflammatory cytokines, making it the most
comprehensive investigation to date on the impact of systemic inflammation on liver cancer.
Although we found three cytokines that showed a potential association with liver cancer
at a significance threshold of p < 0.05, these associations did not remain significant after
correcting for multiple testing using the Bonferroni method. Therefore, the genetic evidence
did not support any causal relationship between inflammatory traits and liver cancer risk.
These findings suggest that the previously reported correlations from observational studies
might be confounded.

Numerous risk factors for liver cancer have been extensively investigated and well-
determined [37], which has greatly contributed to the prevention of liver cancer in the
general population. However, it is important to note that risk factors are not equivalent
to etiologies, and only a few risk factors, such as viral hepatitis and aflatoxin, have been
defined as etiologies for liver cancer. Understanding the etiologies for liver cancer is crucial
to comprehending the disease pathogenesis and developing cost-effective approaches to
prevent the development of this lethal disease. Nevertheless, conventional observational
studies, including prospective cohort studies, may have inherent limitations in discovering
etiology. Confounding, reverse causation, and various biases can affect the associations to
varying degrees, and even with careful study design and statistical adjustment, incorrect
causal inference is possible [38]. In comparison, MR analysis has several strengths: it is
immune to confounders since genotypes are allocated during meiosis, less affected by
information bias as genotype information can be accurately obtained through sequencing,
and easy to perform as it only requires GWAS summary data instead of individual data [39].
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Furthermore, MR interpretation of a statistically significant association as evidence that the
exposure has a causal effect on the outcome is an important feature [40]. In this regard, MR
analysis can serve as a valuable complement to observational studies.

Since liver cancer is closely linked to chronic inflammation [41], we applied a set of MR
methods to examine the association between inflammatory traits and liver cancer and aimed
to determine potential causal inflammatory factors for liver cancer. Previous population-
based studies have investigated the association between certain inflammatory traits and
liver cancer. For instance, a systematic review and meta-analysis of epidemiological studies
reported a 90% increased risk of liver cancer in patients with psoriasis compared to healthy
controls [42]. An umbrella meta-analysis reported that Crohn’s disease was associated
with a 2.18-fold increased risk of liver cancer [43]. Similar positive associations were
observed for type 1 diabetes and systemic lupus erythematosus [44,45]. Kim et al. reported
a significantly negative association (multivariable-adjusted hazard ratio = 0.80) between
asthma and liver cancer [46]. However, using MR analyses, we did not detect a genetic
association between these inflammatory diseases and liver cancer. Given that complex
diseases such as liver cancer and Crohn’s disease are partly determined by genetic factors,
the null genetic association suggests that there may be no overlap in the genetic architecture
between these two conditions.

A similar null association was observed between genetically predicted inflammatory
biomarkers and cytokines and liver cancer. For example, our MR analysis did not find a
genetic association between genetically predicted CRP and liver cancer, although previ-
ous epidemiological studies have identified CRP as an independent risk factor for liver
cancer [7,47]. Our MR estimate for CRP was consistent with a previous MR study [7].
Similarly, we found no genetic association between vascular endothelial growth factor
(VEGF) and liver cancer, consistent with the results of a study by Wu et al. [17], though
this cytokine has been demonstrated to be involved in hepatic tumorigenesis [48]. The
lack of association between circulating inflammatory traits and liver cancer suggests that
these biomarkers were unlikely to be the cause of liver cancer, but rather acted as response
markers to environmental risk factors (such as smoking, alcohol consumption, aging, and
obesity), which can induce chronic low-grade inflammation. However, this hypothesis re-
quires further validation because only a small proportion of the variance of the biomarkers
can be explained by the genetic instrumental variable [7].

The main strength of our study is that it is the most comprehensive study to date
using MR analysis to examine the association between over 200 inflammatory traits and
liver cancer. However, we acknowledge several limitations of our study. First, we obtained
GWAS summary data from the FinnGen project, which includes only 518 liver cancer
cases. While the sample size was large, a small number of cases can limit the statistical
power of GWAS, potentially leading to missed genetic signals [39]. We should bear in
mind that the MR estimates were largely depended on robust IVs. Unfortunately, there
is no large-scale GWAS with a standardized design for liver cancer to date. Second, only
participants of European ancestry were included in this study, which compromise the
generalization of our results to other ancestry populations. Third, the associations between
inflammatory traits and liver cancer may be varied across liver cancer etiologies. Due to
the lack of GWAS summary data for etiology-specific liver cancer, we did not assess the
influence of liver cancer etiologies in this study. Moreover, we cannot assess the associations
between exposures and liver cancer according to its histological subtypes due to the data
unavailability. Finally, our estimates might also be subject to the inherent shortcomings
of MR analysis such as selection bias [49]. Genetic variants which are related to specific
phenotypes might also be related to participation [50]. As such, individuals at high genetic
risk for inflammatory diseases may be more likely to drop out of the cohort due to a higher
susceptibility to these conditions than those at low genetic risk.
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5. Conclusions

To conclude, our comprehensive MR analysis did not reveal any evidence of a causal
effect between genetically predicted immune-mediated diseases and circulating inflam-
matory biomarkers and cytokines and liver cancer. However, due to the limitations of
our study, including a relatively small number of liver cancer cases and the use of only
European ancestry populations, our findings should be confirmed by further studies using
larger-scale GWAS summary data and more genetic instruments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15112930/s1, Table S1. GWAS information for eight
immune-mediated diseases. Table S2. GWAS information for circulating inflammatory biomarkers.
Table S3. Associations of circulating inflammatory cytokines with liver cancer according to Mendelian
randomization analysis. Table S4. Associations of inflammatory traits with liver cancer (UKBB)
according to Mendelian randomization analysis.
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