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Abstract: With the advancement of micro- and nanomanufacturing technologies, electronic com-
ponents and chips are increasingly being miniaturized. To automatically identify their packaging
materials for ensuring the reliability of ICs, a hybrid deep learning framework termed as CNN–
transformer interaction (CTI) model is designed on IC packaging images in this paper, in which
several cascaded CTI blocks are designed to bidirectionally capture local and global features from
the IC packaging image. Each CTI block involves a CNN branch with two designed convolutional
neural networks (CNNs) for CNN local features and a transformer branch with two transformers
for transformer global features and transformer local-window features. A bidirectional interaction
mechanism is designed to interactively transfer the features in channel and spatial dimensions be-
tween the CNNs and transformers. Experimental results indicate that the hybrid framework can
recognize three types of IC packaging materials with a good performance of 96.16% F1-score and
97.92% accuracy, which is superior to some existing deep learning methods.

Keywords: IC packaging material recognition; transformer; convolutional neural network;
bidirectional interaction

1. Introduction

Nowadays, integrated circuit (IC) components and chips are widely used in micro-
and nanomanufacturing, and their reliability highly influences the regular functions of the
manufacturing equipment. IC packaging isolates the core circuits in the ICs from external
environments to ensure IC reliable functions, which is commonly made of metal, ceramic,
and plastic materials [1]. Decapsulation with preservation of the internal structures for
ICs is essential for the failure analysis of IC chips [2], which is precisely performed using
techniques such as nano-scale microscopy and precise mechanical cutting. It is noted
that IC packaging materials necessitate unique decapsulation approaches. For instance,
plastic packages are typically decapsulated by chemical agents, such as concentrated
sulfuric acid, while metal packages may be decapsulated by a laser-based technology, and
ceramic packages sealed with an epoxy often require mechanical decapsulation by utilizing
sophisticated cutting techniques. Improper decapsulation methods can lead to inaccurate
outcomes of the failure analysis and inflated costs. So, identification of IC packaging
materials is performed before its decapsulation. However, it is commonly implemented by
human eyes, which brings a large number of human labors. Consequently, it is preferrable
to develop an automatic method for the identification of IC packaging materials.

Some analysis methods have been widely used to analyze the materials of IC pack-
ages, involving X-ray fluorescence spectrometry, electrochemical impedance spectroscopy,
differential scanning calorimetry, and nuclear magnetic resonance. These methods will
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meet several issues during the material identification of IC packages, although almost no
errors emerge for their identifications. The first is that professional knowledge is required
for analytic devices and material science. Second, a large amount of time is required for
material analysis. Third, sampling inspection is usually utilized due to its low efficiency.
Fourth, these analytic devices are significantly expensive. Nowadays, with the devel-
opment of computer vision, automatic optical inspection has been widely employed in
many industrial inspections due to its advantages of no contact, low economic cost, high
efficiency, and a little professional knowledge. In particular, with the rapid development
of deep learning, it has been successfully employed in the inspection of IC packaging.
Hu et al. [3] designed a hierarchical convolutional neural network (CNN) to classify IC
components, in which multiple deep features were efficiently merged in Convolutional
Auto-Encoder (CAE) layers to reduce computational complexity. Cai et al. [4] designed a
novel cascaded CNN for Surface Mount Technology (SMT) solder joint inspection, in which
each layer adaptively learned the Region of Interest (ROI) of the IC solder joint image.
Guo et al. [5] modified the YOLOv4 network with several strategies to identify electronic
components in real time. One was to eliminate the downsampling stages within the feature
pyramid framework. The other was to reformulate the loss function by the weighted sum
of classification loss, confidence loss and localization loss. Ram et al. [6] developed an
improved deep CNN to identify the defective wafers. They employed resampling to solve
the problem of data imbalance and various optimizers to train the model. An et al. [7]
designed a transformer-based classification approach to detect PCB defects, termed Label
Robust and Patch Correlation Enhanced ViT (LPViT). Kao et al. [8] designed a multi-scale
GAN model with an embedded transformer for surface defect inspection of IC packages,
which incorporated a novel feature extraction scheme and a cross-scale feature fusion
module into a multi-scale CNN encoder. Feng et al. [9] developed a transformer-based
deep learning model for the classification of PCBs, which utilized masked region prediction
to discern relationships among different areas in the features. Chen et al. [10] integrated a
feature pyramid structure with the transformer as the backbone into YOLOv5 to effectively
classify PCB components.

Although these deep learning methods can easily implement the identification task
by capturing the feature differences between different IC components or between the
defect-free and defective IC packages, they may not be suitable for the identification of IC
packaging materials. This is because IC components and their surface defects are quite
different in their appearances, such as shapes and sizes. Comparatively, IC components
made of different packaging materials usually exhibit highly similar overall appearances,
necessitating distinction through a combination of features such as external structure,
shape, and color. For example, plastic packages and metal packages typically have longer
and fewer pins [11], with the latter also featuring identifiers that are laser-marked and
embedded into the package [12], whereas ceramic packages have shorter and denser pins.
Moreover, these comprehensive characteristics are possibly subtly different from each other.
Thus, automatic identification of IC packaging materials is significant and challenging
before IC decapsulation.

In this paper, a hybrid deep learning framework is designed for automatic identi-
fication of IC packaging materials. To capture subtle appearance differences and some
similar characteristics between IC packages with different materials, a CNN branch with
two designed CNNs and a transformer branch with two transformers are constructed to
focus on local/global features of IC packages with different materials, respectively. Since
several characteristics of IC packages with various materials are related to each other, a
bidirectional interaction strategy is designed to interactively transfer local/global features
in channel and spatial dimensions between the CNN branch and the transformer branch.
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2. Methodology
2.1. Architecture of the Proposed Framework

Inspired by Efficientnet [13] and CoatNets [14], the proposed hybrid deep learning
framework is designed as a feature pyramid architecture, which is composed of a convolu-
tional stem, a feature-extracting backbone network, and a classification head. As shown
in Figure 1, the convolutional stem is successively composed of a 3 × 3 convolutional
layer, a 1 × 1 convolutional layer, and a 3 × 3 convolutional layer, which can expand
the feature channels and make global attention feasible. The backbone is composed of
several convolution–transformer interaction (CTI) blocks and four 2 × 2 convolutional
layers, which are alternatively deployed in the backbone. The backbone is designed to
comprehensively capture features from images of IC packages made of various materials.
The classification head produces a probability vector that corresponds to different types of
IC packaging materials, which is successively composed of a projection layer, a Sigmoid
layer, and a fully connected (FC) layer.
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Figure 1. Architecture of the proposed hybrid deep learning framework. The input image dimensions
are resized to 224 × 224. The convolutional stem expands the feature channels and makes global
attention feasible. The backbone comprises five downsampling modules involving different CTI
blocks ({2, 2, 6, 14, 2} successively) and a 2 × 2 convolutional layer with a stride of 2, serving as the
downsampling module to halve the dimensions of the feature maps. The classification head yields a
probability vector corresponding to the types of IC packaging materials.

Specifically, the feature channels for the input electronic component image are in-
creased from 3 to C1 through three successive convolution layers in the convolutional
stem. Then, the feature maps successively pass through five downsampling modules in
the backbone, each of which involves {2, 2, 6, 14, 2} CTI blocks successively and a 2 × 2
convolutional layer with the stride of 2. That is, the feature maps are downsampled with
the rates of {1, 2, 4, 8, 16} through five downsampling modules. And their channels are
progressively increased to C5, that is, {64, 96, 192, 384, 768}. Next, in the classification head,
the feature channels are expanded to 1280 after the feature maps pass through a projection
layer and a Sigmoid layer. Finally, the identification is achieved when the activated feature
maps pass through an FC layer in the classification head, which indicates metallic, plastic,
or ceramic package.

2.2. CTI Block

As illustrated in Figure 2, each CTI block is composed of three parallel 1 × 1 convolu-
tional layers, a CNN branch, and a transformer branch. Specifically, the feature maps pass
through three parallel 1 × 1 convolutional layers to generate the respective Q, K, and V
feature maps [15], which can not only fulfill the requirements of the transformer branch but
also add an extra feature extraction step for the CNN branch. Then, local/global features
can be extracted by the CNN/transformer branches, respectively. It is noted that there
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is a bidirectional interaction between the two branches, which bidirectionally transfers
local/global features to each other in channel and spatial dimensions. Finally, the feature
maps output from two branches are adaptively fused through weighted summarization.
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Figure 2. Sketch of the CTI block. The “C-to-T interaction” introduces the channel-wise features
learned by the CNN into the transformer branch in a probabilistic fashion. Similarly, the global
information learned by the transformer is integrated back into the CNN branch as probabilistic
feature maps through the “T-to-C interaction”.

As depicted in Figure 3, the transformer branch with a traditional transformer and a
local-window self-attention integrates global information into local information through
a broadcast mechanism. Concurrently, the CNN branch combines local and channel
information by means of the residual design. The outputs from the two branches are
then coalesced via a weighted summarization to produce the feature maps output by
the CTI block. This structure harnesses the global receptive field of the transformer to
capture wide-ranging dependencies and causes the CNN to focus on local spatial and
channel features.
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Figure 3. Detailed design of the two branches in the CTI block. The inter-channel feature maps
extracted by CNN-1 are multiplied with (that is, the symbol * in Figure 3) the value matrix in global
attention, compensating for the attention mechanism’s oversight of inter-channel information. The
feature maps from the fusion of global and local attentions serve as the output for the transformer
branch and as the input for T-to-C interaction, engaging in global information exchange with CNN-2.
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2.2.1. Transformer Branch

Inspired by the “Adaptive Attention Span” [16,17], the attention is augmented by a
masking function to enhance the transformer’s understanding of long-distance dependen-
cies in the transformer branch, which can encourage each patch in the self-attention module
to focus more on distant patches.

In the standard attention mechanism, for a given patch m, similarities bmn are calcu-
lated between this patch and other patches at positions n ∈ Sm, where S denotes the
contextual window for patch m, formulated as

bmn = QmKT
n (1)

where Q and K represent the Query and Key matrices, respectively. These are subjected to
an activation function to obtain the attention weights amn as

amn = so f tmax(bmn) =
exp(bmn)

∑m−1
i=m−s exp(bmi)

(2)

Then, they are multiplied by the Value matrix to derive the attention vector ym as

ym = ∑m−1
i=m−s amivi (3)

where vi is the Value matrix for the i-th patch. Subsequently, a masking function Me(x) is in-
troduced to the original attention to implement the “Adaptive Attention Span”, formulated
as

Me(x) = clamp
(

0, 1
e (x − Hx + He), 1

)
(4)

where H is a hyperparameter that governs the slope of the curve, which is empirically set to
0.5 in this work. e is differentiable and learnable. This masking function maps the distances
between distinct patches into the interval of [0,1], which is graphically depicted in Figure 4.
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Thus, a learnable token Z can be acquired by incorporating the masking function into
the original attention, formulated as

Z = MAttention(Q, K, V) =
Me(m−n) exp(bmn)

∑m−1
i=m−s Me(m−i) exp(bmi)

(5)

The token Z can possess an expanded receptive field to learn more robust global
dependencies. It is calculated from the QKV matrices only at the beginning of each
downsampling module and will replace the Q matrix for propagation in the subsequent
module, formulated as

Ẑ = MAttention(Z, K, V) (6)

Furthermore, to address the limitation of self-attention modeling capacity along the
channel dimension, the convolution-to-transformer interaction (C-to-T interaction) is de-
signed to transfer the v matrix in the local feature maps output by the CNN-1 in the CNN
branch to Ẑ, formulated as

V̂ = Ẑvv (7)
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As indicated in (7), v can be considered as the inter-channel attention weights. Thus,
the interacted Value matrix V̂ is combined with the transferred Q and K matrices to construct
the mask attention, i.e., global attention, formulated as

Xglobal = MAttention
(
Ẑq, Ẑk, V̂

)
(8)

To simultaneously capture local attention of distant dependencies, a local window
self-attention [18] is combined with global attention to acquire the outputs Xatt of the
transformer branch, formulated as

Xatt = Xlocal + Xglobal (9)

where Xlocal is the outputs of the local window self-attention, in which a 7 × 7 window is
employed to balance performance with efficiency.

2.2.2. CNN Branch

Q, K, and V feature maps severally pass through three parallel pooling layers, each
of which is followed by a 3 × 3 convolution layer. After activation by a ReLU layer, the
activated feature maps pass through a 3 × 3 convolution layer, a pixel-wise summation,
and a Sigmoid layer to produce a probability feature map v. This probability feature map
with the dimensions (B, C, 1, 1) reveals the correlational information of features in channel
dimension, where B stands for batch size and C for the number of channels of the features
maps. The acquisition of the probability feature map v can be formulated as

v = σ(W2δ(W1(z1))) + σ(W2δ(W1(z2))) + σ(W2δ(W1(z3)))
z1 = AvgPool(F)

z2 = MaxPool(F)
z3 = MixPool(F)

(10)

where F denotes the input feature maps. W1 ∈ RC0×C and W2 ∈ RC×C0 represent convolu-
tional kernels with C0 < C. σ() and δ() represent the Sigmoid/ReLU activation functions,
respectively. To extract key features from the feature maps in the spatial dimension, a
convolution-based spatial attention mechanism has been incorporated into the CNN-2
module, formulated as{

Xcnn = σ
(

f 7×7([AvgPool(v̂); MaxPool(v̂); x̂att])
)

v̂ = Fscale(F, v)
(11)

where x̂att represents a single-channel feature map obtained by the dimensionality reduc-
tion of Xatt that is transferred from the transformer branch via the transformer-to-CNN
interaction (T-to-C interaction). Thus, rich global information can be transferred into the
CNN branch. f 7×7 signifies a 7 × 7 convolution to boast a larger receptive field compared
with the 3 × 3 convolution, which can place a greater focus on the spatial dimension. Xcnn
denotes the output of the CNN branch.

2.2.3. Bidirectional Interaction

Typically, a self-attention mechanism employs a weight-sharing strategy across the
channels of features, with a focus on the weights in the spatial dimensions, which tends to
overlook inter-channel dependencies for weak dimensional modeling. This problem can
be solved by sharing channel-related weights [19]. That is, in our designed framework,
the CNN branch can offer “clues” to the transformer branch in the form of channel-wise
attention weights. Conversely, the outputs of the transformer branch can supplement the
CNN branch with spatial-attention clues. Thus, this bidirectional interactive design can
enhance the modeling capacities of the framework in the channel-spatial dimensions.

As mentioned in Sections 2.2.1 and 2.2.2, a bidirectional interaction interactively trans-
fers global/local feature maps between the two branches, involving a C-to-T interaction
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for local information transmission and a T-to-C interaction for global information trans-
mission. As indicated in (7), the C-to-T interaction transfers local feature information v
into the transformer branch to enrich probability distribution of local features along the
channel dimension. Similarly, the T-to-C interaction transfers global feature information
Xatt acquired by the transformer branch into the CNN branch to enrich the probability
distribution of global features along the spatial dimension, formulated as

x̂att = σ(MixPool(δ(MixPool(Xatt)))) (12)

where MixPool() [20] denotes an adaptive selection of maxpooling or average pooling.

3. Experiments and Discussion
3.1. Dataset and Experimental Environments

All the images for IC packages with different materials were acquired by the industrial
microscope (LV150N/LV100ND) in China Electronic Product Reliability and Environmental
Testing Research Institute (Guangzhou, China). During the image acquisition, the microscope
utilized the LV-S64 6 × 4 stage (Stroke: 150 × 100 mm with glass plate, ESD compatible) to
place the electronic components, the LV-TI3 trinocular eyepiece tube ESD (Erected image,
FOV: 22/25) as the eyepiece tube, the LV-NU5 U5 ESD as the objective revolver, and the
LV-UEPI-N as the built-in reflected light illuminator. All the parameters of the microscope
were elaborately configured to achieve sufficiently clear visibility of the markings on the IC
packages. Then, 945 IC packaging images of 420 × 400 to 1280 × 960 pixels were acquired for
three types of packaging materials such as metallic, ceramic, and plastic packages. Specifically,
IC packages with each type of material involve 315 samples, some examples of which are
illustrated in Figure 5. Different from pixel-level annotations, only category annotations are
required for this study. Since all the acquired images were stored in three folders according to
packaging materials during the image acquisition, we could directly utilize the folder names
as the image labels, which indicated that no additional labeling task was required.
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markings on the IC packages. Then, 945 IC packaging images of 420 × 400 to 1280 × 960 
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only category annotations are required for this study. Since all the acquired images were 
stored in three folders according to packaging materials during the image acquisition, we 
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tional labeling task was required. 

    

     

    
Figure 5. Some examples of IC packages with different materials. The first/second/third rows refer 
to IC packages with plastic/ceramic/metallic materials, correspondingly. 

All the acquired images were rotated by ±30° and ±15° for data augmentation. Thus, 
4725 images were utilized to construct the experimental dataset for the identification of IC 
packaging materials, which were all resized to 224 × 224 pixels to standardize the input 
for the proposed model. The dataset was divided into training, validation, and test sets in 
a completely random method at a ratio of 6:3:1, which was illustrated in Table 1. 

  

Figure 5. Some examples of IC packages with different materials. The first/second/third rows refer
to IC packages with plastic/ceramic/metallic materials, correspondingly.

All the acquired images were rotated by ±30◦ and ±15◦ for data augmentation. Thus,
4725 images were utilized to construct the experimental dataset for the identification of IC
packaging materials, which were all resized to 224 × 224 pixels to standardize the input for
the proposed model. The dataset was divided into training, validation, and test sets in a
completely random method at a ratio of 6:3:1, which was illustrated in Table 1.
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Table 1. Statistics of the dataset.

Dataset Plastic Ceramic Metallic Total

Training 911 951 963 2835
Validation 455 475 481 1401

Test 209 149 131 489

Total 1575 1575 1575 4725

In this study, all the weights were initialized as a Gaussian distribution with a mean of
0 and a variance of 0.01. The learning rate was set to 10−4, and the Adam was chosen as the
optimizer. Momentum and weight decay were set to 0.997 and 5 × 10−5, respectively. The
loss function used cross-entropy loss. All the experiments were conducted on a computer
equipped with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and an Nvidia GeForce
RTX 2080 12 GB GPU. The CPU was produced by Intel Corporation, located in Santa Clara,
CA, USA, and the GPU was sourced from NVIDIA Corporation situated in Santa Clara,
CA, USA. Both of the hardware were purchased in Guangzhou, China. Several commonly
used metrics were employed for evaluation, involving accuracy, precision, recall, and
F1-score [21].

3.2. Comparisons with Other Deep Learning Models

To the best of our knowledge, no studies have focused on the identification of IC
packaging materials. Thus, to validate the proposed framework, it is compared with some
state-of-the-art (SOTA) deep learning models for image classification, involving five hybrid
models (MixFormer [22], Acmix [15], CoAtNet_4 [14], SMT [23], and FastVit_V3 [24]), four
CNN models (ConvNeXt_S [25], FasterNet [26], ResNet_152 [27], and Wafer classifica-
tion [6]), and three transformer models (Swin-Transformer_l [28], ITPN [29], and LPViT [7]).
It is noted that all the models were equipped with the same classification head and were
retrained on our training set. The experimental results are summarized in Table 2.

Table 2. Comparisons of different deep learning models for identification of IC packaging materials.

Method Precision
(%) Recall (%) F1-Score (%) Accuracy

(%) FPS Params (M) FLOPs (G)

ITPN [29] 76.45 47.04 37.27 40.90 1.02 29 59
Swin-Transformer_l

[28] 82.82 84.42 82.13 82.21 1.36 39 34

LPViT [7] 74.34 66.81 66.54 73.57 1.12 28 41

ResNet_152 [27] 83.84 80.70 78.48 79.35 2.54 32 12
FasterNet [26] 74.34 86.81 80.09 83.57 1.41 25 4.4

ConvNeXt_S [25] 84.53 83.49 81.48 81.56 1.53 35 61
Wafer classification [6] 64.16 59.34 54.24 59.22 3.31 10 18

SMT [23] 84.18 83.83 81.27 81.18 1.76 30 41
FastVit_V3 [24] 79.70 68.02 62.71 61.76 2.28 22 27
CoAtNet_4 [14] 75.51 74.45 70.98 71.78 1.59 38 55

ACmix [15] 89.75 83.12 86.39 88.39 1.62 29 4.5
MixFormer [22] 91.19 86.09 88.34 90.67 1.47 56 9.6

Ours 96.12 96.26 96.16 97.92 1.99 44 23

As indicated in Table 2, the three transformer models perform quite differently in iden-
tifying IC packaging materials. Specifically, the ITPN [29] achieves the worst identification
performance with the second heaviest computational complexity among all the models,
with the performance of 37.27% F1-score, 40.90% accuracy, and 59 G FLOPs. This means
that the ITPN is of low efficiency in model inference and prediction. This is because its
multi-layer feature pyramid structure excessively focuses on ultra-small objects, which pos-
sibly neglects distant dependencies existing in IC packages with different materials. Since
the LPViT [7] directly employs the traditional transformer to extract global features from the
images, it will neglect the local information of the IC package image, which involves some
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important hints to distinguish subtle differences between the IC packages with different
materials. Thus, it also achieves a bad classification performance of 66.54% F1-score and
73.57% accuracy. The Swin Transformer [28] almost achieves the best identification perfor-
mance among all the single models, with the performance of 82.13% F1-score and 82.21%
accuracy. This can be attributed to its shift-window mechanism, which allows each local
window to learn feature information from surrounding windows to effectively combine
local details with global information. Also, this shift-window mechanism decreases the
computational complexity while increasing the model size compared to the traditional
transformer, with the parameter size of 39 M and 34 G FLOPs.

Although the CNN can capture local information from the image, the ability of local
information extraction increases with the increase in the network depth. That is, if the
network depth is not large enough, the CNN cannot efficiently extract local information at
a high probability, which will significantly degrade the classification ability of the network.
So, the Wafer classification [6] performs the second worst identification and has the lowest
parameter size among all the methods due to its very shallow network architecture, with
the performance of 54.24% F1-score, 59.22% accuracy, and 10 M parameters. Another three
CNN models, namely ConvNeXt_S [25], FasterNet [26], and ResNet_152 [27], perform
fairly good identification tasks for IC packages with different materials, even better than
some hybrid models. This is because they can capture some subtle differences that exist in
the IC packages with different materials, which is beneficial for identification. In particular,
the FasterNet combines partial convolutions and point-wise convolutions [30] to speed up
the model inference with a good model prediction, with an identification performance of
80.09% F-score and 83.57% accuracy, and a computational complexity of 4.4 G FLOPs. Since
the ConvNeXt elaboratively integrates some previously published effective modules to fully
mine the potential of the CNN framework to classification, it costs the most computational
resources (61 G FLOPs) to establish a fair classification model for IC packaging material
identification with a performance of 81.48% F1-score and 81.56% accuracy.

Since the CNN is good at capturing local features in the image, while the transformer
is adept at understanding wide-range dependencies, the combination of the CNN and
transformer can ideally result in better identification tasks being performed than most
of the single models [31] (CNNs or transformers). As indicated in Table 1, three hybrid
models (Acmix [15], MixFormer [22], and Ours) are the three best models for IC packaging
material identification among all the models. However, the other three hybrid models
(SMT [23], FastVit_V3 [24], and CoAtNet_4 [14]) do not exhibit superiority to single models.
The two entirely different identification results can be contributed to their different hybrid
schemes for the combination of CNNs and transformers. The former three hybrid models
integrate CNNs and transformers into the total framework in a parallel mode, while the
latter three hybrid ones sequentially cascade CNNs and transformer blocks. In particular,
the FastVit_V3 achieves the second worst identification performance of 62.71% F1-score and
61.76% accuracy. This is because, except for the sequential cascade, it substitutes RepMixer
and channel-wise and point-wise channel convolutions for skip connection and dense
convolutions, respectively, to decrease its parameter size and computational complexity,
which also to a great extent degrades its prediction performance.

Our designed framework achieves the best identification performance for IC packages
with different materials at a reasonable inference speed and an acceptable model size.
Its identification performance of 96.16% F1-score and 97.92% accuracy demonstrates its
potential in real applications, and for which there are several reasons. One is its parallel
combination of CNNs and transformers, which can simultaneously capture local and global
features from the IC packaging image. Second, the elaboratively designed bidirectional
interaction can integrate local information into the transformer branch and global infor-
mation into the CNN branch, which can simultaneously capture local/global features in
channel and spatial dimensions. Third, the combination of local-window self-attention and
mask attention can together capture global features in global and local attentions, which
can further improve the global feature representations for IC packaging images.
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3.3. Ablation Experiment

We conducted an ablation experiment to validate the two branches, the bidirectional
interaction, and weighted summarization, as illustrated in Table 3.

Table 3. Ablation experiment.

Transformer
Branch

CNN
Branch

C-to-T
Interaction

T-to-C
Interaction

Weighted
Summarization

F1-Score
(%)

Accuracy
(%)

✓ 73.99 79.40
✓ 78.39 81.39

✓ ✓ 79.35 81.56
✓ ✓ ✓ 86.69 90.39
✓ ✓ ✓ 79.83 87.56
✓ ✓ ✓ ✓ 93.19 94.08
✓ ✓ ✓ ✓ ✓ 96.16 97.92

As indicated in Table 3, the simple combination of CNN and transformer branches
performs a better identification of IC packaging materials than only a single branch, with
the classification performance of 79.35% F1-score and 81.56% accuracy. This demonstrates
that CNN and transformer branches both contribute to the model since they provide
local/global feature information, respectively. When a one-way interaction is deployed
between the two branches, the identification performance is more or less improved. In
particular, if only the C-to-T interaction is incorporated into the proposed framework to
transmit channel information provided by the CNN branch to the transformer branch,
the classification performance significantly improves to more than 7% F1-score and 8%
accuracy compared to the two-branch model without any interactions. This indicates that
the two information interactions are beneficial for the fusion of global and local features in
the IC packaging image, which can potentially provide deep subtle differences between
different IC packaging materials. Thus, when the information interactions are bidirectional
for the two branches, the model with a bidirectional interaction performs much better than
those with a one-way interaction, which indicates that this bidirectional interaction can
interactively transmit local/global features between the two branches to enhance their
abilities of feature extraction. Since the two branches contribute differently to the designed
framework, the model with weighted summarization of the branches (96.16% F1-score,
97.92% accuracy) improves the F1-score and the accuracy by almost 3% and 4%, respectively,
compared to that with fixed fusion of the branches (93.19% F1-score, 94.08% accuracy).

3.4. Application for the Other Classification Task

To assess the application ability of our proposed model for the other specific task, we
constructed an electronic component dataset from the Findchips website [32] for another
classification task. The Findchips website is a powerful search engine that aggregates and
normalizes data from the leading electronic part distributors in the electronic component
market, which involves the attribute data, models, and schematics of the electronic compo-
nents. There are 35 categories of electronic components on this website, such as resistor,
capacitor, connector, transistor, and diode, each of which involves more than 1000 images.

To construct the Findchips dataset for the assessment of our proposed model,
200 images were randomly selected from each category on the Findchips website. Thus, a
total of 7000 electronic component images were involved in the Findchips dataset, which
were divided into training, validation, and test sets in a completely random method at
a ratio of 6:3:1. Our proposed framework with the parameters configured in Section 3.1
was retrained, validated, and tested on the Findchips dataset. As illustrated in Table 4, the
proposed model can also implement the other classification-specific task, although it is
originally designed to identify IC packaging materials. However, since it is not specifically
designed for this 35-category classification, its classification performance decreases to an
83.25% F1-score, compared to a 94.93% F1-score for 3-category IC packaging materials. This
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reveals the common shortcoming of deep learning, which is that task-specific deep learning
models can be directly utilized but do not function well in the other tasks.

Table 4. Classification results for the Findchips dataset via the proposed model.

Method Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Ours-1 90.85 76.83 83.25 87.61

3.5. Repeated Experiments

To verify the reproductivity of the proposed framework, 10 repeated experiments were
conducted on the augmented data with the sizes of 224 × 224 pixels, that is, 4725 images
of IC packages with different materials. In each experiment, these images were randomly
divided into training, validation, and test sets at a ratio of 6:3:1. This indicates that the
samples in the three sets are different for each experiment.

As indicated in Table 5, the proposed framework achieves different identification
performances for different experiments due to their different sample distributions. How-
ever, this difference is relatively small, with the largest and the smallest F1-scores being
96.16% and 91.98%, and the largest and the smallest accuracies being 97.92% and 94.83%,
correspondingly. The classification performances of most of the repeated experiments
approach the average metrics of 94.84% for precision, 95.23% for recall, 94.93% for F1-score,
and 96.52% for accuracy, which demonstrates that the proposed framework has a fairly a
good reproductivity ability.

Table 5. Ten repeated experiments for the proposed framework.

Index Precision (%) Recall (%) F1-Score (%) Accuracy (%)

1 95.94 95.98 95.99 96.55
2 94.15 95.88 94.99 96.41
3 94.95 95.78 95.38 96.58
4 95.35 94.97 95.18 96.66
5 93.79 94.83 94.43 95.97
6 95.41 95.79 95.58 95.31
7 96.12 96.26 96.16 97.92
8 94.99 95.52 95.39 96.96
9 91.96 91.44 91.98 94.96
10 95.74 95.85 95.81 97.89

Average 94.84 95.23 94.93 96.52

4. Conclusions

In micro- and nanomanufacturing, accurate identification of IC packaging materials is
crucial for quality control, since it is significant for packaging decapsulation. Misidentifica-
tion may destroy the internal structures of IC components and chips during its decapsulation.

To identify IC packaging materials, a hybrid deep learning framework is designed in
this paper, which adaptively integrates CNNs and transformers into an entire framework.
The framework features two branches (i.e., CNN and transformer branches) with a bidirec-
tional interaction to effectively capture local/global features in the IC packaging image to
deeply mine the differences of IC packaging materials, which are validated by the ablation
experiment. Comparative experiments indicate that the designed hybrid framework can
better identify three types of IC packaging materials for the similar appearances of IC pack-
ages than the existing deep learning methods, with the performance of 94.84% precision,
95.23% recall, 94.93% F1-score, and 96.52% accuracy.

Although several CTI blocks improve the identification ability of the proposed model,
they bring additional computational resources and computational burden due to their
complex network design. In particular, the traditional vision transformer architecture in
the CTI block further aggravates this issue. This limits the application of the proposed
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method in the assembly lines of real industries, since time cost and economic cost are
sensitive in these scenarios. In the future, we will study the lightweight implementation
of the proposed model to decrease the network size and speed up the network inference,
such as the substitution of the mobile vision transformer for the traditional one. Since all
the electronic components are provided by real industries, the experimental data acquired
in the lab are prone to industrial ones, which indicates that the proposed model can be
deployed in real industries for online identification in the future. However, the operation
environments in real industries are quite different from lab ones, so the model will be
retrained to adapt the data acquired in real industrial environments. If these issues are
solved, our proposed model can be deployed in the assembly lines of real industries to
automatically screen IC packages with different materials in the future, which can improve
the efficiency of purpose-specific surface mounting, decapping, or recycling.
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