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Abstract: A complete model was developed to simulate the behavior of a circular clamped axisym-
metric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite
Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of
the partial differential equation used to translate the mechanical behavior of a PMUT. In the model,
both the axial and the transverse displacements are preserved in the equation of motion and used to
properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to
axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is
used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular
velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying
the validity of certain assumptions that are usually made across various steps of previously reported
analytical models. In this framework, the advantages of the membrane discretization performed in
the FD-BEM model are highlighted through accurate simulations of the first vibration mode and
especially the cutoff frequency that many other models do not predict. This high cutoff frequency
corresponds to cases where the spatial average velocity of the plate is null and is of great importance
for PMUT design because it defines the upper limit above which the device is considered to be
mechanically blocked. These modeling results are compared with electrical and dynamic membrane
displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance
frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite
Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when
PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and
20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete
PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time
and accuracy.

Keywords: PMUT; ultrasound; MEMS; finite difference method; characterization; lumped-element;
vibrometry

1. Introduction

Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) are MicroElectroMe-
chanical Systems (MEMSs) whose working principle is comparable to that of a microphone.
A single PMUT consists of a plate or membrane whose operating frequency depends on
its geometrical parameters (i.e., size, shape, and thickness) which can be tuned according
to transducer specifications [1]. Actuation or electromechanical coupling is provided by a
piezoelectric material deposited as a thin film (i.e., typically micrometric thicknesses) on the
top of the plate using processes derived from microelectronic manufacturing techniques.
These devices work like Capacitive Micromachined Ultrasonic Transducers (CMUTs) [2,3]
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except for the actuation which is based on electrostatic forces. The first relevant proof-of-
concept publications related to these technologies date back to the early 2000s, with two
articles showing functional PMUT transducers, one based on Zinc Oxide (ZnO) [4,5] and
the other on Lead Zirconate titanate (PZT) [1,6]. Compared with ultrasonic transducers
based on bulk ceramic, PMUT technology offers several benefits that demonstrate why, for
more than twenty years, there has been continually growing research and development
dedicated to these technologies. The main advantages of such technology are the ability to
address high-volume markets, rapid manufacturing times, easier integration with electron-
ics, reduced production costs, and miniaturization of ultrasound probes. While we do not
summarize all the work carried out over the last 20 years, as proposed in [7], three main
categories of results are identified: materials and manufacturing processes, applications,
and modeling.

In the field of materials and processes, recently published articles [7–11] provide
an exhaustive review of all the technological developments to date. The most widely
used piezoelectric materials are the following: ZnO [4,12,13]; AlN, for which scandium
doping [14,15] has enabled the electroacoustic performances to be three times higher; and
PZT material, the first works on which were published by [6,16–18] and, more recently, by
Savoia et al. [19]. Thin-film PZT is usually deposited either by a sol–gel process [20] or a
sputtering technique [20]. There are two main types of manufacturing processes depending
on one’s desire or ability to make the device cavities. On the one hand, the backside
etching techniques require, once the structural layer has been deposited, the release of the
membranes by Deep Reactive Ion Etching (DRIE) on the backside of the substrate. On the
other hand, using surface micromachining processes, cavities are created by wet chemical
etching or wet vapor etching [21,22]. This process approach requires the cavities to be
sealed to prevent liquid or gas infiltration. Cavities can be made by dry etching and then
sealed using a wafer bonding technique where a Silicon On Insulator (SOI) is used to make
the structural layer of the membranes. In this case, the piezoelectric material is deposited
after the bonding step [23].

Among the broad range of PMUT application domains, two main categories stand
out: ultrasonic air-coupled and ultrasonic fluid-coupled applications. The first domain
involves applications such as telemetry, with the manufacture of dedicated electronic
components [24,25] and gesture or movement recognition [26,27]. The second domain is
mainly dedicated to medical applications, including ultrasound imaging and high-intensity
therapeutic ultrasound capabilities [28,29].

On the modeling side, many studies have been conducted to propose models that
can predict the performance of a PMUT, whether coupled to air or fluid. Despite the
wide diversity of works, the theoretical approaches used can be classified into two main
categories: those based on the use of commercial finite element codes and those based on an
analytical resolution of the equations governing PMUT arrays. The use of finite elements is
mandatory to simulate the response of complex-shaped structures [30–32] and to help the
development of analytical models [27,33,34], with the aim of validating or verifying initial
hypotheses [35,36]. In addition, we should mention the recent work of Savoia et al. [19], who
developed a complete electroacoustic model of a PMUT array element. Although highly
reliable, the use of finite element models requires significant computing resources and
calculation times that can become long if the acoustic boundary conditions do not allow for
a reduction in the number of PMUT cells to be considered in the simulation. For example,
to simulate an array element, each PMUT must be considered individually because in
some cases, the periodicity or symmetry conditions cannot be applied [37]. The use of
analytical models thus remains essential, as they generally enable many configurations to
be simulated quickly. Most analytical models are based on two main steps: the first step is
to solve the equations of a single PMUT cell and to define its equivalent lumped-element
circuit model. The second step is to model the array including neighboring PMUTs. Usually,
this step is achieved by computing the Boundary Element Matrix (BEM), which enables
acoustic coupling of all the PMUTs. The terms of this matrix are the self and mutual acoustic
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radiation impedances of each PMUT [38–40], which are typically calculated analytically.
This approach was initially proposed by our group for CMUT transducers [41], as did many
other authors later [42–45]. As a result, the determination of mutual acoustic impedances
is now well established, both for PMUT and CMUT technologies. Numerous transducer
models have been introduced, depending on the shape and the source condition used
for membrane deformation. The key element of the analytical models therefore remains
the modeling of the single cell and the determination of its equivalent electromechanical
scheme when coupled to a fluid medium.

The purpose of this paper is to develop an equivalent lumped-element circuit model
of a circular single PMUT cell coupled to a fluid medium based on a finite difference (FD)
calculation approach to solve the mechanical equations of the plate. Despite numerous
modeling publications to date [33–35,46–48], we conclude that this work offers novel
contributions based on many solutions having been proposed based on hypotheses that
were not rigorously validated. In parallel to the development of our model, we compare
this work with that of the literature by discussing, at each step, the validity of various
simplifying assumptions that are usually made. Among the key contributions of this paper,
we discuss and quantify multiple parameters, methods and hypotheses that have been
commonly employed for previous PMUT modeling:

• The choice of the membrane Young’s modulus value for a disc-shaped PMUT when
the structural material is anisotropic (e.g., silicon);

• The method to determine the neutral line while solving the plate equation that governs
membrane deformation [49–52];

• The impact of the electrical neutral line as introduced by Samourra et al. [35,49] on the
electromechanical PMUT response;

• The equivalent lumped-element circuit components’ calculation according to the
model chosen, i.e., Foldy’s model or Mason’s model.

The remainder of this paper is structured as follows. Section 2 focuses on the resolution
of the PMUT behavioral equations when the membrane is acoustically coupled with a
fluid medium. Here, the plate equation is employed with minimal assumptions, and we
propose an original method to separate the out-of-line deformation equation from the
in-plane deformation equation. We use the method described in [47,50], which proposes
separating the equations by introducing a reference line rather than a neutral line. To
model the PMUT/fluid coupling, we use a Green’s function dedicated to the radiation of
axisymmetric transducers combined with a boundary element matrix as presented in the
model developed by Meynier et al. [41]. We show that this approach, unlike the classical
analytical literature models, enables the high cutoff frequency of the PMUT to be predicted
accurately. This high cutoff frequency is of great importance, as it defines the upper limit
that corresponds to the situation where the spatial average velocity of the plate is null.
For all the simulations, the equations are solved numerically using a FD discretization
scheme [53].

Section 3 introduces electromechanical coupling through the piezoelectricity equations.
As discussed on several occasions by Sammoura et al., [35,36,49] while the reference line
enables us to simplify the mechanical equations, it is not sufficient for the electrical part to
separate equations of the in-plane mechanical displacement from that of the out-of-plane
displacement. Nevertheless, once the equations have been completely solved, we show
that the calculations can be simplified without introducing significant errors in the accuracy
of the results so that only the out-of-plane displacement components remain as degrees of
freedom. As in the first part, all the equations are solved using the FD method. In addition,
the equivalent electrical circuit model of a single PMUT cell coupled to a fluid medium will
be set up.

Finally, Section 4 is dedicated to the experimental validation of the model developed
using circular AlN-based devices of various sizes. The model is compared with the experi-
mental results using several series of electrical and laser interferometry measurements taken
when the PMUT vibrates in air and in oil. We note that while many results have already
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been published for air-coupled PMUTs, it is much more unique to report experimental
results for fluid-coupled PMUTs.

2. Acoustic and Mechanical Modeling of a Single PMUT Cell Coupled with
a Fluid Medium

As stated, this section is devoted to the resolution of the mechanical equations that
govern the PMUT plate, in air and when the plate is coupled with a fluid medium. Me-
chanical equations are first developed, described, and then solved by means of an FD
discretization scheme. Second, a first model validation will be presented by comparing
the simulated resonance frequencies with those provided by a commercial finite element
code (COMSOL Multiphysics [54,55]). Then, the fluid/PMUT coupling equations will be
introduced in numerical form, after the FD discretization step. The last subsection is the
second validation step of the model, where simulated results are compared with analytical
models from the literature.

Before providing the mechanical plate description, the typical geometry of a PMUT cell
with the corresponding coordinate system axis is established. Our PMUT structure plate is
made up of three layers (Figure 1) and is axisymmetric. The layers include a structural layer,
usually silicon, a piezoelectric layer, and a partially covering top electrode. To be consistent
with the experimental devices presented in the last section, there is no metallic bottom
electrode; because the silicon material is doped, it also plays the role of an electrode. The
plate is considered to be mechanically clamped around its outer perimeter. In accordance
with the PMUT circular geometry, the plate analysis will be carried out in cylindrical
coordinates (r,θ,z). The terms a and re are the plate radius and the top electrode radius,
respectively. The position of the top of the k-indexed layer along the z-axis is referenced
with the hk coordinate, where h0 = 0, and (hk − hk−1) corresponds to the thickness of
the k-layer. Note that to clearly identify the piezoelectric layer from the others, its upper
coordinate is labeled hp. The dashed line with coordinate zn is the reference line, the
so-called neutral line, whose expression and value will be given later.
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Figure 1. Cross-sectional view of axisymmetric circular PMUT with top partial electrode coverage.
The stack is made up, from bottom to top, of a structural layer, a bottom electrode, a piezoelectric
layer, and a partially covering top electrode. The terms a and re are the plate radius and the top
electrode radius, respectively.

For all calculations, each k-layer is assumed to be isotropic and mechanically charac-
terized by its Young’s modulus Ek and its Poisson’s ratio σk.
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2.1. Mechanical Behavioral Equations and Resolution with Finite Difference Discretization

The mechanical behavior of the PMUT plate is based on the resolution of the clas-
sical Kirchhoff–Love thin plates equation [56–58] expressed under cylindrical coordi-
nates [46,48,59,60]. This theory relies on two mains assumptions:

(1) The mechanical plate vibration is limited to the displacements u(r,z) and w(r,z) along
the r-axis (axial displacement) and z-axis (transverse displacement), respectively.

(2) The through-the-thickness stresses and strains are negligible.

Total displacements u and w are shown in Figure 2. Using the physical neutral line
concept and classical plate theory, the displacements take the following forms [47,58]:

u(r, z, t) = u0 − (z− zn)
∂w
∂r

, (1)

w(r, z, t) = w(r, t) = w, (2)

where u0 is the axial displacement of the reference line zn, i.e., the neutral line, which will
not be considered negligible. In many papers [35,47,61,62], authors deliberately neglect
this axial displacement, which enables them to strongly simplify the analytical calculations.
However, in papers from Sammoura’s group [49,63], it was shown that the axial displace-
ment of the plate plays a role in the piezoelectric equation of the PMUT and cannot be
suppressed. Therefore, at this step of the theoretical developments, we chose to keep this
axial displacement in the set equations and later discuss its influence on the PMUT behavior.
Due to axisymmetric deformation, only the strains Srr and Sθθ must be considered, and the
shear strain Srθ is null. Because axial displacement is not suppressed from the equations,
as presented by J.N. Reddy in chapter 5 [58], to simplify equation reading, two additional
matrix terms are introduced, the membrane strain matrix ε0 and the flexural strain matrix,
known as the curvature matrix ε1:

ε0 =

[ ∂u0
∂r
u0
r

]

ε1 =

[− ∂2w
∂r2

− 1
r

∂w
∂r

]
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Using the set of Equations (1) and (2), Srr and Sθθ are expressed as follows:[
Srr

Sθθ

]
= ε0 + (z− zn)ε

1, (3)

To establish the dynamic equilibrium equation, we classically introduce the resultant
bending moment terms from a side and the resultant radial forces terms from another
side as explained by J.N. Reddy [56–58]. Detailed description of calculations is given in
Appendices A and B.

The equations of motion of the plate for circular vibrations, without an external source,
are given by J.N. Reddy [58]; for the resultant moments, we have:

1
r

∂2(rMrr)

∂r2 − 1
r

∂Mθθ

∂r
= ρs

∂2w
∂t2 − q(r). (4)

where Mrr and Mθθ are the two resultant bending moments.
For the resultant stresses (Nrr and Nθθ), if there are no external forces acting in the

volume of the plate, we have:

−1
r

(
∂(rNrr)

∂r
− Nθθ

)
= −ρs

∂2u0

∂t2 , (5)

where ρs = ∑k ρkhk is the plate weight per unit area. Note that Equation (4) assumes that
the rotary inertia terms are neglected, as explained by J.N. Reddy [58]. q(r) is a source term
that corresponds to an external distributed pressure that is applied to the plate.

Expressions of Mrr and Mθθ are introduced in Equation (4) to obtain:

∂2Mrr
0

∂r2 +
2
r

∂Mrr
0

∂r
− 1

r
∂Mθθ

0

∂r
+

∂2Mrr
1

∂r2 +
2
r

∂Mrr
1

∂r
− 1

r
∂Mθθ

1

∂r
= ρs

∂2w
∂t2 − q(r). (6)

The first three terms on the left-hand side of Equation (6) depend on u0, and the
three others depend on w. If the axial displacement of the neutral line u0 was neglected,
Equation (6) would be a function of only the transverse displacement w. A technique to
separate transverse and axial displacement components is to modify the expression of these
first three terms as follows:

∂2M0
rr

∂r2 +
2
r

∂M0
rr

∂r
− 1

r
∂M0

θθ

∂r
=

(
∂3u0

∂r3 +
2
r

∂2u0

∂r2 −
1
r

∂
( u0

r
)

∂r

)
(B11 − zn A11). (7)

If the neutral line coordinate zn is chosen such that:

B11 − zn A11 = 0 and so zn =
B11

A11
, (8)

then the terms with u0 are removed from Equation (6).
The neutral line is the position to uncouple the axial displacement to the transverse

displacement and the exact expression of zn is then deduced:

zn =
∑k

h2
k−h2

k−1
2

Ek
1−σ2

k

∑k (hk − hk−1)
Ek

1−σ2
k

. (9)

We find the expression used in the literature [49,62], but it has never been demon-
strated or even verified in the case of acoustic MEMSs. Only Sammoura proposed a
demonstration [49], but the initial hypothesis of his model considered the displacement
u0 to be negligible. The same result is obtained in Appendix B for the second equation
of motion.
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The final equation of motion becomes:

∇2
(

Deq∇2w
)
+

∂2

∂r2

(
Deq
(
σeq − 1

))1
r

∂w
∂r

+
∂

∂r
(

Deq
(
σeq − 1

))1
r

∂2w
∂r2 = ρs

∂2w
∂t2 − q(r), (10)

where ∇2 = ∂2

∂r +
1
r

∂
∂r is the Laplacian operator in cylindrical coordinates. Deq and σeq

are the equivalent flexural rigidity and the equivalent Poisson’s coefficient of the plate,
respectively, with their expression presented by J.N. Reddy [58].

The solution of Equation (10) can be obtained with analytical developments. In
previous reports, it is common to decompose the solution into a basis of eigenmodes and to
determine the coefficients of this decomposition to meet the boundary conditions. We did
not choose this approach because the function basis used for air coupling does not properly
account for when the PMUT plate is coupled with a fluid medium (see Section 2.3).

To solve this equation, the FD discretization scheme presented in [57] was used.
Our group previously used this scheme for circular-shaped CMUTs [53]. To convert
Equation (10) from its analytical to its numerical form, we first need to set up discretization
nodes (see Figure 3) along the plate: from the center at r = 0 to the edge of the plate at r
= a. The pitch between two nodes ∆r is fixed, and the number of nodes is labeled N. At
each discretization node i, Equation (10) is combined with the discretization scheme given
by Timoshenko [57] to obtain a relation between the displacement wi of the i-node with
its neighboring nodes. Particular attention is given to the first node and the last node to
take into account the boundary conditions. In our case, the following boundary conditions
were used:

(a) r = 0; ∂w
∂r

∣∣∣
r=0

= 0, symmetrical boundary conditions,

(b) r = a; w(a) = 0, ∂w
∂r

∣∣∣
r=a

= 0 , clamped boundary conditions.
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The set of Equations obtained is then gathered to express the Equation (10) in matrix
form:

[Km][w] = ω2[M][w]− [q], (11)

where [w] is the vector made with all degrees of freedom wi; in air, there is no external
pressure, so [q] is null. [Km] is the stiffness matrix that results from the discretization
of the differential operator of Equation (10), and [M] is the mass matrix. [M] is a pure
diagonal matrix that contains the value of ρs at each discretization node. The stiffness,
mass, and neutral line associated with the nodes before and after the boundary are thus
perfectly defined.
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2.2. Comparison with the Finite Element Model (FEM)

The first validation step was to compare the simulation results of the FD model
with those provided by a commercial finite element model. COMSOL Multiphysics was
used. There are two key points to check. The validation of the neutral line coordinate zn
computation in the case where the plate thickness is not homogeneous is the first concern.
In other words, is the model able to predict the plate response when the neutral line position
is discontinuous? To overcome this difficulty, some authors have proposed separating the
plate into two zones and combining the solutions by applying continuity conditions at
the interface between the two zones [61,64–66]. However, even if analytical solutions are
developed, the model becomes quite “heavy” as it introduces many additional variables.

The anisotropy of the structural layer is the second concern of this validation step.
All equations were developed in the case of axisymmetric vibration, assuming that the
materials are isotropic. In practice, the structural material is often silicon material, which
is anisotropic. As silicon is an anisotropic material [67], the Young’s modulus may vary
from 130 GPa to 188 GPa according to the axis [110] or [100] in crystal lattices. In a previous
study [68], it was shown that a circular isotropic silicon plate with a Young’s modulus of
143 GPa and a Poisson’s ratio of 0.278 gives the same deformation and resonance frequency
as a circular anisotropic silicon plate, with less than 0.3% error. To conduct simulations,
it was chosen to model silicon material as an isotropic material and to keep these elastic
parameter values.

To compare the FD model with COMSOL Multiphysics, we defined a PMUT cell
comparable to the literature structures based on aluminum nitride (AlN), because the
devices used experimentally are also AlN-based (see Section 4). The PMUT cell is made of
three layers of only doped silicon, which is the structural layer and the bottom electrode,
an AlN layer, and an aluminum (Al) layer for the top electrode. The layer thicknesses
and PMUT diameter were fixed to obtain a resonance frequency in air and water in the
MHz range. To be consistent with the literature [22,31,35], the PMUT diameter was fixed
at 50 µm. The properties of AlN used were extracted from the literature [69] and from
the experimental results presented in the last section of the paper, Section 4. All material
properties and dimensions are reported in Table 1, but only the mechanical properties were
used for this comparison. For the FD model, 50 nodes of discretization were used along
the r-axis, corresponding to a ∆r value of 1 µm. This value was fixed after comparing
convergence of the resonance frequency value (2.5 MHz) for a node number varying from
10 to 100. Results showed that above 50 nodes, relative variations were lower than 0.5%
and the computing time remained lower than 1 s.

Table 1. The material dimensions and material properties used for simulations of the Al top electrode
radius can vary between 0 and 50 µm, corresponding to 0 to 100% of the cavity radius.

Layer Si [68] AlN [69] Al [69]

Thickness [µm] 1 0.5 0.2
Radius [µm] 50 50 0–50

Young’s Modulus [GPa] 143 348 69
Poisson’s ratio 0.28 0.24 0.35

Density [kg/m3] 2330 3600 2700
d31 [pC/N] - −2.05 -

εT
33/ε0 - 10 -

For the FEM model, no asymmetrical boundary conditions were applied to the silicon
layer, and the real elastic properties (anisotropic) [67] were used. The AlN and aluminum
layers are not difficult to simulate because AlN has hexagonal crystal symmetry and
aluminum is isotropic. The mesh of the studied structure was carefully chosen to meet the
λ/4 criterion in the whole frequency range so 125 hexahedron-shaped elements in total
were chosen.
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Figure 4 shows the eigen-frequency of the first PMUT plate resonance according to
the top electrode radius, which varies from 0 to 50 µm (100% surface metallization rate).
The FDM predictions perfectly match the FEM simulations. The maximum relative error is
1.13% when the normalized electrode radius is close to 50%. When the electrode radius
increases, a decrease in the resonance frequency is observed due to a mass effect; then, over
a normalized electrode radius of 80%, the resonance frequency increases. This is ascribed
to an increase in the global plate stiffness.
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This first step clearly justifies the choice of modeling the silicon layer as an isotropic
material and the numerical solving of the plate equation with discontinuity of the neutral
line position.

2.3. PMUT/Fluid Coupling: Implementation of a Boundary Element Matrix

In this third subsection, the model is modified to introduce the coupling with a fluid,
which is modeled through an external distributed pressure q(r) = P0(r). From plate
Equation (11), one term must be added:

[Km][w] = ω2[M][w] + [P0], (12)

where [P0] is the radiated pressure vector, which depends on the displacement vector
[w]. The two vectors [P0] and [w] are linked by the radiation boundary conditions at the
PMUT/fluid interface. This relation can be expressed mathematically using a boundary
matrix

[
K f luid

]
:

[P0] =
[
K f luid

]
[w], (13)

where in each term of the
[
K f luid

]
matrix, K f luid i,j corresponds to the mutual acoustic

impedance between the i-indexed node and the j-indexed node. In other words, this term
represents the force exerted by node i when it radiates with displacement wi onto node
j. The radiating surface associated with node i is a ring centered at the ri position with
∆r width and the surface associated with node j is a ring centered at the rj with the same
width. If the discretization pitch is thin enough, it is safe to assume that each ring vibrates



Micromachines 2023, 14, 2089 10 of 27

like a piston. To compute the
[
K f luid

]
matrix terms, one has to use the Huygens–Rayleigh

integral [63]: [
K f luid i,j

]
=
∫

Sj

dSj

∫
Si

G
(
ri, rj

)
dSi, (14)

where Si and Sj are the surfaces of the i-indexed ring and j-indexed ring respectively.
G
(
ri, rj

)
is a Green’s function of the fluid for rigid baffle conditions:

G
(
ri, rj

)
=

ik0ρ0c0

2π

e−ik0|ri−rj |∣∣ri − rj
∣∣ , (15)

where k0 = ω
C0

is the acoustic wavenumber in the fluid. ρ0 and c0 are acoustic properties
(density and velocity, respectively) of the fluid. The numerical computation of the first
integral (integration over the emitting ring of surface Si) in Equation (14) can be extremely
time-consuming because the convergence is typically very slow and strong numerical
instabilities may be present. Seybert et al. [70] thus proposed splitting the integral into
two parts to stabilize computations and decrease the convergence time. We have used this
decomposition. The validation of the

[
K f luid

]
matrix terms’ computation was performed

assuming that the PMUT vibrates as a piston, i.e., each term of the [w] vector is equal to 1.
The radiation impedance of the circular piston computed numerically with the FD model
was compared with the analytical expressions [71]. No difference was observed.

2.4. Comparison with the Literature

For this second validation step, the analysis focuses on PMUT/fluid coupling, where
the simulations obtained from the FD models are compared with those obtained with
analytical models from the literature. The present goal is to discuss the limits of each
approach and identify their respective advantages and disadvantages. Many analytical
models have been published, but the two oldest [12,46] have been used as the basis for
assumptions applied in the more recent works [33,59,61,72]. We have therefore chosen to
focus our comparison on the model from K. Smyth et al. [46] and Perçin et al. [4,12].

Perçin [12] developed a lumped-element circuit to model PMUT/fluid coupling. From
one side, the PMUT plate mechanical impedance is computed when the device is vibrat-
ing in air. A uniform external pressure source is applied over the whole plate, and the
plate equation (Equation (4)) is solved to obtain the average plate velocity and thus the
plate mechanical impedance. Analytical resolution of the plate equation based on modal
decomposition of the solution is used. From another side, the plate radiation impedance
of the PMUT is computed assuming that it vibrates like a piston with rigid baffle bound-
ary conditions. The published radiation impedance expression of a piston in fluid [71]
is directly used. K. Smyth et al. [46] developed the same approach to compute the plate
mechanical impedance. The two models differ for the radiation impedance determination.
K. Smyth et al. [46] took into account the nonuniform velocity distribution along the plate
to compute the radiated pressure. The velocity distribution along the plate radius is the
same as that obtained from the modal decomposition in air. This approximation is clearly
better than considering that PMUT works like a piston, particularly at high frequencies
where the velocity distribution impacts the PMUT directivity. Pala et al. [72] used the same
method as Smyth except that a decomposition of quadratic-type functions was used instead
of eigenfunctions of the plate equation.

To compare the three models, we used the device presented in Section 2.2 with a top
electrode radius of 35 µm, so a metallization ratio radius of 70% was simulated. For the FD
model, a uniform acoustic pressure of 1 Pa was applied (i.e., the [P0] vector in Equation (12)),
and the spatial average plate velocity was computed from the computed displacement field
vector [w]. For the analytical models, we implemented the analytical solutions provided
by Smith [46] and Perçin [12] and computed the impedance terms. The average velocity
is straightforward to determine from the lumped-element equivalent electrical circuit.
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Figure 5 shows the spatial average particle velocity of the PMUT according to the frequency
for the three models in water, and the simulation of the device working for the FD model
in air is added. The resonance frequency in air is close to 2.5 MHz, and it drops to a value
close to 1 MHz in water. The three models yield very similar resonance frequency values in
water, thereby validating the numerical implementation of the PMUT/fluid coupling in
the FD model. However, the FD model differs from the two analytical models at higher
frequencies. In air, at 9 MHz, a cutoff frequency appears that corresponds to the situation
where the spatial average velocity of the plate is null. In water, with the FD model, we
see that this cutoff frequency undergoes a mass-loading effect as it drops to 5 MHz, while
the two analytical models provide 9 MHz, as in air (as if there was no interaction with
a fluid medium). This cutoff frequency is a key characteristic of the PMUT cell because
it also defines the high cutoff frequency of a PMUT array. This frequency remains the
same whether the PMUT operates alone or as part of an array. This is clearly one of the
limitations of the analytical models presented to date because the mechanical impedance of
the PMUT plate is calculated when the device is vibrating in air. However, there are no
simple analytical solutions to the plate equation when coupled to a fluid. It is therefore
essential for the determination of equivalent mechanical and radiation impedances that
the mechanical deformation of the plate used considers the coupling with water. This
is the advantage (see Section 3.2) of having developed a numerical approach. However,
it should be remembered from previous works, K. Smyth [46] and Pala [72], that when
calculating radiation impedances, it is preferable to take plate deformation into account,
particularly for the determination of the elementary directivity acoustic field but also the
acoustic mutual impedances matrix between PMUTs. Though it is not further covered in
this paper, additional investigations indicated that the type of pressure application and its
distribution along the plate impact the cutoff frequency value as well. These additional
investigations are ongoing and will be presented in future work.
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3. Electroacoustic Modeling of a Single PMUT Cell Coupled with Fluid Medium

This third section completes the mechano-acoustic model of the PMUT cell in a fluid
with piezoelectric coupling. The objective is to implement a lumped-element equivalent
circuit of a PMUT cell from the set of numerically solved behavioral equations. The first
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subsection is devoted to the implementation of the piezoelectric coupling, and the second
subsection is devoted to the equivalent electrical circuit determination. Note that in the
first subsection, the impact of the axial displacement u0 of the neutral line is discussed, and
simulations are compared with the model developed by Sammoura et al. [35].

3.1. Implementation of the Piezoelectric Coupling

The piezoelectric coupling implementation needs to modify the equation of motion
(Equations (4) and (12)) to introduce an additional source term. A second equation is needed,
representing the balance of electrical charges produced by the PMUT, with electrostatic
charges on one side and charges from piezoelectric coupling on the other.

For the equation of motion (4), the procedure has already been published [46], and the
required source term is:

Pp(r) = ∇2Mp(r), (16)

where the piezoelectric resultant moment Mp(r) given by Smyth et al. [46] is:

Mp(r) = −
Epd31V(
1− σp

)((hp + hp−1
)

2
− zn(r)

)
, (17)

where Ep, d31 and σp are the Young’s modulus, the piezoelectric coefficient, and the Pois-
son’s ratio of the piezoelectric layer, respectively. hp, as explained in the introduction of
Section 2, refers to the upper z-coordinate (see Figure 1) of the piezoelectric layer and hp−1
to its lower z-coordinate.

The same FD discretization scheme applied to the Laplacian operator (Equation (16))
enables the conversion of the piezoelectric source term Pp(r) as an electrical-to-mechanical
conversion matrix [Kem] multiplied by the vector of the voltages [V] associated with each
discretization node. If the plate is fully metallized (100%), then all the nodes have the same
voltage value, but when the plate is partially metallized (<100%), only nodes placed on
the top electrode have the same voltage value. Outside the top electrode, the voltage node
values are unknown while the electrical charge density is null. This represents a typical
situation of mixed electrical boundary conditions. To simplify the computations next, we
force the voltage outside the electrode to zero. Because the piezoelectric coupling of the
plate is weak, the impact of such electrical boundary conditions on the electroacoustic
response of the PMUT is low. In the case of a bulk piezoelectric plate, this assumption
would be clearly not valid.

The equation of motion (12) becomes:

[Km][w] = ω2[M][w] + [Kem][V] + [P0]. (18)

To establish the electrical charge balance, the expression for the electrical displacement
Dz in the piezoelectric layer is used [35]:

Dz(r) = d31
Ep(

1− σp
) (Srr + Sθθ) + εT

33

(
1− k2

p

)
Ez, (19)

where εT
33 is the permittivity at constant stress and k2

p is a coupling coefficient. Note that k2
p

also includes the mechanical properties of the layer (Young’s modulus and the Poisson’s
ratio):

k2
p =

2Epd31
2

εT
33
(
1− σp

) . (20)

From the Dz(r) expression, one can determine the surface electrical charge density
expression [73]:

σ(r) =
∫ hp

hp−1

Dz

(h p − hp−1

)dz. (21)
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The plate is thin enough to consider Dz(r) as constant along the z-axis, and the
following relation for σ(r) is easily obtained from the Equations (19) and (21):

σ(r) = −(z− zn)d31
Ep

(1−σp)

(
∂2w
∂r2 + 1

r
∂w
∂r

)
+d31

Ep

(1−σp)

(
∂u0
∂r + u0

r

)
+ εT

33

(
1− k2

p

)
Ez,

(22)

where Ez is the electrical field along the z-axis. The electrical Equation (22) includes the
axial displacement u0 which is absent from some previous works [35,61,63] where it was
neglected from the outset of the model design.

After applying the FD scheme, Equation (22) becomes:

[σ] = [Kee][V] + [Kme][w] + [Gme][u0], (23)

where [Kee] is the dielectric permittivity matrix which comes from the last term of (22), and
[Kme] is a mechanical-to-electrical conversion matrix coming from the first term of (22). The
last matrix [Gme] is also a mechanical-to-electrical conversion matrix that links the axial
displacement vector [u0] with the electrical charge density. It is worth mentioning that [Kee]
is a pure diagonal matrix because the electrical displacement D(r) and the electrical field
E(r) are assumed to be oriented along the z-axis only.

To compute [σ], [u0] must be determined first by using Equation (5) and Equation (A17)
given in the Appendix B Section. Equation (A17) gives the equation of motion associated
with the resultant stresses (5) with the piezoelectric coupling.

Equation (A18) is easy to solve numerically for a given excitation input voltage vector
[V]. To avoid burdening the body of this article, all the equations for determining [u0] are
reported in Appendix B.

The electrical current I flowing through the PMUT is obtained after numerical integra-
tion of the charge density:

I = 2π
∫ re

0
σ(r)r dr. (24)

Having determined the relation between the current and the voltage, we can deduce
the electrical admittance, the electrical impedance, and the parallel capacitance.

Before presenting simulation results, and discussing the impact of u0, we can compare
the two equations we have to solve (10) (equation of motion) and (22) (electrical equation)
with the ones presented by Sammoura et al. [35]. Since Sammoura considered the influence
of axial displacement on the transverse displacement, [w], can be neglected and the two
equations of motion (10) are the same. On the other hand, in the electrical equation, Sam-
moura introduces a second neutral line ze, so-called the electrical neutral line, to compute
the resultant piezoelectric force. Analogy with the Equation (22) given above suggests that
this electrical neutral line may be interpreted as the impact of axial displacement u0 on the
electrical charge balance.

We implemented Sammoura’s model and compared it with the FD model considering
u0 and without considering u0. Electrical impedance was simulated for the device presented
in Section 2.4 (with a radius of the top electrode of 35 µm, equivalent to 70% of the
PMUT surface). Figure 6 shows the real part of the electrical impedance for water loading
conditions with ρ0 = 1000 kg/m3 and c0 = 1500 m/s and the equivalent parallel capacitance
obtained from the admittance. The three models are very similar with an error less than a
few percent. The low-frequency capacitance is 0.662 pF for the FD model with u0, 0.664 pF
for the FD model without u0, and 0.684 pF for Sammoura’s model, corresponding to a
3% relative error. Note that if the piezoelectric layer was PZT-based (with a stronger
piezoelectric coupling coefficient), the difference between the FD model and Sammoura’s
model should be slightly larger but not significant. Finally, as a partial conclusion, the
comparison of simulations with and without u0 clearly shows that the impact of axial
displacement on the electrical charge density is very weak and can be reasonably neglected
for the rest of the paper. The simulation with PZT-based PMUT leads to the same conclusion.
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This hypothesis is a common practice in the prior reports, based on many authors having
adopted it. However, they never clearly concluded whether the role of u0 was important
for the simulation of the PMUT electroacoustic response. We consider that the current
scope of the literature is ambiguous around which assumptions should or should not be
considered to construct an analytical model of PMUT.
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Figure 6. Theoretical real part of electrical impedance and capacitance for the plate described in
Table 1 (0.7), with comparison of our model with and without considering the axial displacement
( u0) and Sammoura’s model (Literature) for AlN as a piezoelectric material in water.

3.2. Equivalent Lumped-Element Model Implementation

From the set of Equations (18) and (23), assuming u0 to be negligible, the electroa-
coustic response of a PMUT can be totally modeled in the transmit and receive modes.
However, to compute the response of an array of PMUTs, the equivalent lumped-element
electrical circuit of a single PMUT must be determined first to reduce the number of degrees
of freedom in the simulation. All analytical models previously developed lead to the
construction of this equivalent circuit. The lumped-element equivalent electrical circuit
scheme that we propose is presented in Figure 7. This is the same as that presented in
previous works, whether for PMUT [46,59–61] or CMUT [42,74].
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• radiation impedance Zr,
• electrical-to-mechanical transformation factor Φem,
• mechanical-to-electrical transformation factor Φme.

We further mention that two transformation factors are voluntarily introduced because,
looking at the terms of the [Kem] and [Kme] matrices, it is not immediately clear that the two
transformation factors are identical. This is not the case for CMUT, where both matrices are
made with the same terms, provided that the electrostatic edge effects are neglected [41].

To determine the five parameters listed above, we define which quantities are main-
tained from the distributed FD model to the lumped-element model. It is straightforward
to assume that I and V will be the same. On the acoustic port side, the spatial average
velocity <

.
w> is also maintained. For the second acoustic quantity, there is a debate; some

authors prefer keeping the radiation force [12,46,72] (so known as Mason’s model) whereas
others prefer keeping the acoustic energy [42,74] as defined by Foldy [75,76]. We made this
choice because Foldy’s definition enables us to directly obtain the time average radiated
power by the transducer, as explained by Sherman’s book [71]. The time average radiated
power is an essential feature of ultrasonic transducers, both for imaging and high-intensity
applications. To compute the radiated pressure, the average velocity is taken as a radiating
source condition in the Rayleigh integral.

The numerical determination of these quantities requires two steps: first, to run the
distributed FD model for a given input source voltage, typically 1 Volt, and then, to compute
the acoustic power stored in the plate (the mechanical power Wm) and the radiated acoustic
power (Wr). As explained in [74], the two impedance terms and the transformation factors
are written as:

Zms =
2Wm∣∣∣〈 .
w
〉2
∣∣∣ , (25)

Zr =
2Wr∣∣∣〈 .
w
〉2
∣∣∣ . (26)

∅em =
2(Wm + Wr)

V
〈 .
w
〉* , (27)

∅me =
2We*〈 .
w
〉
V*

. (28)

C0 is deduced from the integral of the [Kee] matrix diagonal terms.
The electrical admittance of the PMUT is obtained as:

Yelec = jωC0 +
∅em∅me

Zms + Zr
. (29)

To conclude this section, we note that our approach is very similar to previously pub-
lished works. However, there is an essential difference: the calculations of the mechanical
and acoustic impedances are carried out jointly and come from a vibratory solution where
the PMUT vibrates in water. This enables the correct prediction of the resonance center
frequency of the PMUT, the high cutoff frequency, and all the other axisymmetric modes.

4. Experimental Validation

In this last section, validation of the model is completed by comparing simulations
with experimental results obtained from an AlN-based PMUT. After a brief description of
the tested device, electrical impedance and displacement measurements are performed in
air and in a vegetable oil. The corresponding results are presented and discussed in view
of the simulation results.
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4.1. Device Description

The tested PMUT was fabricated by MEMSCAP Inc (Grenoble, France). The fabrication
process flow (Figure 8) follows the steps of the PiezoMUMPS process [77]. The process
starts (Figure 8a) with a Silicon On Insulator (SOI) wafer made with a 1 µm oxide layer
and a doped silicon layer of 10 µm. The silicon layer is the structural layer of the PMUT
plate, and the thickness can be tuned according to the targeted working frequencies. The
doped silicon layer also plays the role of the bottom electrode. (Figure 8b) An insulating
layer based on thermal oxide (200 nm thick) is then created and patterned by wet etching.
The oxide layer is required to insulate the AlN layer from the bottom electrode everywhere
except at the cavity location and the pad of the bottom electrode. Then, (Figure 8c) 500 nm
of piezoelectric aluminum nitride is deposited by reactive ion sputtering on the whole
wafer surface. Vias are etched to reveal the bottom electrode. The last layer deposited is
the metallization layer (Figure 8d), which is composed of 20 nm of chrome and 1 µm of
aluminum and is patterned through a liftoff process. The metallization layer is used for
the top electrode and for the contact pads of the electrical ground. After protecting the
front side with a polyimide coating (Figure 8e), the bottom side is etched using Reactive
Ion Etching (RIE) to pattern the cavities of the cells (Figure 8f). The last step (Figure 8g) is
the protection layer removal with a dry etching process.
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For model validation, two PMUT cell sizes were investigated: one with a diameter
of 340 µm and the second with a diameter of 275 µm. These PMUT sizes may seem large
regarding the final applications targeted (typically medical imaging). However, constraints
from the process flow did not enable us to fabricate PMUT with diameter smaller than
200 µm. To counterbalance these PMUT cell sizes, the structural layers of the plate were
designed to reach a working frequency in the MHz range. Both cells are presented in
Figure 9, where each top electrode is linked to the metal pad (250 × 100 µm2) by a track
of 50 µm width. Two metal pads are connected to the bottom electrode spaced on other
sides of the top metal pad at 100 µm. The cavities have been represented by adding a circle
in@dashes.
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Figure 9. Optical microscope photographs of the two devices used for the comparison between
the experimental and theoretical results. (a) Cell of 340 µm diameter (cavity in dash 1) with a top
electrode of 210 µm diameter (2). (b) Cell of 275 µm diameter (cavity in dash 1) with an electrode of
173 µm diameter (2). The dimensions of (3), (4), (5), and (6) are 250 µm, 100 µm, 50 µm, and 100 µm,
respectively.

4.2. Experimental Results and Discussion

Electrical impedance measurements with a 4294A impedance analyzer (Agilent Tech-
nologies Inc., Santa Clara, CA, USA) were performed in air first. The input data used for
AlN, Si, and Al to simulate the devices are recalled in Table 2. Chrome parameters are
added in Table 2. A mechanical loss factor was also added in the stiffness matrix [Km] to
fit the experimental quality factor. Figure 10 shows the real part of impedance (Figure 9a)
and the equivalent parallel plate capacitance (Figure 9b) measured for the second device
(275 µm) and the simulated device. Theoretical results are in good agreement with experi-
ments; the same approach was carried out with the first device 1 (340 µm) by changing the
dimensions, and the conclusions are identical with a very good agreement between theory
and experiment.

Electrical impedance measurements were recorded when the devices vibrate in a
fluid, thus completing the experiment and enabling the validation. Oil was chosen rather
than deionized water to minimize capacitive coupling between the bottom and the top
electrodes at the PMUT surface. All the device parameters used for air were kept for this
second set of simulations in vegetable oil (Table 2). The acoustic oil properties used were
an ultrasonic velocity of 1450 m/s and a density of 920 kg/m3. Figure 11a,b show the
real part of the impedance and the parallel plate capacitance for the first PMUT (diameter
340 µm), respectively. Figure 11c,d show the real part of the impedance and the parallel
plate capacitance for device 2 (diameter 275 µm), respectively. For device 1 and device
2, the resonance frequencies decreased from 1.5 MHz to 0.69 MHz and from 2.3 MHz to
1.15 MHz, respectively.
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Table 2. Material dimensions and properties used for simulations.

Layer Si [68] AlN [69] Cr Al [69]

Device 1 2 1 2 1 2 1 2
Diameter [µm] 340 275 340 275 211 173 211 173
Thickness [µm] 10 0.5 0.2 1

Young’s modulus
[GPa] 143 348 279 69

Poisson’s ratio 0.28 0.24 0.21 0.35
Density [kg/m3] 2330 3600 7190 2700

d31 [pC/N] - −2.05 - -
εT

33/ε0 - 10 - -
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The FD model perfectly matches the experimental results. In particular, the resonance
frequencies are the same. We mention that the quality factor is also accurately predicted.
This is a key validation because the PMUT damping is mainly due to ultrasonic wave
radiation and not due to mechanical losses. This means that the PMUT/fluid coupling is
well accounted for by the FD model. It is worth noting that the asymmetrical vibration
condition matches the experimental results even if the PMUT topology shows a slight
asymmetry due to the metallization strip required to have the top electrode electrical
contact. Finally, the mechanical displacement of the two PMUT cells was measured with a
laser vibrometer (UHF-120, Polytec GmbH, Waldbronn, Germany). The two devices were
placed in vegetable oil, and the displacement was scanned to compute the experimental
spatial average displacement. A 2D cartesian sweeping with a pitch of 10 µm was realized.
The sweeping zone dimensions were chosen to cover all the electrode surfaces. To compute
the spatial averaging, only points that belong to the circular surface of the top electrode were
kept. The excitation signal used was a monopolar sinus-shaped pulse of 40 V amplitude
and 5 MHz center frequency. Such an excitation signal enables us to cover all frequencies
up to 10 MHz and thus potentially to observe the resonance frequency of the PMUT cell as
well as its high cutoff frequency. The results are presented in Figure 12. In the time domain,
the displacement response at the plate center is presented for the two configurations. The
simulation results perfectly match the experiments, and even the signal damping seems
good, which agrees with the conclusion obtained from the impedance measurements.
For the displacement amplitude, the difference is ascribed to the variation in the optical
index between oil (1.47) and air (1) and acousto-optic interactions [78]. The measured
displacement amplitude should be divided by 1.47 if acousto-optic interactions are weak.
If this factor is applied to the experimental displacement data, it is clear that the difference
between the theory and experiment is minimal.
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From the experimental displacement spectra, the frequency response of the spatial av-
erage PMUT velocity was numerically computed. The results are presented in Figure 13a,b.
The maximum value for the 340 µm cell is at 0.7 MHz, and that for the 275 µm cell is
close to 1.2 MHz. These values are consistent with the resonance peak observed for the
experimental electrical impedance responses. The theoretical spatial average velocity is
added to the experimental curves. The theoretical resonance frequencies and damping
factors agree very well with the experimental values. As predicted by the model, the cutoff
frequency is strongly impacted by the fluid-loading effect as well. In air, for the 340 µm
diameter PMUT, the value was 5.75 MHz and this shifts to 4 MHz in a fluid. For the 275 µm
PMUT diameter, the cutoff frequency value shifted from 8.8 MHz to 6 MHz. FD model
cutoff frequency values perfectly match with experimental ones. As explained previously,
this specific frequency defines the upper frequency above which the whole PMUT plate
does not vibrate in phase. The shape of the PMUT deformation for the resonance and
the cutoff frequencies were investigated and compared with theory. For the resonance
frequency, all of the surface of the PMUT plate vibrates in phase. However, as expected, for
the cutoff frequency, the outer part of the plate is out-of-phase with the inner part, which
leads to a null spatial mean velocity. If the PMUT was surrounded by an array of identical
PMUT, the cutoff frequency would be the same. This last validation point clearly justifies
our choice of using a numerical model to compute the lumped-element equivalent circuit
of a single PMUT cell. This result has never been noted to date.
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5. Conclusions

Here, we develop an analytical model of a single PMUT cell vibrating in a fluid
and construct an equivalent lumped-element electrical circuit. These steps are necessary
to simulate entire PMUT arrays comprising dozens or even hundreds of simultaneously
vibrating PMUTs. Of course, this is not a new challenge, because many authors have already
proposed relevant analytical approaches capable of predicting, with reasonable accuracy,
the electroacoustic response of a PMUT cell radiating in water. In such works, developing
the analytical model requires simplifying the behavioral equations and making several
assumptions, due to which analytical solutions for PMUT systems can be established.
However, many assumptions that have been made toward developing analytical solutions
are sometimes faced with ambiguous validity. Here, we attempted to test these assumptions
in parallel with the stepwise development of our model.

The outcome shows that silicon material can be modeled as an isotropic material and
that a PMUT with a circular topology can be described under axisymmetric conditions.
We have demonstrated an expression for the position of the neutral line and shown how
to simplify, without any assumptions, the behavioral equations of a plate to yield one
equation of motion that is associated with transverse displacement and a second equation
that is associated with axial displacement. This demonstration is only applicable if the
materials are isotropic or transversely isotropic, which is often the case for MEMSs. We
have also confirmed a result that is widely accepted in the literature: axial displacement
can be neglected and has no significant impact on the electrical behavior of the PMUT.

To solve the system of equations, we do not develop analytical solutions for two
reasons. The first is attributed to the inhomogeneous nature of the plate, whose thickness
varies, and the second is attributed to solving the fluid/structure coupling equations.
Thickness variation results in a neutral line discontinuity that is difficult to introduce in
a set of analytical solutions. Regarding the second reason to avoid analytical solutions,
prior work has shown that fluid/structure coupling can only be correctly simulated using
an eigenmode solution basis associated with the governing equation of a fluid-loaded
plate. However, many current analytical models are based on the eigenmodes of the plate
vibrating in air. We thus chose to use a finite difference discretization scheme. This type
of discretization is easy to implement and not very demanding in terms of computational
time and capacity. The accuracy of the model has been validated in both air and fluid.
To integrate fluid/structure coupling, a boundary element matrix for an axisymmetric
radiation source has been developed, implemented, and validated.

For the implementation of the equivalent lumped-element electrical circuit, the so-
lutions take fluid/structure coupling into account from the start, enabling the correct
prediction of the PMUT’s center frequency and high cutoff frequency. Moreover, Foldy’s
definition was used, based on power conservation, whereas Mason’s model (based on force
conservation) is the most common for PMUT. It seems that both approaches are fair and
that the choice is open.

Finally, the model developed was experimentally validated using AlN-based PMUTs.
Electrical and mechanical measurements were carried out in a fluid medium. The theory–
experiment comparison validates the model and confirms all the assumptions we have
made regarding the analytical models published to date.

This work will later be extended to the modeling of PMUT arrays to be able to simulate
all the basic characteristics of an ultrasonic transducer, electroacoustic response, center
frequency, bandwidth, etc. The choice of source conditions to be used to determine the
matrix of mutual impedances between PMUTs will be an important point to address in
view of the work presented by K. Smyth et al. [46].

Author Contributions: Conceptualization, V.G., D.C. and A.B.; Methodology and Validation, V.G.,
A.B., F.L., T.M., R.R. and D.C.; Investigation and Resources, A.B.; Writing—original draft preparation,
V.G.; Writing—review and editing, D.C., F.L., A.B. and R.R.; Visualization, V.G., A.B., F.L., T.M., R.R.
and D.C.; Supervision, D.C., F.L. and A.B.; Project Administration, D.C., F.L. and A.B.; Funding



Micromachines 2023, 14, 2089 22 of 27

Acquisition, D.C., F.L. and A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was performed under a CIFRE agreement with the ANRT (National Agency for
Research and Technology).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank Flavien Barcella and Sébastien Augier for their
help with the functional devices. The authors thank the French CERTeM Technological Platform for
technological support.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

Appendix A. Resolution of the Transverse Displacement Equation

This appendix gathers all the calculations associated with the stress-resultant equation
of motion from which the transversal displacement can be calculated.

For the transverse displacement, the first step is to write the expression of the stress
resultants, i.e., the bending moments Mrr and Mθθ :

[
Mrr

Mθθ

]
= ∑

k

hk∫
hk−1

(z− zn)

[
Trr
Tθθ

]
dz, (A1)

where Trr and Tθθ are stress field vector components according to the r and θ directions,
respectively.

To introduce the expression of the displacements (1) in the resultant stresses and
resultant moments, one must use the classical strain–stress relation (Hooke’s law) and then
compute the integral along the z-axis for each term of Trr and Tθθ . These calculation steps
have already been widely described in the literature [58] and will not be detailed here.
However, because axial displacement is not suppressed from the equations, we need to
introduce the following terms [58]:

(1) The membrane strain matrix: ε0 = [
∂u0
∂r
u0
r
]

(2) The flexural strain matrix, known as the curvature matrix: ε1 = [
− ∂2w

∂r2

− 1
r

∂w
∂r
]

The resultant moments expression becomes:

M = [Mrr
Mθθ

] = ∑
k

(
hk

2−hk−1
2

2

)
H′kε0 − zn∑

k
(hk − hk−1)H′kε0

+∑
k

((
h3

k−h3
k−1

3

)
H′kε1 − 2zn

(
h2

k−h2
k−1

2

)
H′kε1 + z2

n(hk − hk−1)H′kε1
)

,
(A2)

where the H′k matrix is written as:

H′k =
Ek

1− σ2
k

[
1 σk
σk 1

]
. (A3)

The resultant moments expression can be reorganized thanks to the following decom-
position:

M = M0 + M1, (A4)
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where M0 and M1 are the resultant moments associated with the ε0 and ε1 terms, respec-
tively. If we write Equation (A4) with matrix operators A, B, and C, developed by Zhang
et al. [47] and by J.N. Reddy’s book [58], one has:

[Mrr
Mθθ

] = [
Mrr

0+Mrr
1

Mθθ
0+Mθθ

1] =

[[
B11 B12
B21 B22

]
− zn

[
A11 A12
A21 A22

]]
ε0

+

[[
D11 D12
D21 D22

]
− 2zn

[
B11 B12
B21 B22

]
+ z2

n

[
A11 A12
A21 A22

]]
X,

(A5)

where B11 = B22, B12 = B21, A11 = A22, A12 = A21, D11 = D22, and D12 = D21.
Similar expressions can be obtained for Nrr and Nθθ , and the calculations and equations

are given in Appendix B.

Appendix B. Resolution of the Radial Displacement Equation

This appendix gathers all the calculations associated with the stress-resultant equation
of motion from which the axial displacement can be calculated.

For the axial displacement, the first step is to write the expression of the stress resul-
tants, i.e., the radial forces Nrr and Nθθ :

[
Nrr

Nθθ

]
= ∑

k

hk∫
hk−1

[
Trr
Tθθ

]
dz. (A6)

If we focus our analysis on the resultant equations, and we replace the stress expression,
the resultant equations give:[

Nrr

Nθθ

]
= ∑

k
(hk − hk−1)H′kε0 + ∑

k

(
hk − hk−1

2

)
H′kε1 + zn∑ (hk − hk−1)H′kε1. (A7)

Equation (A7) can be rewritten by separating the axial displacement and transverse
displacement terms:

N = N0 + N1, (A8)

where N0 gathers all the ε0 terms (axial displacement) together and N1 gathers all the ε1

curvature terms (transverse displacement).
If we write the last equations with matrix operator A, B, one obtains:[
Nrr

Nθθ

]
=

[
Nrr

0 + Nrr
1

Nθθ
0 + Nθθ

1

]
=

[
A11 A12
A21 A22

]
ε0 +

[[
B11 B12
B21 B22

]
− zn

[
A11 A12
A21 A22

]]
ε1, (A9)

where B11 = B22, B12 = B21, A11 = A22, and A12 = A21.
Considering the axisymmetric problem, the equation of motion for the stress resultants

given by J.N. Reddy [58] is:

−1
r

(
∂(rNrr)

∂r
− Nθθ

)
= −ρs

∂2u0

∂t2 . (A10)

This equation assumes that there are no volume sources in the plate body.
Using Equation (A8), the equation of motion becomes:

−1
r

Nrr
0 −

∂
(

Nrr
0
)

∂r
+

1
r

Nθθ
0 − 1

r
Nrr

1 −
∂
(

Nrr
1
)

∂r
+

1
r

Nθθ
1 = −ρs

∂2u0

∂t2 . (A11)
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On the left part, the three-term function for the transverse displacement w can be
written as:

−
∂
(

Nrr
1
)

∂r
− 1

r
Nrr

1 +
1
r

Nθθ
1 =

(
∂3w
∂r3 +

1
r

∂2w
∂r2 −

1
r2

∂w
∂r

)
(B11 − zn A11). (A12)

For the resultant moment equation, the right term with the transverse displacement w
cancels out if the neutral line position value is:

zn =
B11

A11
=

∑k
h2

k−h2
k−1

2
Ek

1−σ2
k

∑k (hk − hk−1)
Ek

1−σ2
k

. (A13)

Clearly, we find the same expression as before.
From the Equations (A9), (A11), and (A13), the second equation of motion is written

as follows:

− ∂
∂r

(
A11

∂u0
∂r

)
− ∂

∂r
(

A12
u0
r
)
− 1

r A11
∂u0
∂r −A12

u0
r2 + 1

r A12
∂u0
∂r + A11

u0
r2 = −ρs

∂2u0
∂t2 , (A14)

where the Axx terms are given by Zhang [47]. The behavioral equation above can be
resolved by the FDM, which becomes:

[Gm][u0] = ω2[M][u0], (A15)

where [u0] and [Gm] are the axial displacement and a second stiffness matrix, respectively.
The piezoelectric coupling creates an additional axial force labeled Np, written as [49]:

Np = −
Epd31V(
1− σp

) , (A16)

where Ep, d31, and σp are the Young’s modulus, the piezoelectric coefficient, and Poisson’s
ratio of the piezoelectric layer, respectively, and V is the excitation voltage.

The second equation of motion presented in Equation (A14) becomes:

− ∂
∂r

(
A11

∂u0
∂r

)
− ∂

∂r
(

A12
u0
r
)
− 1

r A11
∂u0
∂r − A12

u0
r2 +

1
r A12

∂u0
∂r + A11

u0
r2 −

∂(Np)
∂r = −ρs

∂2u0
∂t2 . (A17)

After applying the FD discretization scheme of Equation (A17), the final relation is:

[Gm][u0] = ω2[M][u0] + [Gem][V], (A18)

where [Gem] is the electrical-to-mechanical conversion for the axial displacements. For
a given input excitation voltage source, [u0] can be computed and then used to solve
Equation (23) for charge density. For the boundary conditions, because the plate is clamped,
u0 = 0 at the outer perimeters, and through the cell geometry, an anti-symmetrical condition
is applied to u0 at r = 0.
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